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INTRODUCTION  

Cold in-place recycling (CIR) is an on-site 100 percent pavement recycling process to a typical 

treatment depth of 2 – 5 inch. An additive or combination of additives (asphalt emulsions, 

rejuvenating agents, foamed asphalt, lime, fly ash, or cement) may be used.  The CIR construction 

process can be summarized by the following steps: 

1. Milling and crushing of the existing pavement  

2. Mixing and addition of a recycling agent  

3. Lay down 

4. In-place compaction 

5. Placement of the wearing course 

Figure 1 shows the CIR process using a train of equipment (tankers, trucks, milling machines, 

crushing and screening units, and mixer). The water tanker supplies the optimum water content 

to achieve the maximum density of the compacted CIR material. The optimum water content and 

maximum density are determined in the laboratory through the modified proctor compaction 

method as specified in AASHTO T180. 

 

 

Figure 1. Cold in-place recycling train components.  

The milling machine pulverizes the existing asphalt concrete (AC) layer to the specified depth of 

the CIR process. The milled material is referred to as reclaimed asphalt pavement (RAP). It should 

be noted that some water is added (i.e., 1.0 – 1.5% by weight of RAP) to cool the milling heads 

which should be accounted for in the calculation of the amount of additional water needed to 

achieve the optimum water content. The recycling unit crushes the RAP material to meet the 
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gradation specification of the project and mixes the RAP material with the asphalt emulsion. Some 

projects apply full gradation specification while other projects may only apply a maximum size 

specification. The emulsion tank is connected to the recycling unit and delivers the amount of 

asphalt emulsion specified per the job mix formula (JMF). The final CIR mix is laid-down in a 

windrow behind the recycling unit.  

Figure 2 shows the final two steps of the construction process where the CIR mix is picked up by 

the paver, laid-down to the specified thickness, and compacted by the rollers. The degree of 

compaction achieved in the CIR layer plays a major role in its long-term performance as a 

structural layer in the AC pavement.  

    

 

Figure 2. The CIR mix is picked up by the paver and roller compacted. 

 

OBJECTIVE 

The Nevada Department of Transportation (NDOT), the Washoe County Community Services 

Department, and the Washoe Regional Transportation Commission (WRTC) have done a great job 

in controlling steps 1-3 and 5. Step 4, however, has caused some serious problems with the 

construction and long-term performance of CIR projects in Nevada and throughout the U.S. 

Typically, in-place compaction is controlled through the measurement of density of the compacted 

mat and the calculation of in-place air voids.  In the case of AC mixtures, a combination of cores 

and nuclear density gauge is used to determine the in-place density of the compacted mat following 

well-established AASHTO and Agency’s procedures. The implementation of the same procedures 

for CIR faces serious limitations due to: (1) the inability of cutting cores from the CIR mat until 

full curing of the CIR mix has occurred which requires 7-14 days; and (2) the ineffectiveness of 

the nuclear density gauge during the compaction process because of the high moisture content of 

the CIR mix. 

In summary, the objective of this research effort is to develop a practical method for the 

determination of in-place density during construction of the CIR layer that generate data for the 

calculation of in-place air voids immediately following the compaction process. Such method will 

ensure the correct in-place density and air voids are achieved which can improve the long-term 

pavement performance of CIR projects leading to long-lasting pavement structures. 
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RESEARCH PROGRAM 

In order to achieve the research objective, the following activities were completed during the 

course of this study:  

TASK 1: REVIEW OF CIR PROJECTS 

This task reviewed CIR pavements on two Washoe County projects: Red Rock Road and 

Sandpiper Drive.  The research team carried the following steps to evaluate the two CIR Projects: 

• Evaluated cores from the projects 

• Obtained and analyzed the available performance data 

• Visited the projects and conducted condition surveys   

Evaluation of Cores 

The current limitations in the measurements of in-place density of the CIR layer led to the 

construction of CIR projects without the effective control of compaction. On the request of Washoe 

County Community Services Department, the Pavement Engineering & Science (PES) Program at 

the University of Nevada, Reno (UNR) assessed the in-place densities obtained on two CIR 

projects: Red Rock Road and Sandpiper Drive. The CIR layer on Red Rock Road was constructed 

in summer 2013 and the CIR layer on Sandpiper Drive was constructed in summer 2014. The cores 

from both projects were sampled on October 21, 2014.  The air voids of the cores were determined 

following ASTM D1188 (with parafilm) and the resistance to moisture damage was determined 

following AASHTO T283. Research activities on Nevada’s CIR mixtures over the past 20 years 

have led to the following recommendations: 

• CIR mixtures achieving unconditioned tensile strength (TS) property at 77oF above 50 psi 

are expected to experience good field performance.  

• The resistance of the CIR mixture to moisture damage is assessed through the tensile 

strength ratio (TSR) defined as the ratio of moisture conditioned TS over the unconditioned 

TS at 77oF. Typically, CIR mixtures achieving TSR values above 70% are expected to 

provide good resistance to moisture damage. 

• The addition of lime slurry has shown significant improvement in the unconditioned TS 

and TSR properties of CIR mixtures used on several projects in Nevada.   

The data on air voids and moisture damage are summarized in Table 1 for the Red Rock Road and 

in Table 2 for the Sandpiper Drive. A close review of the data in Table 1 andTable 2 leads to the 

following observations:     

• Red Rock Road: the CIR mix was well compacted (air voids 12 – 15%) and achieved a 

good level of unconditioned tensile strength, however, the lack of lime slurry significantly 

reduced the conditioned tensile strength which may lead to severe moisture damage of the 

pavement.   

• Sandpiper Drive: the CIR mix was poorly compacted (air voids 22 – 25%) and did not 

achieve good levels of unconditioned and conditioned tensile strengths which may lead to 

severe moisture damage of the pavement. 

