

# STANDARD OPERATING PROCEDURES NANUAL

CARSON CITY, NEVADA NOVEMBER, 2011 STATE OF NEVADA DEPARTMENT OF TRANSPORTATION CONSTRUCTION DIVISION

# STANDARD OPERATING PROCEDURES MANUAL

CARSON CITY, NEVADA October 1, 2014

### TABLE OF CONTENTS NUMERICAL SEQUENCE FORM NUMBERS

- Nev. Form No. Nev. Form Name
- 020-016 Rev. 2/10 Transmittal for Asphalt Samples
- 020-017 Rev. 3/08 Transmittal for Concrete Samples
- 020-018 Rev. 7/12 Transmittal for Test Samples and Certifications
- 040-003 Rev. 3/09 Nuclear Gauge / Sand Cone Check Test Form (Harvard)
- 040-003 Rev. 7/14 Nuclear Gauge / Sand Cone Check Test Form (Proctor)
- 040-004 Rev. 11/08 Compaction Report
- 040-006 Rev. 11/07 Field Sand Equivalent Worksheet
- 040-007 Rev. 3/09 Nuclear Compaction Report for Soils and Aggregates (Harvard)
- 040-007 Rev. 7/14 Nuclear Compaction Report for Soils and Aggregates (Proctor)
- 040-010 Rev. 2/09 Daily Report of Tests Made in Field
- 040-011 Rev. 10/08 Daily Plant Report of Asphalt Mixtures
- 040-013 Rev. 5/09 Field Material Sieve Sheet
- 040-014 Rev. 6/05 Field L.L. and P.I. Worksheet
- 040-016 Rev. 11/10 Report of Tests of Portland Cement Concrete Pavement
- 040-017 Rev. 5/05 Nuclear Thin Layer Compaction Report for Plantmix Bituminous Pavements
- 040-017A Rev. 11/08 Nuclear Thin Lift Correction Factor Worksheet
- 040-017B Rev. 9/13 Bulk Specific Gravity and Density of Compacted Bituminous Mixtures
- 040-018 Rev. 8/06 Compaction Report for Plantmix Bituminous Pavements (Drilled Core Data)
- 040-021 Rev. 1/05 Striping Paint Thickness Report

### TABLE OF CONTENTS NUMERICAL SEQUENCE FORM NUMBERS

Nev. Form No. Nev. Form Name 040-023 Rev. 11/08 Absorption and Specific Gravity for Coarse and Fine Aggregates 040-023A Rev. 11/08 Absorption and Specific Gravity for Fine Aggregate 040-023B Rev. 2/09 Absorption and Specific Gravity for Coarse Aggregates 040-026 Rev. 3/09 Nuclear Gauge / Sand Cone Correlation Form (Harvard) 040-026 Rev. 7/14 **Nuclear Gauge / Sand Cone Correlation Form (Proctor)** 040-030 Rev. 8/10 Theoretical Maximum Specific Gravity of Bituminous Paving Mixtures (Field Method) 040-032 Rev. 7/07 **Emulsion Viscosity Worksheet** 040-035 Rev. 10/09 Report of Field Tests of Coarse and Fine Aggregate for Concrete 040-041 Rev. 3/05 Retroreflectivity Measurements 040-047 Rev. 7/07 Pavement Marking Film Adhesion Test (Section 634) 040-048 Rev. 12/05 Nuclear Gauge Operator's Worksheet for Control Strip Density Part I and Part 2 040-050 Rev. 11/10 Field Material Sieve Test / Bituminous Ration by Ignition Method 040-053 Rev. 8/10 Report of Calibration Factor (Including Weekly Checks) Using the Ignition Furnace Method 040-053A Rev. 3/12 Report of Calibration Factor with RAP (Including Weekly Checks) Using the Ignition Oven Method Part 1 and Part 2 040-067 Rev. 5/09 Water Volume Calculations for Sand Cone Apparatus and Measuring Vessel (Hat) 040-068 Rev. 3/09 Sand Density Calculation – T102 040-069 Rev. 2/13 Moisture-Density Determination, Compaction Report Part 1 and Part 2 (Proctor Form) 040-073 Rev. 6/08 Report of Profilograph Test

## TABLE OF CONTENTS NUMERICAL SEQUENCE FORM NUMBERS

Nev. Form No. Nev. Form Name

040-078 Rev. 1/14 Concrete Field Summary Report

# STATE OF NEVADA

### TRANSMITTAL FOR ASPHALT SAMPLES

| Contract No               | Project No | Field No        |
|---------------------------|------------|-----------------|
| County                    | Highway    | Milepost        |
| Type of Asphalt           |            | Producer        |
| Shipping Point            | A          | Actual Tonnage  |
| Refinery Ticket No        | W          | eight Ticket No |
| Tank Car/Truck/Trailer No |            | Contractor      |
| Sampled by                |            | Date Sampled    |
| Observed by               |            |                 |
| District No               |            | APO No          |
| Emulsion Field Viscosity  |            | Tested by       |

# TRANSMITTAL TO BE FASTENED TO SAMPLE CONTAINER WITH MASKING TAPE

NDOT 020-016 ( Rev. 2-10)