The presented data clearly indicate that good in-place compaction to achieve in-place air voids in 

the range of 12-15% is absolutely necessary to produce CIR mixtures that have good resistance to 
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moisture damage and the addition of lime slurry does not compensate for poor compaction.  Hence, 

there is a great need to develop a reliable method for determining the in-place density of the CIR 

mixture during the compaction process.  

Table 1. Properties of Cores from the Red Rock CIR Project without Lime slurry. 

Location Property Field Cores  
 

 

 

North 

Bound 

Core Number  8 4 6 10 5 7 9 11 

Air Voids (%) 14.3 12.1 14.1 13.6 12.8 13.0 14.3 13.9 

Un-conditioned Tensile Strength @77oF, psi 70 71 71 83     

Average Un-conditioned Tensile Strength @77oF, 

psi 

74     

Conditioned Tensile Strength @77oF, psi     37 44 31 35 

Average Conditioned Tensile Strength @77oF, psi     37 

Tensile Strength Ratio (TSR) @77oF, % 50 

 

 

South 

Bound 

Core Number 21 23 25 26 19 20 22 24 

Air Voids (%) 14.7 14.3 14.1 15.0 14.9 14.5 13.9 14.8 

Un-conditioned Tensile Strength @77oF, psi 53 60 62 64     

Average Un-conditioned Tensile Strength @77oF, 

psi 

60     

Conditioned Tensile Strength @77oF, psi     11 12 21 12 

Average Conditioned Tensile Strength @77oF, psi     14 

Tensile Strength Ratio (TSR) @77oF, % 23 

   

Table 2. Properties of Cores from the Sandpiper CIR Project with Lime. 

Location Property Field Cores  
 

 

 

North 

Bound 

Core Number  1 3    2 4 5   

Air Voids (%) 22.8 22.2    22.5 22.7 23.6   

Un-conditioned Tensile Strength @77oF, 

psi 

41 42         

Average Un-conditioned Tensile 

Strength @77oF, psi 

42      

Conditioned Tensile Strength @77oF, psi      33 34 30   

Average Conditioned Tensile Strength 

@77oF, psi 

     32 

Tensile Strength Ratio (TSR) @77oF, % 76 

 

 

South 

Bound 

Core Number 17 19 23 24 25 16 18 20 22 26 

Air Voids (%) 25.0 25.0 24.1 24.9 25.2 22.3 25.0 26.0 24.3 25.0 

Un-conditioned Tensile Strength @77oF, 

psi 

32 31 32 31 28      

Average Un-conditioned Tensile 

Strength @77oF, psi 

31      

Conditioned Tensile Strength @77oF, psi      24 22 22 26 22 

Average Conditioned Tensile Strength 

@77oF, psi 

     23 

Tensile Strength Ratio (TSR) @77oF, % 74 

 

Performance Evaluations  

This effort evaluated the field performance of the two CIR projects. Prior to examining the field 

performance of the projects, the unique characteristics of each project must be examined and their 

contributions toward the field performance should be carefully examined and well recognized:  

• Red Rock Road: 

o This facility is an Arterial: ADT ≥ 10,000 
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o The CIR layer was constructed in 2013 with a 2-inch AC overlay 

o The pavement received a microsurfacing in 2016 

o The in-place air voids of the CIR layer were: 14 -15% 

o The CIR mix had the following characteristics: 

▪ No lime slurry 

▪ High unconditioned TS due to the low in-place air voids 

▪ Low conditioned TS due to the lack of lime slurry 

 

• Sandpiper Drive: 

o This facility is a Collector: ADT < 10,000 

o The CIR layer was constructed in 2014 with a Cape Seal 

o The pavement did not receive any maintenance treatment since construction 

o The in-place air voids of the CIR layer were: 24 -26% 

o The CIR mix had the following characteristics: 

▪ Lime slurry 

▪ Low unconditioned TS due to the high in-place air voids 

▪ Low conditioned TS due to the high in-place air voids 

The historical condition surveys of the two projects indicated the following: 

• Red Rock Road: 

o PCI in 2013 after CIR and AC overlay: 100 

o PCI in 2015: 99 

o PCI in 2016 after microsurfacing: 100 

o PCI in 2017: 95 

 

• Sandpiper Drive: 

o PCI in 2014 after CIR and Cape Seal: 100 

o PCI in 2015: 99 

The research team conducted condition surveys on both project during December 2017. Figure 3 

and Figure 4 show the surface conditions of the Red Rock and Sandpiper projects, respectively. 

Based on the December 2017 condition surveys conducted by the research team, the following 

observation can be made. 

• Red Rock Road: 

o The pavement received a 2-inch AC overlay over the CIR layer due to its 

classification as Arterial. 
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Figure 3. Surface of Red Rock Road in December 2017. 

 

Figure 4. Surface of Sandpiper Drive in December 2017. 

o The exact reason for the application of the microsurfacing in 2016 could not be 

established due to the lack of performance data between 2013 and 2016, however, 

two justifications can be speculated: a) due to some deterioration of the pavement 

surface or b) as part of a pavement preservation program  

o The 2017 pavement surface condition shows medium severity raveling of the 

microsurfacing 

o In light of the above observations, it can be concluded that the 2-inch AC overlay 

provided excellent protection to the CIR layer which prevented the occurrence of 
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structural failures due to the CIR mixture’s low resistance to moisture damage as 

depicted by the low conditioned TS property  

    

• Sandpiper Drive: 

o The pavement received a cape seal over the CIR layer to its classification as a 

Collector.  

o The 2017 pavement surface condition shows medium severity transverse cracking 

and non-wheelpath medium severity longitudinal cracking  

o In light of the above observations, the following conclusions can be made: 

▪ The cape seal did not provide sufficient protection to the CIR layer from 

thermal stresses which resulted in the formation of transverse cracks due 

to the high in-place air voids which led to the low TS properties of the CIR 

layer  

▪ The formation of the non-wheelpath longitudinal cracks was caused by the 

inability of the cape seal to resistance the reflection of the construction 

joints from the CIR layer      

In summary, the evaluations of the two CIR projects on Red Rock Road and Sandpiper Drive 

further emphasized the need for the development of an effective mix design for the CIR layer and 

achieving good field compaction in terms of in-place air voids less than 14%.  

 

TASK 2: LABORATORY EXPERIMENT 

This task conducted an extensive laboratory experiment to develop a reliable and practical test 

method to determine the in-place density of CIR mixtures during the field compaction process.  

The laboratory experimental program evaluated three methods: sand cone (ASTM D1556), rubber 

balloon (ASTM D2167), and field permeability by completing the following steps: 

• Obtain field samples of recycled asphalt pavement (RAP) and prepare CIR mixtures. 

• Compact slabs of CIR mixtures in the laboratory. 

• Measure the density of the compacted CIR slabs using the sand cone and rubber balloon 

methods. 

• Measure the permeability of the compacted CIR slabs using the NCAT method. 

• Fully cure the compacted CIR slabs and repeat the density and permeability 

measurements. 

• Cut cores from the cured compacted CIR slabs and measure the density. 

• Calculate the in-place air voids estimated by the three methods and measured on the 

cores. 
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Sand Cone Method  

The sand cone method is used to determine the in-place density and unit weight of compacted 

granular materials as per ASTM D1556. The test method uses a sand cone density apparatus which 

consists of a sand container, a sand cone (metal funnel with a valve), and a base plate. Sand used 

for the test method must be clean, dry, with uniform density and grading. Figure 5 illustrates the 

equipment used for the sand cone test method. The test sequence consists of the following steps: 

• Excavating a hole in the layer to be tested (i.e., CIR mat) 

• Saving all the materials from the hole in a container  

• Filling the excavated hole with free-flowing sand of a known density 

• The volume of the excavated hole is calculated from the mass of sand needed to completely 

fill it 

• The in-place wet density of the CIR mix is calculated as the wet mass of the removed 

material divided by the volume of the hole 

• Water content of the CIR mix excavated from the hole is determined by drying the material 

until constant weight 

• The dry density of the in-place CIR mix calculated using the wet mass of the material, the 

water content, and the volume of the hole 

 

 

Figure 5. Sand cone apparatus on the CIR mat. 
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Rubber Balloon Method  

The rubber balloon method is used to determine the in-place density and unit weight of compacted 

or firmly bonded granular material as per ASTM D2167. The test method uses a rubber balloon 

density apparatus which consists of a calibrated vessel containing water within a thin, flexible, 

elastic membrane (rubber balloon), designed for measuring the volume of the hole and a base plate. 

Figure 6 illustrates the equipment used for the rubber balloon test method. The test method consists 

of the following steps: 

• Before excavating the hole, the operational pressure (determined during the calibration of 

the equipment) must be applied to the test location (i.e., should be reasonably plane and 

level) to measure the initial volume reading  

• Excavating a hole in the layer to be tested (i.e., CIR mat) 

• Saving all the materials from the hole in a container  

• The apparatus is placed on the excavated hole and the operational pressure is applied to 

completely fill the hole with the balloon 

• Measuring the final volume reading 

• The total volume of the hole is the difference between the final and the initial volume 

readings 

• The in-place wet density is calculated as the wet mass of the removed material divided by 

the volume of the hole 

• Water content of the CIR mix excavated from the hole is determined by drying the material 

until constant weight 

• The dry density of the in-place CIR mix is calculated using the wet mass of the material, 

the water content, and the volume of the hole 

 

Figure 6. Rubber balloon apparatus on the CIR mat. 
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Field Permeability Method 

The field permeability method is used to determine the in-situ permeability of a compacted asphalt 

concrete mat. The test method uses the NCAT Field Permeameter, which consists of up to four 

tubes segments or “tiers” of transparent plastic with different diameter for different permeability 

conditions. The concept of using this method is based on establishing an empirical relationship 

between the permeability of the CIR mat and its in-place air voids. Figure 7 illustrates the 

equipment used for the field permeability method. The test method consists of the following steps:  

• The sealant is applied to the base of the NCAT Field Permeameter 

• An asphalt area of approximately 1-foot square is brushed to clean any loose stones 

• The Permeameter is fixed to compacted layer surface by applying uniform pressure and 

then placing the 5-pound weights on each corner of the base  

• The vessel is filled with water at a steady rate 

• Once filled, the rate at which the water level drops in the Permeameter vessel is measured  

• A tier in which the rate is slow enough for an accurate observation but fast enough for 

timely completion the test is selected  

• The starting time and starting height for the falling head are noted and the test is performed 

until the final time and final height are obtained  

• The coefficient of permeability is calculated as follows: 

𝐾 = (
𝑎∗𝐿

𝐴∗𝑡
) ∗ ln (

ℎ1

ℎ2
)                                      (1) 

Where; 

K = coefficient of permeability (cm/sec) 

a = inside cross area of the tier used (cm2) 

L = thickness of the asphalt mat (cm) 

A = cross area of test area (area in which water penetrate the pavement) (cm2) 

t = elapsed time between h1 and h2 (sec) 

h1 = initial head (cm) 

h2 = final head (cm) 

 

Figure 7. NCAT Field Permeameter apparatus on the CIR mat. 
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Laboratory Evaluations 

An experimental plan was developed to evaluate the applicability of the three test methods for 

measuring the in-place density of the CIR layer during construction. The measured in-place density 

will be used along with the maximum theoretical specific gravity of the CIR mix to determine the 

in-place air voids as per AASHTO T269. CIR slabs were produced in the laboratory to perform 

testing with the selected three methods. After the measurements, core samples were drilled out of 

the slabs and used to calculate the actual density of the compacted CIR layer and to compare with 

densities estimated from the selected in-place test methods. In total, seven slabs were fabricated 

and tested using different mix designs with variations in the asphalt emulsion type, lime slurry 

percent (4.5% and 6.0%), and the in-place density testing time after compaction. The following 

sections describe the laboratory evaluation process.  