#### STATE OF NEVADA

### DEPARTMENT OF TRANSPORTATION

### TRANSMITTAL FOR ASPHALT SAMPLES

| A. Contract No3925 B. Project NoSI-0035(119) C. Field No1        |
|------------------------------------------------------------------|
| D. County                                                        |
| G. Type of AsphaltPG64-28NV H. ProducerParamount Fernley         |
| I. Shipping PointFernley Nevada J. Actual Tonnage                |
| K. Refinery Ticket NoN/AL. Weight Ticket NoN/A                   |
| M. Tank Car/Truck/Trailer NoN/AN. ContractorGranite Construction |
| Q. Observed by                                                   |
|                                                                  |
| <b>R.</b> District No <b>N/AN/A</b>                              |
| T. Emulsion Field ViscosityN/AU. Tested byN/A                    |

# TRANSMITTAL TO BE FASTENED TO SAMPLE CONTAINER WITH MASKING TAPE

NDOT 020-016 ( Rev. 2-10)

### 020-016 Rev. 02/10

### TRANSMITTAL FOR ASPHALT SAMPLES

- A Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)
- **B** Project number for the material being tested, found in the Contract Plans or Special Provisions (EX. SI-0035(119))
- C Field number for this particular sample in numerical order (EX. 1)
- **D** County in which the sample is being used (EX. Washoe)
- **E** Highway where the sample is being used (EX. I. 80)
- **F** Milepost where the sample is being used (EX. 10.50)
- **G** Type of asphalt being sampled (EX.PG64-28NV)
- H Producer that is actually manufacturing the asphalt (EX. Paramount Fernley)
   NOTE: Not where the material is stored
- I Shipping point where the asphalt was produced (EX. Fernley Nevada)
- J Actual tonnage that this sample represents (EX. 25 tons) NOTE: There shall be one sample for every 25 tons of asphalt used, for 35.7 tons of asphalt used in a day; two samples shall be taken, one representing 25 tons and one representing 10.7 tons.
- K Refinery ticket number, not applicable to hotplant asphalt samples (EX. N/A)
- L Weight Ticket number, not applicable to hotplant asphalt samples (EX. N/A)
- M Tank Car/Truck/Trailer Number, not applicable to hotplant asphalt samples (EX. N/A)
- N Prime contractor awarded the contract (EX. Granite Construction)
- O Name of the contractor's representative that sampled the asphalt at the hotplant (Ex. Fred Grimes Contractor)
- P Date the sample was taken (EX. 06/06/2014)
- Q NDOT representative who observed the sample being taken (EX. Joe Bob) NOTE: If you did not observe the sampling being taken, write "Not observed"

# 020-016 Rev. 02/10

# TRANSMITTAL FOR ASPHALT SAMPLES

### LINE EXPLANATION OF NEEDED INFORMATION

| <b>N</b> - Not applicable to notplant asphalt sampl | R - | Not applicable to hotplant asphalt samp |
|-----------------------------------------------------|-----|-----------------------------------------|
|-----------------------------------------------------|-----|-----------------------------------------|

- **S** Not applicable to hotplant asphalt samples
- T Not applicable to hotplant asphalt samples
- U Not applicable to hotplant asphalt samples

# NOTES:

| 1. | Fold transmittal in half with the writing inside and attach with 2 small strips of masking tape. Seal transmittal in plastic envelope in case of inclement weather.            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Make sure outside of sample container is clean, DO NOT use any chemicals to clean the sample container. If sample container is not clean, have contractor take another sample. |
| 3. | Samples should be submitted ASAP to the Materials Lab, but no longer that 7 days.                                                                                              |

#### STATE OF NEVADA

#### DEPARTMENT OF TRANSPORTATION

### TRANSMITTAL FOR ASPHALT SAMPLES

| Contract No               | Project No | Field No  |
|---------------------------|------------|-----------|
| County                    | Highway    | Milepost  |
| Type of Asphalt           | Produce    | er        |
| Shipping Point            | Actual To  | onnage    |
| Refinery Ticket No        | Weight Tic | cket No   |
| Tank Car/Truck/Trailer No | Contra     | actor     |
| Sampled by                | Date Sa    | ampled    |
| Observed by               |            |           |
| District No               |            | APO No    |
| Emulsion Field Viscosity  |            | Tested by |

### TRANSMITTAL TO BE FASTENED TO SAMPLE CONTAINER WITH MASKING TAPE

NDOT 020-016 ( Rev. 2-10)

#### STATE OF NEVADA

### DEPARTMENT OF TRANSPORTATION

### TRANSMITTAL FOR ASPHALT SAMPLES

| A. Contract No3925 B. Project NoSI-0035(119) C. Field No1.             |
|------------------------------------------------------------------------|
| D. County                                                              |
| G. Type of AsphaltLMCRS-2h                                             |
| I. Shipping Point                                                      |
| K. Refinery Ticket No00125695 L. Weight Ticket No6526108               |
| M. Tank Car/Truck/Trailer No456/456B N. ContractorGranite Construction |
| O. Sampled bySam Weist - Truck Driver P. Date Sampled06/06/2014        |
| Q. Observed byJoe Bob                                                  |
| R. District NoN/A                                                      |
| T. Emulsion Field Viscosity254 U. Tested byJoe Bob                     |

TRANSMITTAL TO BE FASTENED TO SAMPLE CONTAINER WITH MASKING TAPE NDOT 020-016 ( Rev. 2-10)

### 020-016 Rev. 02/10

### TRANSMITTAL FOR ASPHALT SAMPLES

- A Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)
- **B** Project number for the material being tested, found in the Contract Plans or Special Provisions (EX. SI-0035(119))
- **C** Field number for this particular sample in numerical order (EX. 1)
- **D** County in which the sample is being used (EX. Washoe)
- **E** Highway where the sample is being used (EX. I-80)
- **F** Milepost where the sample is being used (EX. 10.50)
- **G** Type of asphalt being sampled (EX. LMCRS-2h)
- H Producer that is actually manufacturing the asphalt (EX. Idaho Asphalt)
   NOTE: Not where the material is stored
- I Shipping Point where the asphalt was produced and is being shipped from (EX. Nampa Idaho)
- J Actual tonage that this sample represents (EX. 35.7 tons)
   NOTE: Obtain a sample from the truck and trailer, test both the truck and trailer then submit one sample (either truck or trailer) to the Materials Lab for further testing
- K Same as Bill of Lading Number provided by the delivery driver or contractor (EX. 00125695)
- L Found on weigh scale certificate provided by the delivery driver or contractor (EX. 6526108)
- M Found on the Bill of Lading provided by the delivery driver or contractor (EX. 456/456B)
- N Prime contractor awarded the contract (EX. Granite Construction)
- O Name of the certified truck driver who sampled the oil from the truck (Ex. Sam Weist Truck Driver)
- P Date the sample was taken (EX. 6/6/2014)

# 020-016 Rev. 02/10

# TRANSMITTAL FOR ASPHALT SAMPLES

### LINE EXPLANATION OF NEEDED INFORMATION

| Q - | Person who observed the sample being taken (EX. Joe Bob)<br>NOTE: If you did not observe the sampling being taken, write not observed                                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R - | District where the sample is being used (EX. 2)                                                                                                                                                                                                    |
| S - | Maintenance Division to fill out                                                                                                                                                                                                                   |
| Τ-  | Emulsion field viscosity from Test Method Nev. T759 performed before the truck<br>driver offloads the material on the jobsite (EX. 254)<br>NOTE: Use the viscosity number for the same sample that is being submitted to the<br>Materials Division |
| U - | Printed first and last name of the certified tester who completed the test (EX. Joe Bob)                                                                                                                                                           |

# NOTES:

| 1. | When submitting a sample of diluted emulsion, you must indicate dilution ratio on Line G (EX. 60/40)                                                                                                                    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Fold transmittal in half with the writing inside and attach with 2 small strips of masking tape. Seal transmittal in plastic envelope in case of inclement weather.                                                     |
| 3. | Make sure outside of sample container is clean, DO NOT use any chemicals to clean the sample container. If sample container is not clean, have contractor take another sample.                                          |
| 4. | Samples shall be submitted ASAP to the Materials Lab. Samples must be tested within 14 days of sample date. If samples are received after the 14 days they can not be tested since they have exceeded their shelf life. |

### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION TRANSMITTAL FOR CONCRETE SAMPLES

(circle all units used)

County\_\_\_\_\_\_\_Station / Structure No. / Item Constructed\_\_\_\_\_\_

| psi (Mpa)                              |
|----------------------------------------|
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
| per yd° (m°)                           |
| °F (°C)                                |
| s/ft <sup>3</sup> (kg/m <sup>3</sup> ) |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |

NDOT 020-017 (Rev. 3/08)

1

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION TRANSMITTAL FOR CONCRETE SAMPLES (circle all units used)

|                             | (CIFCIE AII L            | inits usea)         |             |                                       |
|-----------------------------|--------------------------|---------------------|-------------|---------------------------------------|
| A. County Lyon              |                          | B. Contra           | ct 3925     | 1                                     |
| C. Station / Structure No.  | / Item Constructed       |                     |             |                                       |
| Sta "X" 7 + 22 rt           | N/A - Barrier F          | Rail                |             |                                       |
|                             |                          |                     |             |                                       |
| D. Date placed              | 7/12/2010                | E. Time placed      | 7:00        | am                                    |
| F. Mix Design No.(s)        | SDA145                   | G. Class of         | concrete [  | DA Mod                                |
| H. Project specified streng | gth <b>4000</b> (psi)(Mp | a) I. Mix design s  | strength 40 | 00 (OSI)(Mpa)                         |
| J. Cylinder Set No.         | 30                       |                     |             |                                       |
| K. Brand of cement          | Lehigh South             | west L. Ty          | pe Nevad    | a Type II                             |
| M. Source of water          |                          | Domestic            |             |                                       |
| N. Source of fine aggrega   | ite                      | Spanish Spring      | gs Pit      |                                       |
| O. Source of coarse aggre   | egate                    | Spanish Spring      | gs Pit      |                                       |
| P. Source of fly ash        |                          | Bridger             |             |                                       |
| Q.(bs)(kg) of cement as b   | atched                   | 553                 |             | per (d°)m°)                           |
| R.(bs)(kg) of fly ash as ba | atched                   | 160                 |             | per (m³)                              |
| S(bs)(kg) of fine agg. as   | batched                  | 1347                |             | per(vd)(m')                           |
| T. (bs) kg) of coarse agg.  | as batched               | 1627                |             | per (d <sup>3</sup> (m <sup>3</sup> ) |
| U. Total mixing water gay   | s (L)                    | 24                  |             | per (d <sup>-</sup> (m <sup>3</sup> ) |
| V. Water cement ratio as    | batched .28              | W. Concret          | te temp     | 77 (F)°C)                             |
| X. Slump 4 (inch            | es (mm) Y. Unit          | weight 142          | 2.0 (       | 1bs/ft*(kg/m³)                        |
| Z. Slump N/A inch           | es (mm) after addi       | tion of super plast | icize 🗛. %  | Air 6.0                               |
| BB. Brand of air entrainin  | g agent used             | MBAE90              |             |                                       |
| CC. Brand of water reduc    | er used                  | Polyheed 99         | 7           |                                       |
| DD. Brand of super plasti   | cizer                    | N/A                 |             |                                       |
| EE. Other additive(s) use   | d                        | Delvo               |             |                                       |
| FF. Break at                | 1@7, 1                   | @ 14 and 3 @ 2      | 8           |                                       |
| GG. Sampled by De           | exter Grant              |                     |             |                                       |
| HH. Concrete supplied by    | American R               | eady Mix            |             |                                       |
| II. Remarks Fie             | eld tests meet spe       | CS.                 |             |                                       |
|                             |                          |                     |             |                                       |