Preparation of the CIR Mix 

The first step was to mix the RAP material with the asphalt emulsion and lime slurry. This process 

was completed using a concrete mixer, as illustrated in Error! Reference source not found.. The 

sequence recommended by the CIR mix design were followed; first mix the RAP with the lime 

slurry (4.5% or 6.0%) for 2 minutes, then add more water (1.5%) and mix for 1 minute, and finally 

add the asphalt emulsion (depending on the mix design) and mix for 1 minute.  

Compaction of the CIR Slab 

Once the CIR mix is prepared, the next step was to compact the CIR slab. The CIR mix was 

dumped inside the wooden frame and spread uniformly. A vibratory plate compactor was used to 

densify the CIR slabs, as shown in Error! Reference source not found.. The slabs wooden frame 

is a 42 inch square with 2.5 or 3.5 inch thickness.  

 

  

Figure 8. Laboratory CIR mixture production and compaction using concrete mixer and 

vibratory plate compactor. 
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In-place Density and Permeability Tests 

The next step after compaction was to perform the in-place density and permeability testing on the 

compacted CIR slab. The testing plan is shown in Figure 9, where the small circles represent the 

locations of the sand cone and rubber balloon tests and the big circles represent the locations for 

the permeability test and the core samples. In-place density testing was planned to be performed 

at 16 locations per slab. Eight sand cone tests, eight rubber balloon tests, and eight permeability 

tests were planned to be conducted on each slab. Rubber balloon and sand cone density tests were 

conducted at the same locations using the same hole to perform both tests, whereas permeability 

tests were planned to be performed on the same locations of the core samples, since it is not a 

destructive test and cores can be drilled at that same locations. Table 3 provides a summary of the 

seven slabs tested for in-place density using the sand cone and rubber balloon methods and cut 

cores. 

 

 
Figure 9. CIR slabs density measurement plan. 

Table 3. Properties of the Laboratory Slabs for In-Place Density Measurements. 

Slab Emulsion Slurry Lime (%) Thickness (in) Multi-Day Testing 

1 Type B 6.0 3.5 Yes 

2 Type B 4.5 3.5 Yes 

3 Type B 4.5 2.5 Yes 

4 Type C 6.0 2.5 No 

5 Type C 4.5 2.5 No 

6 Type B 4.5 3.0 No 

7 Type C 4.5 3.0 No 
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The permeability test was difficult to perform on the CIR slabs using the NCAT Field Permeameter 

due to water leaks on the base of the equipment. As a first attempt, the test was conducted following 

the user manual of the equipment with the recommended weight (20 lb) to prevent water leaking, 

as shown in the left photo of Error! Reference source not found.. Since this attempt was not 

successful, the test was repeated using a higher weight (120 lb) which led to the same issue as 

shown in the right photo of Error! Reference source not found.. 

Also, as shown in Figure 11, some of the fines were washed from the CIR mix by the water while 

performing the permeability test. Since it was planned to drill the core samples at that same 

locations as the permeability tests, the core density results would have been affected. It was 

decided to abandon the permeability test for determining the in-place density of the compacted 

CIR layer. 

  

Figure 10. Water leaks during the permeability test. 

 

 

Figure 11. Washed fines after performing the permeability test. 
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The in-place density testing of the first three slabs was performed on multiple days following 

compaction. The balloon and sand cone measurements started on compaction day and finished on 

the 14th day after compaction. The days the tests were performed on the first three slabs were; 0, 

1st, 2nd, 3rd, 6th, 9th, 12th and 14th after compaction. Table 4 presents an example of the in-place 

density test results for slab 1. 

 

Table 4. Balloon and Sand Cone Test Results for Slab 1. 

Balloon 
Day 

Avg. Std. Dev. 
CV 

 (%) 0 1 2 3 6 9 12 14 

Wet Density (g/cm3) 1.935 1.995 1.946 2.015 1.920 2.000 1.985 1.911 1.963 0.040 2.0 

Dry Density (g/cm3) 1.827 1.913 1.867 1.934 1.874 1.951 1.948 1.873 1.898 0.045 2.4 

Air Voids (%) 22.0 18.3 20.3 17.4 20.0 16.7 16.8 20.0 18.9 0.019 10.1 

Wc (%) 5.95 4.26 4.25 4.20 2.49 2.52 1.90 2.00  

Sand Cone 
Day 

Avg. Std. Dev. 
CV 

(%) 0 1 2 3 6 9 12 14 

Wet Density (g/cm3) 2.033 1.902 1.931 2.042 1.979 1.982 1.973 1.951 1.974 0.047 2.4 

Dry Density (g/cm3) 1.921 1.818 1.850 1.959 1.927 1.933 1.933 1.912 1.907 0.048 2.5 

Air Voids (%) 17.9 22.3 21.0 16.3 17.7 17.4 17.4 18.3 18.5 0.020 11.0 

Wc (%) 5.81 4.59 4.39 4.23 2.68 2.50 2.10 2.01   

 

The data on slab 1 summarized in Table 4 showed no significant difference in performing the in-

place density tests at multiple days after compaction. Since the focus of this research was to 

determine the in-place density for a CIR field project after compaction, it was decided to perform 

all the in-place density testing one hour after compaction is completed.  

It is important to note the practical limitations for each of the in-place density tests. For the sand 

cone test method, the standard (ASTM D1556) states that for a mixture with maximum particle 

size of 1 inch the minimum test hole size is 130 in3. With a base plate diameter of 6 inch and the 

depths of the CIR layer between 2.5 and 3.5 inch, the volume of the hole varied approximately 

between 70 in3 and 98 in3 which is lower than the minimum requirement.  