NDOT 020-017 (Rev. 3/08)

### TRANSMITTAL FOR CONCRETE SAMPLES

- **A** County in which the sample was taken (EX. Lyon)
- **B** Contract number for the material being tested, found in the Contract Plans or Special Provisions etc. (EX. 3925)
- C Station/Structure No./Item Constructed, approximate sample location found in the Contract Plans or jobsite survey stakes (EX. "X" 7 + 22 RT.); the number of the structure that is being worked on, found in the Contract Plans (EX. N/A); item being constructed, (found in the Contract Plans) (EX. Barrier Rail)
- **D** Date the sample was taken (EX. 07/12/2010)
- **E** Time the sample was taken (EX. 7:00 am)
- F Mix Design number that the sample represents (mix design approved by the Materials Division) (EX. SDA145)
- G Class of Concrete, found in the Standard Specifications, Special Provisions, or Contract Plans (EX. DA Mod)
- H Project specified strength, found in the Standard Specifications, Special Provisions, or Contract Plans and is written in Mpa if the contract is metric or psi if the contract is english (EX. 4000 psi) NOTE: If the mix design specifies 4000 psi then the specified strength has to meet 4000 psi even if the barrier rail only has to meet a 3000 psi
- I Mix design strength specified on the mix design (EX. 4000 psi)
- J Set number and the number of cylinders in the set (EX. Set 30, 5 of 5 cylinders) **NOTE:** Cylinders are consecutively numbered by mix design
- K Brand of cement, found on the approved mix design (EX. Lehigh Southwest)
- L Type of cement, found on the approved mix design (EX. Nevada Type II)
- M Source of water, found on the approved mix design (EX. Domestic) normally domestic or city, however the mix design should be checked in case a selected source is being used

# TRANSMITTAL FOR CONCRETE SAMPLES

| N -        | Source of fine aggregate, found on the approved mix design from Materials Division (EX. Spanish Springs Pit)                                                                                                                                                                                                                                                                                                                              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 -        | Source of coarse aggregate, found on the approved mix design from Materials Division (EX. Spanish Springs Pit)                                                                                                                                                                                                                                                                                                                            |
| Ρ-         | Source of fly ash, found on the approved mix design from Materials Division (EX. Bridger)                                                                                                                                                                                                                                                                                                                                                 |
| Q -        | Total weight of cement (found on delivery ticket) divided by $m^3$ or yds <sup>3</sup> of total concrete batched (found on delivery ticket) (EX. 5530 lbs / 10 yds <sup>3</sup> = 553 lbs per yd <sup>3</sup> )                                                                                                                                                                                                                           |
| R -        | Total weight of fly ash (found on delivery ticket) divided by $m^3$ or yds <sup>3</sup> of total concrete batched (found on delivery ticket) (EX. 1600 lbs / 10 yds <sup>3</sup> = 160 lbs per yd <sup>3</sup> )                                                                                                                                                                                                                          |
| S -        | Total weight of fine aggregate (found on delivery ticket) divided by $m^3$ or yds <sup>3</sup> of total concrete batched (found on delivery ticket) (EX. 13470 lbs / 10 yds <sup>3</sup> = 1347 lbs per yds <sup>3</sup> )                                                                                                                                                                                                                |
| т-         | Total weight of coarse aggregate (found on delivery ticket) divided by $m^3$ or yds <sup>3</sup> of total concrete batched (found on delivery ticket) (EX. 16270 lbs / 10 yds <sup>3</sup> = 1627 lbs per yd <sup>3</sup> )                                                                                                                                                                                                               |
| U -        | Total weight of water (found on delivery ticket) divided by $m^3$ or yds <sup>3</sup> of total concrete batched, (found on delivery ticket) <b>NOTE</b> : If water has been indicated in lbs on delivery ticket, divide by 8.33 (weight of one gallon of water) then divide by the total $m^3$ or yds <sup>3</sup> of concrete batched (EX. 1999 lbs / 8.33 = 240 / 10 yds <sup>3</sup> = 24 gals per yd <sup>3</sup> )                   |
| V -        | Water cement ratio, Line U (total mixing water in gallons) x 8.33 (weight of 1 gallon of water) = 200 lbs of water; Line Q (lbs of cement batched) + Line R (lbs of fly ash batched) / weight of water = water cement ratio (EX. $24 \times 8.33 = 200$ lbs, ( $200 / 553$ ) + $160 = .28$ ) <b>NOTE:</b> Refer to the Standard Specifications, Special Provisions, and mix design for the allowable tolerances on the water cement ratio |
| <b>W</b> - | Temperature of the concrete, per Test Method Nev. T440 (EX. 77°F)                                                                                                                                                                                                                                                                                                                                                                         |
| X -        | Slump results from Test Method Nev. T438 performed at time of sampling <b>NOTE:</b><br>Perform slump prior to the addition of plasticizer, if applicable (EX. 4)                                                                                                                                                                                                                                                                          |
| Υ -        | Unit weight results from Test Method Nev. T435, performed at time of sampling <b>NOTE:</b><br>Perform unit weight test after the addition of plasticizer, if applicable (EX. 142.0)                                                                                                                                                                                                                                                       |

### TRANSMITTAL FOR CONCRETE SAMPLES

### LINE EXPLANATION OF NEEDED INFORMATION

| Ζ-     | Slump after plasticizer, results from Test Method Nev. T438, performed at time of sampling <b>NOTE:</b> Perform slump test after the addition of plasticizer, if applicable (EX. N/A)                                                           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AA -   | Air results from Test Method Nev. T435, performed at time of sampling (EX. 6.0) <b>NOTE:</b><br>Perform air test performed after the addition of plasticizer, if applicable                                                                     |
| BB -   | Air entraining agent, found on mix design approved by Materials Division (EX. MBAE90)                                                                                                                                                           |
| CC -   | Water reducer, found on mix design approved by Materials Division (EX. Polyheed 997)                                                                                                                                                            |
| DD -   | Super plasticizer, found on mix design approved by Materials Division <b>NOTE:</b> Total of liters or ounces used divided by the m <sup>3</sup> or yds <sup>3</sup> of total concrete batched (EX. N/A)                                         |
| EE -   | Other additives, found on mix design approved by Materials Division (EX. Delvo)                                                                                                                                                                 |
| FF -   | Cylinder break schedule, check the Special Provisions for the correct days to break (usually 1 @ 7days, 1 @ 14 days and 3 @ 28 days) <b>NOTE:</b> Construction Manual only only requires 3 @ 28 days, however 5 cylinders are usually completed |
| GG -   | Sampled by, print first and last name of the tester or testers who actually fabricated the cylinders (EX. Dexter Grant)                                                                                                                         |
| HH -   | Concrete supplier that supplies the actual concrete being tested (EX. American Ready Mix)                                                                                                                                                       |
| II -   | Remarks, anything that needs to be documented (EX. Field tests meet specs.)                                                                                                                                                                     |
| NOTES: |                                                                                                                                                                                                                                                 |
| 1.     | Line F (Mix Design No.) - Prior to any concrete placement, review the Mix Design approved by the Materials Division.                                                                                                                            |

**2.** Line X (Slump before plasticizer) - If you have additives which are introduced in the field, you need to have a slump prior to the addition of those additives.

### TRANSMITTAL FOR CONCRETE SAMPLES

- **4.** Line Z (Slump after plasticizer) If additives are not introduced in the field, this line will be N/A.
- **5.** Line FF (Break at) The break days must be reported or the strength tests will not be performed.

### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION MATERIAL DIVISION

| E.A. or Contract No                                     | Test No. or Sample No                                        |
|---------------------------------------------------------|--------------------------------------------------------------|
| Material description                                    | Batch No                                                     |
| Location or source of sample                            |                                                              |
| Primary contractor                                      |                                                              |
| Producer                                                |                                                              |
| Limits of work represented by sample                    |                                                              |
| Quantity and Depth represented                          |                                                              |
| Material is to be used for                              |                                                              |
| Tests needed on this material                           |                                                              |
| Type and grade of asphalt to be used                    |                                                              |
| Asphalt producer                                        |                                                              |
| Bin percentages                                         |                                                              |
| Bitumen Ratio (Target)(Actual)                          | Lab mix design No. (BF)                                      |
| Remarks                                                 |                                                              |
|                                                         |                                                              |
| Sampled by (Please Print)                               |                                                              |
| Date sampled                                            | Date Shipped                                                 |
| Resident Engineer signature for mix design submitta     | 1:                                                           |
|                                                         | Signed                                                       |
| Distribution: White and Canary, to be inserted in place | stic envelope and submitted with sample; Pink, sender's copy |
| (NSPO) Rev. 7-12                                        | (O) 4179                                                     |

020-018

### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION MATERIAL DIVISION

| <ul> <li>A. E.A. of Contract No</li></ul>                                                                                                                                                                                                                                                                                                                   | B. Test No. or Sample NoT-1-1<br>te BaseD. Batch NoN/A<br>wood Stockpile<br>tion. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| H. Limits of work represented by sampleAs                                                                                                                                                                                                                                                                                                                   | Per Plans                                                                         |
| I. Quantity and Depth represented25,000 tons<br>J. Material is to be used forType 1B Agg                                                                                                                                                                                                                                                                    | regate Base                                                                       |
| <ul> <li>K. Tests needed on this materialSource</li> <li>L. Type and grade of asphalt to be usedN/A.</li> <li>M. Asphalt producerN/AN/AN/A.</li> <li>N. Bin PercentagesN/AN/AN/A.</li> <li>O. Bitumen Ratio (Target)N/A(Actual)N/A.</li> <li>Q. RemarksTests meet specs for Sieve, P.I., L.LJames Fred (Granite Construction Co.) and Jerry Pine</li> </ul> | Requirement Tests                                                                 |
| <ul><li>R. Sampled by (<i>Please Print</i>)John Jones</li><li>S. Date sampled12/16/13</li></ul>                                                                                                                                                                                                                                                             | sT. Date Shipped <b>12/17/13</b>                                                  |
| U. Resident Engineer signature for mix design submittal:                                                                                                                                                                                                                                                                                                    | . Signed                                                                          |
| Distribution: White and Canary, to be inserted in plastic env                                                                                                                                                                                                                                                                                               | velope and submitted with sample; Pink, sender's copy                             |
| (NSPO) Rev. 7-12                                                                                                                                                                                                                                                                                                                                            | (O) 4179                                                                          |