The same limitation was encountered with the rubber balloon test method, in which the standard 

(ASTM D2167) states that for a mixture with maximum particle size of 1 inch the minimum test 

hole size is 130 in3. With a base plate diameter of 4 inch and the depths of the CIR layer between 

2.5 and 3.5 inch, the volume of the hole varied approximately between 31 in3 and 43 in3 which is 

lower than the minimum requirement.  

To increase the volume of the excavated hole as much as possible, to be closer to the specification 

limits, it was decided to compact the first two slabs to a thickness of 3.5 inch. However, the thicker 

slabs and larger excavated hole did not improve the results while still below the minimum 

requirement. Finally, since it was not possible to achieve the required minimum volume on a 

realistic CIR mat thickness, it was decided to perform the testing with this limitation. 

 

Coring of the Laboratory CIR Slabs 

The last step was to cut cores from the compacted CIR slabs and determine their densities in the 

laboratory. Cores were obtained after the CIR mixture was fully cured; 14 days after compaction. 
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The cores were drilled right next to each excavated hole where the in-place density tests were 

performed, as shown in Figure 12. It was assumed that, since the core location was very close to 

the in-place density test location, the density at both locations would be the same. 

 

Figure 12. Coring of the CIR slabs. 

Due to the anticipated high air voids contents of the cores, two test methods were performed to 

obtain their bulk specific gravity: Parafilm method (ASTM D1188) and Corelok method (ASTM 

D6752) as shown in Figure 13. Figure 14 compares the air voids contents of the cores measured 

following the two standards. 

 

Figure 13. Test methods for bulk specific gravity of cores: left – Parafilm, right –  Corelok. 
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Figure 14. Relationship between air voids of cores from Parafilm and Corelok methods. 

The trends in the measured data are very similar to the results reported by Zhang et al. in 2014 

(Determining volumetric properties and permeability of asphalt-treated permeable base mixtures) 

as shown in Figure 15. In general terms, the air voids content obtained from the parafilm method 

are about one percent higher than the air voids content obtained from the Corelok method. This 

difference might be due to a more realistic volume representation by the vacuum sealing of the 

Corelok method, which eliminates some of the air pockets that can be produced in the wrapping 

process of the Parafilm method. Without the artificial air pockets, the samples would have a 

smaller volume, which would lead to lower air voids content.  

 
Figure 15. Relationship between air voids from parafilm and Corelok methods (Zhang et al, 

2014) (VTM: Voids in Total Mix). 
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 Analysis of In-place Density Test Results  

The air voids contents of the cores using the two bulk specific gravity test methods were compared 

with the estimated air voids contents obtained from the two in-place test methods conducted on 

the CIR slabs. In-place air voids contents obtained from the sand cone and rubber balloon methods 

were compared with the air voids contents of the cores cut from the close-by location. As an 

example, Figure 16 compares the air voids contents obtained from rubber balloon and sand cone 

methods to the air voids contents of the cores using the parafilm method for Slab 1. Appendix A 

includes the results for all the slabs, using Parafilm and Corelok methods for obtaining the bulk 

specific gravity of the cores. 

 

Figure 16. Comparison of in-place air voids and cores air voids using Parafilm for Slab-1. 

Figure 17 and Figure 18 show the overall summary of the data obtained from the seven slabs for 

the Parafilm and Corelok methods, respectively. It can be observed that the Corelok method 

produced air voids closer to the in-place methods than the Parafilm method for the possible reason 

discussed earlier. It is interesting to note that the majority of the data are above the equality line, 

which shows that in most of the cases the air voids content estimated by the in-place test methods 

is lower than the true air voids content obtained from the cores. 

 

Figure 17. Comparison of in-place air voids and cores air voids using Parafilm for all 7 slabs. 

10

15

20

25

30

10 15 20 25 30

A
ir

 V
o

id
s:

 C
o

re
s 

-
p

ar
af

ilm
 (

%
)

Air Voids: Sand Cone and Rubber Balloon (%)

Slab 1 [Parafilm]

Balloon Sand Cone Equality Line

10

15

20

25

30

10 15 20 25 30

A
ir

 V
o

id
s:

 C
o

re
s 

-
p

ar
af

ilm
 (

%
)

Air Voids: Sand Cone and Rubber Balloon (%)

All 7 Slabs (Parafilm)

Balloon Sand Cone Equality Line



18 

 

 
Figure 18. Comparison of in-place air voids and cores air voids using Corelok for all 7 slabs. 

Statistical Analysis 

A statistical analysis was implemented to assist in identifying an appropriate method for measuring 

the in-place density of the compacted CIR layer. An outlier detection method for the entire data 

set was used prior to performing the statistical analysis. 

Outlier detection: Box plot was selected as the outlier detection method for the entire data set. The 

inter quartile range (IQR) was used, which is the difference between the first and the third quartiles. 

This method defines as an outlier any data point that is 1.5 times the IQR below the first quartile 

and 1.5 times the IQR above the third quartile. 

Outliers were detected using the difference between the air voids obtained from the cores (Parafilm 

and Corelok) and the estimated in-place air voids by the two methods (rubber balloon and sand 

cone). The quartiles were calculated for each of the differences combinations (rubber balloon-

parafilm, rubber balloon-Corelok, sand cone-parafilm, and sand cone-Corelok), and the IQR was 

estimated, as summarized in Table 5. Any data point above and below the range determined (1.5 

times the IQR below the first quartile and above the third quartile) was considered an outlier and 

removed from the data set. 

Table 5. Quartile and IQR Calculations of the Difference in Air Voids. 

 Quartile 
Rubber Balloon-

Parafilm (%) 

Rubber Balloon-

Corelok (%) 

Sand Cone-

Parafilm (%) 

Sand Cone-

Corelok (%) 

Min. value 0 -4.33 -5.77 -3.09 -4.60 

25th percentile 1 0.48 -0.82 1.43 0.51 

50th percentile 2 2.12 0.75 2.59 1.60 

75th percentile 3 4.13 3.36 4.08 3.09 

Max. value 4 8.22 7.18 8.65 7.08 

IQR 3.65 4.17 2.66 2.59 

1.5*IQR 5.48 6.26 3.98 3.88 

1st-1.5*IQR -5.00 -7.08 -2.56 -3.38 

3rd+1.5*IQR 9.61 9.62 8.06 6.97 
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Figure 19 to Figure 22 present the graphical interpretation of the outlier detection method used on 

the data set of each combination. There were no outliers detected for the data sets that estimated 

the air voids using the rubber balloon method, due to the high variability of the method, which led 

to a higher IQR value. Outliers were detected in both combinations that estimated the air voids 

using the sand cone method, due to the lower IQR value of the data set. The data set for the sand 

cone method compared with the cores using the Parafilm method had 3 outliers out of 49 data 

points. The data set for the sand cone method compared with the cores using the Corelok method 

had 4 outliers out of 49 data points. 

 

Figure 19. Difference between the air voids from the cores using Parafilm and the estimated air 

voids using the balloon method. 

 

Figure 20. Difference between the air voids from the cores using Corelok and the estimated air 

voids using the balloon method. 

-14
-12
-10

-8
-6
-4
-2
0
2
4
6
8

10
12
14

0 5 10 15 20 25 30 35 40 45 50

D
if

fe
re

n
ce

 (
%

)

Sample

Difference Balloon-Parafilm

-14
-12
-10

-8
-6
-4
-2
0
2
4
6
8

10
12
14

0 5 10 15 20 25 30 35 40 45 50

D
if

fe
re

n
ce

 (
%

)

Sample

Difference Balloon-Corelok



20 

 

 

 

Figure 21. Difference between the air voids from the cores using Parafilm and the estimated air 

voids using the sand cone method. 

 

Figure 22. Difference between the air voids from the cores using Corelok and the estimated air 

voids using the sand cone method. 

Modeling of the Air Voids Data: The general trend observed in the data set was that the air voids 

obtained from the cores, regardless of the method used for bulk specific gravity (Parafilm or 

Corelok), are higher than the air voids estimated by both methods (rubber balloon or sand cone). 

This general trend can be observed in Figure 23 comparing the estimated air voids from rubber 

balloon and sand cone methods with the cores air voids obtained using the Parafilm method. For 

this reason, it was decided to apply a correction factor to the air voids value obtained from the in-

place methods to better fit the air voids value obtained from the cores. 
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The applied correction factor shifts the equality line of the data set for each combination. A 

linear regression analysis (Eq. 2) was selected to determine the magnitude of the correction 

factor.  

𝑦 = 𝛽0 + 𝛽1 ∗ 𝑥   (2) 

Since the equality line has a slope of one, then β0=0 and β1=1. The corrected equality line would 

have the same slope value as the equality line (β1=1) and would be described given by: 

𝑦 = 𝛽0 + 𝑥    (3) 

 

𝛽0 = 𝑦̅ − 𝑥̅    (4) 

  

 

Figure 23. Comparison of in-place air voids (sand cone and rubber balloon methods) and air 

voids of cores using Parafilm. 

Each combination of in-place test method and core method, for example sand cone with Parafilm, 

has its own correction factor for the shifted equality line according to the average of air voids from 

the data set obtained in this study, as shown in Figure 24 to Figure 27. Following this procedure, 

the correction factors were determined as: 

• The correction factor for the air voids obtained from the rubber balloon method when 

compared to the cores air voids using the Parafilm method is: 2.4%. 

• The correction factor for the air voids obtained from the rubber balloon method when 

compared to the cores air voids using the Corelok method is: 1.2%. 

• The correction factor for the air voids obtained from the sand cone method when compared 

to the cores air voids using the Parafilm method is: 2.8%. 

• The correction factor for the air voids obtained from the sand cone method when compared 

to the cores air voids using the Parafilm method is: 1.9%. 
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Figure 24. Corrected equality line for in-place air voids (rubber balloon method) vs air voids of 

the cores using Parafilm. 

 
Figure 25. Corrected equality line for estimated air voids (rubber balloon method) vs air voids of 

the cores using Corelok. 
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Figure 26. Corrected equality line for estimated air voids (sand cone method) vs air voids of the 

cores using Parafilm. 

 

Figure 27. Corrected equality line for estimated air voids (sand cone method) vs air voids of the 

cores using Corelok. 

Following the correction stage, a statistical analysis was conducted on the data set from each 

combination to determine if the in-place air voids data obtained using rubber balloon and sand 

cone methods are comparable to the air voids determined from the cores. The selected statistical 

tool used to complete the analysis was the T-test, which is commonly used for testing the difference 

between samples with normal distributions and unknown variances. The T-test is used to determine 

the probability of difference within two populations. 
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The T-tests were ran using the statistical software R. Since the objective was to determine if the 

in-place air voids data from rubber balloon and sand cone were comparable to the air voids from 

the cores, the differences between the cores air voids and the in-place air voids were calculated for 

the different combinations. The following four combinations were analyzed:  

• Difference between the cores air voids using Parafilm and the in-place air voids calculated 

using the rubber balloon method  

• Difference between the cores air voids using Corelok and the in-place air voids calculated 

using the rubber balloon method  

• Difference between the cores air voids using Parafilm and the in-place air voids calculated 

using the sand cone method  

• Difference between the cores air voids using Corelok and the in-place air voids calculated 

using the sand cone method  

The null hypothesis was that; “the difference between the cores air voids (Parafilm or Corelok) 

and the corrected in-place air voids from rubber balloon or sand cone is equal to zero (i.e., 

difference = 0)”. A T-test was run for each combination. If the parameter p-value from the analysis 

is lower than 0.05 (p < 0.05), the difference between the cores air voids and the in-place air voids 

is different than zero (difference ≠ 0). If the parameter p-value from the analysis is higher than 

0.05 (p > 0.05), then there is no significant evidence to prove that the difference between the cores 

air voids and in-place air voids is different than zero (difference = 0). It is important to note that 

the difference between the cores air voids and the in-place air voids was calculated using the 

correction factor for the in-place values, as defined earlier. The results for each combination 

from the analysis developed using the R-software are summarized in Table 6.  