# 020-018 Rev. 07/12

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                                   |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A -  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (Ex. 3925)                                                                                                                         |  |  |
| В-   | Acceptance test number for that particular test (Ex.T-1-1 T= Acceptance $1 = \text{test}$ , first acceptance test of the day, $1 = \text{number of days material has}$ been tested) <b>NOTE:</b> This is not the working day number |  |  |
| C -  | Material type as specified in Standard Specifications, Contract Plans or Special Provisions (Ex. Type 1B Base Aggregate)                                                                                                            |  |  |
| D -  | N/A                                                                                                                                                                                                                                 |  |  |
| Ε-   | Location (Station) where sample was obtained. Or if sample was taken from the pit name of pit and from area taken. (Ex. Granite Lockwood Stockpile.)                                                                                |  |  |
| F-   | Prime Contractor awarded the contract. (Ex. Granite Construction)                                                                                                                                                                   |  |  |
| G -  | Contractor who produced and/or crushed the material. (Ex. Granite Construction)                                                                                                                                                     |  |  |
| Н-   | Limits of work represented by sample (Ex. As per plans)                                                                                                                                                                             |  |  |
| 1-   | Total quantity of material that will be represented by this submittal (Ex. 25,000 tons)                                                                                                                                             |  |  |
| J -  | Whatever the contractor will be using the material for. (Ex. Type 1B Aggregate Base)                                                                                                                                                |  |  |
| К-   | Stated in the Standard Specifications, or Special Provisions (Ex. Source requirement tests)                                                                                                                                         |  |  |
| L-   | N/A                                                                                                                                                                                                                                 |  |  |
| M -  | N/A                                                                                                                                                                                                                                 |  |  |
| N -  | N/A                                                                                                                                                                                                                                 |  |  |
| 0 -  | N/A                                                                                                                                                                                                                                 |  |  |

# 020-018 Rev. 07/12

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P -  | N/A                                                                                                                                                                              |
| Q -  | Remarks, anything that needs to be documented (Ex. Tests meet specs. for sieve, P.I., L.L. James Fred (Granite Construction Co.) and Jerry Pine (NDOT R.E.) notified of results. |
| R -  | Sampled By, print first and last name of the tester or testers who sampled the material (Ex. John Jones)                                                                         |
| S -  | Date the sample was taken (Ex. 12/16/2013)                                                                                                                                       |
| т-   | Date the sample left your possession (Ex. 12/17/2013)                                                                                                                            |
| U -  | N/A                                                                                                                                                                              |
| V -  | Signature of person responsible for sampling, testing and submitting the sample (Ex. John Jones)                                                                                 |

### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION MATERIAL DIVISION

| E.A. or Contract No                    | Test No. or Sample No                                                          |
|----------------------------------------|--------------------------------------------------------------------------------|
| Material description                   | Batch No                                                                       |
| Location or source of sample           |                                                                                |
| Primary contractor                     |                                                                                |
| Producer                               |                                                                                |
| Limits of work represented by sample   |                                                                                |
| Quantity and depth represented         |                                                                                |
| Material is to be used for             |                                                                                |
|                                        |                                                                                |
| Tests needed on this material          |                                                                                |
| Type and grade of asphalt to be used   |                                                                                |
| Asphalt producer                       |                                                                                |
| Bin percentages                        |                                                                                |
| Bitumen Ratio (Target)(A               | Actual)                                                                        |
| Remarks                                | , , , , , , , , , , , , , , , , , , , ,                                        |
|                                        |                                                                                |
|                                        |                                                                                |
| Sampled by (Please Print)              |                                                                                |
| Date sampled                           | Date Shipped                                                                   |
|                                        |                                                                                |
| Resident Engineer signature for mix de | sign submittal:                                                                |
|                                        | Signed                                                                         |
| Distribution: White and Canary, to     | be inserted in plastic envelope and submitted with sample; Pink, sender's copy |
| (NSPO) Rev. 7-12                       | (O) 4179                                                                       |

020-018

### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION MATERIAL DIVISION

| A. E.A. of Contract No.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I. Quantity and Depth represented10,000 tons<br>J. Material is to be used forMainline Paving of PBS Type 2C W/Rap                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>K. Tests needed on this materialStability and Air VoidsL. Type and grade of asphalt to be usedPG64-28NV.</li> <li>M. Asphalt producerParamount FernleyN. Bin Percentages1"=25%, 1/2"=12%, 3/8"=10%, crushed fines=28%, Wads. Sand=10%, R.A.P.=15%O. Bitumen Ratio (Target)5.2%(Actual)5.0%P. Lab mix design NoBF10-15Q. RemarksSieve was out of spec on #10 sieve. James Fred (Granite Construction) and Jerry Pine (NDOT R.E.) notified of results.</li> </ul> |
| R. Sampled by ( <i>Please Print</i> )John Jones         S. Date sampled12/16/13T. Date Shipped12/17/13                                                                                                                                                                                                                                                                                                                                                                   |
| U. Resident Engineer signature for mix design submittal:<br>                                                                                                                                                                                                                                                                                                                                                                                                             |
| (NSPO) Rev. 7-12 (O) 4179                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# 020-018 Rev. 07/12

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α-   | Contract number for the material being tested, found in the Contract Plans or Special Provisions (Ex. 3925)                                                                                                      |
| В-   | Acceptance test number for that particular test (Ex.T-1-2 T= Acceptance test, 1 = first acceptance test of the day, 2 = number of days material has been tested) <b>NOTE:</b> This is not the working day number |
| C -  | Material type as specified in the Standard Specifications, Contract Plans or Special Provisions (Ex. PBS Type 2C with Rap)                                                                                       |
| D -  | N/A                                                                                                                                                                                                              |
| E-   | Location (Station) where sample was obtained from; route and milepost, station, etc (Ex. "L"~ 155+25, #2 lane, 1st lift)                                                                                         |
| F-   | Prime Contractor awarded the contract (Ex. Granite Construction)                                                                                                                                                 |
| G -  | Contractor producing the Plantmix (Ex. Granite Construction)                                                                                                                                                     |
| н-   | Limits of work represented by sample (Ex. As per plans)                                                                                                                                                          |
| 1-   | Total quantity of material that will be represented by this submittal (Ex. 10,000 tons)                                                                                                                          |
| J -  | Whatever the contractor will be using the material for (Ex. Mainline Paving PBS Type 2C/W Rap)                                                                                                                   |
| К-   | Stated in the Standard Specifications, or Special Provisions (Ex. Stability and Air Voids)                                                                                                                       |
| L-   | As stated in the Standard Specifications, Special Provisions, or mix design (Ex. PG64-28NV)                                                                                                                      |
| M -  | Company that is actually producing the asphalt (Ex. Paramount Fernley) <b>NOTE:</b> Not where it is stored                                                                                                       |

# 020-018 Rev. 07/12

# TRANSMITTAL FOR TEST SAMPLES AND CERTIFICATIONS

| N - | Percentages of each stockpile should be taken from the most current JMF or Mix Design (Ex. 1"=25%, 1/2"=12%, 3/8"=10%, crushed fines = 28%, Wads. Sand=10%, RAP=15% |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - | (Target) bitumen ratio from Mix Design or JMF (Ex. 5.2%)<br>(Actual) bitumen ratio are results from Test Method Nev. T761                                           |
| Ρ-  | Mix design number found on the mix design from the Materials Lab (Ex. BF10-15)                                                                                      |
| Q - | Anything that needs to be documented (Ex. Sieve was out of spec on the #10 sieve. James Fred (Granite Construction) and Jerry Pine (NDOT R.E.) notified of results. |
| R - | Sampled by, print first and last name of the tester or testers who completed the test (Ex. John Jones)                                                              |
| S - | Date the sample was taken (Ex. 12/16/13)                                                                                                                            |
| т-  | Date the sample left your possession (Ex. 12/17/2013)                                                                                                               |
| U - | N/A (NOTE: Only needed when submitting a mix design)                                                                                                                |
| V - | Signature of person responsible for sampling, testing and submitting the sample (Ex. John Jones)                                                                    |

### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

### NUCLEAR GAUGE / SAND CONE CHECK TEST FORM

| Date            | Contract No.    |  |
|-----------------|-----------------|--|
| Material Type   | Nuclear Set No. |  |
| Material Source |                 |  |

### **CORRELATION DATA**

| Correlation Date      |  |
|-----------------------|--|
| Moisture Offset (MCF) |  |
| Wet Density Offset    |  |

SINGLE CHECK TEST (Every 10 Acceptance Tests With Offsets Enabled)

|          | Sand Cone   | Nuclear Gauge |                |
|----------|-------------|---------------|----------------|
| Test No. | Wet Density | Wet Density   | Difference (±) |
|          |             |               |                |

Maximum Deviation:

 $(\pm 0.032 \text{ Mg/m}^3 \text{ or } \pm 2.0 \text{ pcf Allowable})$ 

#### HARVARD MINIATURE COMPACTION TEST RESULTS

(Every 10 Acceptance Tests)

| Test No.                                        |  |
|-------------------------------------------------|--|
| H.M.C.T., $Dry = d Mg/m^3$ (pcf)                |  |
| Total Sample, Approx. Opt. Moisture             |  |
| Appar. Spec. Grav. + 4.75 mm (+ No. 4)          |  |
| Dec. Equiv. Of % + 4.75 mm (+ No. 4)            |  |
| Calculated Max. Density Mg/m <sup>3</sup> (pcf) |  |

| Remarks:   |                                                                                  |
|------------|----------------------------------------------------------------------------------|
|            |                                                                                  |
|            |                                                                                  |
| Tested By: | Resident Engineer:                                                               |
| NDOT       |                                                                                  |
| 040-003    |                                                                                  |
| Rev. 03/09 | Distribution: Headquarters Construction, District, Resident Engineer, Contractor |

### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

### NUCLEAR GAUGE / SAND CONE CHECK TEST FORM

A. Date7/12/2010B. Material TypeGranular BackfillC. Material SourceCinderlite - Goni Pit

 D. Contract No.
 3925

 E. Nuclear Set No.
 33

### **CORRELATION DATA**

| F. Correlation Date      | 7/1/2010 |
|--------------------------|----------|
| G. Moisture Offset (MCF) | + 6.55   |
| H. Wet Density Offset    | + 2.3    |

SINGLE CHECK TEST (Every 10 Acceptance Tests With Offsets Enabled)

|             | J. Sand Cone | K. Nuclear Gauge |                   |
|-------------|--------------|------------------|-------------------|
| I. Test No. | Wet Density  | Wet Density      | L. Difference (±) |
| 60-SB-90    | 129.2        | 141.9            | - 12.7 pcf        |
|             |              |                  |                   |

M. Maximum Deviation:

(± 0.032 Mg/m<sup>3</sup> or  $\underbrace{= 2.0 \text{ pcf}}$ Allowable)

HARVARD MINIATURE COMPACTION TEST RESULTS

(Every 10 Acceptance Tests)