Table 6. T-test Results on the Differences of the Air Voids for all the Combinations. 

T-test 

Parameters 

Rubber Balloon-

Parafilm 

Rubber Balloon-

Corelok 

Sand Cone-

Parafilm 

Sand Cone-

Corelok 

n 49 49 49 49 

t -0.6580 0.0026 -0.6665 -1.0372 

p-value 0.5137 0.9980 0.5083 0.3048 

95% 

Confidence 

Interval 

[-1.8 to 0.9] [-0.8 to 0.8] [-0.9 to 0.5] [-1.1 to 0.3] 

Standard 

Deviation 
4.63 2.80 2.38 2.51 

 

All the data points, including the outliers (to compare the four combinations with the same 

population size, n=49) were used to develop the analysis for selecting the most suitable method 

for estimating the in-place density of the CIR layer. As shown in Table 6 for the four combinations, 

there is not significant evidence to prove that the difference between the cores air voids and the 

corrected in-place air voids is different than zero. The 95% confidence interval equation is given 

by Equation 5: 

𝐶𝐼95% = 𝑥̅ ± 1.96 ∗
𝜎

√𝑛
   (5) 
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Where; “σ” is the standard deviation and “n” is the population size. Since the population is fixed 

for the four combinations, the lower the standard deviation and the lower the variability of the 

method would define the best alternative to determine the in-place air voids.  

From the statistical analysis of the data generated in this experiment as summarized in Error! 

Reference source not found., it was found that the best alternative to estimate the in-place air 

voids is to use the sand cone method and compare the results with the cores air voids using the 

Parafilm method for measuring bulk specific gravity.  As can be seen, the selected alternative has 

the lowest standard deviation of 2.38. The 95% Confidence Interval of Difference provides the 

range over which there is 95% confidence that the mean of the differences will be contained.  

Selected Approach 

Based on the statistical analysis of the data generated from the laboratory testing on CIR slabs 

using the rubber balloon and sand cone methods and the measurements of the air voids on cores 

using the Parafilm and Corelok methods, the following process is recommended to estimate in-

place air voids of the compacted CIR layer.  

• Use the sand cone method to measure the in-place air voids of the compacted CIR layer as 

described in this report. 

• Use the 95% Confidence Interval of Difference for the sand cone method and the cores 

with Parafilm shown below: 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐴𝑉%𝑃𝑎𝑟𝑎𝑓𝑖𝑙𝑚 − (𝐴𝑉%𝑆𝑎𝑛𝑑 𝐶𝑜𝑛𝑒 + 𝐶𝐹)  (6) 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐴𝑉%𝑃𝑎𝑟𝑎𝑓𝑖𝑙𝑚 − (𝐴𝑉%𝑆𝑎𝑛𝑑 𝐶𝑜𝑛𝑒 + 2.8%)  (7) 

−0.9% < 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < 0.5%     (8) 

• Apply the above relationship as follows: 

• Use the sand cone method to measure the in-place air voids of the compacted CIR 

layer 

• Add 2.8% to the in-place air voids calculated from the sand cone measurement to 

calculate the adjusted in-place air voids   

• There is 95% confidence that the adjusted in-place air voids will be: -0.9% to +0.5% 

from the actual in-place air voids measured on cores using the Parafilm method    

 

TASK 3: FIELD VERIFICATION AND IMPLEMENTATION  

Field verifications of the in-place density methods were conducted on two CIR construction 

projects in Nevada. The in-place densities were measured using the rubber balloon and sand cone 

methods at multiple locations on each construction project right after the compaction of the CIR 

layer. Cores were taken next to the area where the in-place densities were measured 7 – 10 days 

after compaction to verify the estimated in-place density and air voids.  

CIR Project in Fernley, NV 

In-place densities were measured using the rubber balloon and the sand cone methods on the CIR 

construction project located on US-95 south of Fernley, Nevada. Testing was conducted at two 
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different locations within the project. At each location, three tests, separated by 50 feet, were 

conducted using each method. The density testing (rubber balloon and sand cone methods) were 

conducted after the rolling pattern was completed and the full compaction was considered 

achieved. Figure 28 and Figure 29 show the CIR construction process and the in-place density 

measurements using the rubber balloon and sand cone methods, respectively. 

  

 

Figure 28. CIR construction on the Fernley CIR project. 

 

Figure 29. In-place density on the Fernley CIR project: rubber balloon and sand cone. 
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The verification of the 95% Confidence Interval of Difference for each method was conducted by 

comparing the air voids obtained from the rubber balloon and sand cone methods with the air voids 

obtained from the cores using the Parafilm and the Corelok methods, as shown in Table 7 and 

Table 8.  The 95% Confidence Interval of Difference was only met for the estimated air voids 

using the sand cone method and the cores using the Parafilm method. The difference between the 

average air voids from the cores using Parafilm (22.0%) and the average air voids from sand cone 

plus the correction factor (19.4%+2.83%) is inside the 95% Confidence Interval of Difference. 

 

Table 7. Verification of the In-Place Air Voids estimated by the Rubber Balloon Method from 

the Fernley Project. 

Rubber Balloon - Parafilm Rubber Balloon - Corelok 

Avg. AV: Balloon, 

% 22.7 

Avg. AV: Balloon, 

% 22.7 

Corrected Avg. AV: 

Balloon, % 25.1 

Corrected Avg. AV: 

Balloon, % 23.8 

Avg. AV: Cores, % 22.0 Avg. AV: Cores, % 20.0 

Difference -3.1 

No 

Difference -3.8 

No 
95% Confidence 

Interval for the 

Difference [-1.8 to 0.9] 

95% Confidence 

Interval for the 

Difference [-0.8 to 0.8] 

 

Table 8. Verification of the In-Place Air Voids estimated by the Sand Cone Method from the 

Fernley Project. 

Sand Cone - Parafilm Sand Cone - Corelok 

Avg. AV: Sand 

Cone, % 19.4 

Avg. AV: Sand 

Cone, % 19.4 

Corrected Avg. AV: 

Sand Cone, % 22.2 

Corrected Avg. AV: 

Sand Cone, % 21.3 

Avg. AV: Cores, % 22.0 Avg. AV: Cores, % 20.0 

Difference -0.30 

YES 

Difference -1.3 

No 
95% Confidence 

Interval for the 

Difference [-0.9  to 0.5] 

95% Confidence 

Interval for the 

Difference [-1.1 to 0.4] 

 

The data in Table 7 show the air voids estimated by the rubber balloon method are higher than the 

air voids measured on the cores. This was not the regular trend found on the laboratory testing of 

the CIR slabs. Therefore, applying the correction factor obtained from the CIR slabs leads to higher 

difference from the cores. This difference in the trend might be due to the higher variability of the 

rubber balloon test method. 

The data in Table 8 show that the 95% Confidence Interval of Difference was met for the sand 

cone method with using the Parafilm method on the cores, but it was not met for the sand cone 

method using the Corelok method on the cores. 
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CIR Project in Ely, NV 

In-place densities were measured using the rubber balloon and the sand cone methods on the CIR 

construction project located on US-6 south of Ely, Nevada. Testing was conducted at three 

locations separated by 50 feet. The density testing (rubber balloon and sand cone methods) were 

conducted after the rolling pattern was completed and the compaction was considered achieved. 

Table 9 summarizes the air voids results from the rubber balloon method, sand cone method, and 

from the field cores using parafilm and Corelock to obtain the bulk specific gravity of the samples.  

Table 9. Air Voids from the Rubber Balloon, Sand Cone, and Field Cores from the Ely Project. 

Avg. AV: Rubber Balloon, % 24.1 

Avg. AV: Sand Cone, % 19.1 

Avg. AV: Cores (parafilm), % 16.5 

Avg. AV: Cores (Corelok), % 15.2 

 

Opposite from the general trends found in the laboratory experiments on CIR slabs, the estimated 

air voids obtained from the rubber balloon and sand cone methods were higher than the air voids 

obtained from the cores. This might be due to field consolidation of the CIR layer between the day 

the estimated densities were measured and the day the cores were obtained; about 10 days later. 

The road section where the densities were tested was a one-lane per direction. It is possible that 

during traffic control and re-opening to traffic, vehicles further compacted the CIR mix at the 

locations of the density measurements. Since the data for US-6 in Ely, Nevada did not follow the 

general trends found in the laboratory CIR slabs experiments, this project was not used for 

verification of the 95% Confidence Interval of Difference.  

 

FINDINGS AND RECOMMENDATIONS 

The objective of this research was met by carrying out a laboratory experiment that measured the 

density of the compacted CIR slabs using the rubber balloon and sand cone methods and compared 

these measurements to the densities of cores. Based on the statistical analyses of the collected data, 

it was concluded that measuring the in-place density of the compacted CIR layer using the sand 

cone method leads to the estimation of in-place air voids that are the closest to air voids of cores 

obtained from the CIR layer bulked with the Parafilm method. Based on this conclusion, the 

following recommendation is made:    

• Use the sand cone method to measure the in-place density of the of the compacted CIR 

layer 

• Measure the maximum theoretical specific gravity of the CIR mix following AASHTO 

T209 

• Calculate the in-place air voids of the CIR layer using the in-place sand cone bulk density 

of the CIR layer along with the maximum theoretical specific gravity of the CIR mix 

following AASHTO T269 

• Add 2.8% to the in-place air voids calculated from the sand cone measurement to calculate 

the adjusted in-place air voids   
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• There is 95% confidence that the adjusted in-place air voids will be: -0.9% to +0.5% from 

the actual in-place air voids measured on cores using the Parafilm method    
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APPENDIX A 
Comparison of Slabs in-place Air voids 

 

 
Figure A1. Slab 1 comparison of estimated air voids vs cores air voids using Parafilm. 

 
Figure A2. Slab 1 comparison of estimated air voids vs cores air voids using Corelok. 
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Figure A3. Slab 2 comparison of estimated air voids vs cores air voids using Parafilm. 

 
Figure A4. Slab 2 comparison of estimated air voids vs cores air voids using Corelok. 
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Figure A5. Slab 3 comparison of estimated air voids vs cores air voids using Parafilm. 

 
Figure A6. Slab 3 comparison of estimated air voids vs cores air voids using Corelok. 
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Figure A7. Slab 4 comparison of estimated air voids vs cores air voids using Parafilm. 

 
Figure A8. Slab 4 comparison of estimated air voids vs cores air voids using Corelok. 
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Figure A9. Slab 5 comparison of estimated air voids vs cores air voids using Parafilm. 

 
Figure A10. Slab 5 comparison of estimated air voids vs cores air voids using Corelok. 
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Figure A11. Slab 6 comparison of estimated air voids vs cores air voids using Parafilm. 

 
Figure A12. Slab 6 comparison of estimated air voids vs cores air voids using Corelok. 
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Figure A13. Slab 7 comparison of estimated air voids vs cores air voids using Parafilm. 

 
Figure A14. Slab 7 comparison of estimated air voids vs cores air voids using Corelok. 
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