- 12.7 pcf

| N. Test No.                                         | 60-SB-90 |
|-----------------------------------------------------|----------|
| <b>O.</b> H.M.C.T., Dry = d Mg/m <sup>3</sup> (pc)) | 118.2    |
| P. Total Sample, Approx. Opt. Moisture              | 12.1     |
| <b>Q.</b> Appar. Spec. Grav. + 4.75 mm (+ No. 4     | 2.450    |
| <b>R.</b> Dec. Equiv. Of % + 4.75 mm (+ No. 4)      | 0.167    |
| S. Calculated Max. Density Mg/m <sup>3</sup> (pcf)  | 124.3    |

T. Remarks: Check test did not meet Maximum Deviation spec., and is no longer valid.

### Will have to re-correlate the moisture density gauge. Contractor - Jim John and NDOT R.E. Bob Black notified of results.

U. Lested By: Tyler James

V. Resident Engineer:

Bob Black

NDOT

040-003 Rev. 03/09

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

### 040-003 Rev. 03/09

# NUCLEAR GAUGE / SAND CONE CHECK TEST FORM

| A - | Date the sample was taken (EX. 7/12/2010)                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Material type as specified, found in the Standard Specifications, Contract Plans, or Special Provisions (EX. Granular Backfill)                                                                                                                                                                                                                                                                                                                      |
| C - | Material source that the material was produced (EX. Cinderlite - Goni Pit)                                                                                                                                                                                                                                                                                                                                                                           |
| D - | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                                                                                                                                                                                                                                          |
| Ε-  | Nuclear set number assigned to the moisture density gauge that is used for testing the material (EX. 33) <b>NOTE:</b> If there is no set number, use the serial number on the back of the moisture density gauge                                                                                                                                                                                                                                     |
| F - | Correlation date will be the original date that the moisture density gauge correlation was performed on this material (EX. 07/01/2010)                                                                                                                                                                                                                                                                                                               |
| G - | Moisture offset (MCF) that was established during the original moisture density gauge correlation (EX. + 6.55)                                                                                                                                                                                                                                                                                                                                       |
| Н-  | Wet density offset that was established during the original moisture density gauge correlation (EX. + 2.3)                                                                                                                                                                                                                                                                                                                                           |
| 1-  | Test number for this particular test. First number is the number of tests ran on this material; the code for the type of material being tested (found in the Construction Manual); and percent of compaction (found in the Standard Specifications or Special Provisions) (EX. 60-SB-90) <b>NOTE:</b> The only codes used for compactions are found in the Construction Manual unless approved by the Construction Office, Quality Assurance Section |
| J - | Sand cone wet density determined using Test Method Nev. T102, from NDOT form 040-004 line no. 14 (EX. 129.2)                                                                                                                                                                                                                                                                                                                                         |
| К-  | Nuclear gauge wet density determined using Test Method Nev. T103, from NDOT form 040-007, average of wet density (EX. 141.9)                                                                                                                                                                                                                                                                                                                         |
| L-  | Difference, Line J (sand cone wet density) - Line K (nuclear gauge wet density) = Line L (difference) (EX. 129.2 - 141.9 = - 12.7 pcf)                                                                                                                                                                                                                                                                                                               |

## 040-003 Rev. 03/09

# NUCLEAR GAUGE / SAND CONE CHECK TEST FORM

| M - | Maximum deviation, place Line L (difference $\pm$ ) in this area, if the number is less than $\pm 0.032$ Mg/m3 ( $\pm 2.0$ pcf), then continue to use this moisture density gauge correlation (EX 12.7 pcf) If not, re-correlation will be required                                                                                                                                                                                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N - | Test number for this particular test. First number is the number of tests ran on this material; the code for the type of material being tested (found in the Construction Manual); and percent of compaction (Standard Specifications or Special Provisions) (EX. 60-SB-90) <b>NOTE:</b> The only codes used for compactions are found in the Construction Manual unless approved by the Construction Office, Quality Assurance Section |
| 0 - | H.M.C.T., Dry - new result from the Harvard Miniature Compaction Test established using Test Method Nev. T101, from NDOT form 040-004, the highest dry density determined by Test Method Nev. T101 (EX. 118.2)                                                                                                                                                                                                                          |
| Ρ-  | Total Sample, Approximate Optimum Moisture using Test Method Nev. T102, from NDOT form 040-004, line No. 16 (EX. 12.1)                                                                                                                                                                                                                                                                                                                  |
| Q - | Apparent Specific Gravity + 4.75 mm (+ No. 4), from Test Method Nev. T104, from NDOT form 040-004 line No. 22 or 23 (EX. 2.450)                                                                                                                                                                                                                                                                                                         |
| R - | Decimal Equivalent of % + 4.75 mm (+ No. 4) using Nevada Test Method T102, from NDOT form 040-004 line No. 25 (EX. 0.167)                                                                                                                                                                                                                                                                                                               |
| S - | Calculated Maximum Density using Test Method Nev. T102, from NDOT form 040-004<br>Line Number 28 (EX. 124.3)                                                                                                                                                                                                                                                                                                                            |
| Т-  | Remarks, anything that needs to be documented (EX. The test did or didn't meet specifications and who was notified of the results etc.)                                                                                                                                                                                                                                                                                                 |
| U - | Tested by, print first and last name of the tester or testers who completed the test (EX. Tyler James)                                                                                                                                                                                                                                                                                                                                  |
| V - | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Bob Black)                                                                                                                                                                                                                                                                                                                                        |

### 040-003 Rev. 03/09

### NUCLEAR GAUGE / SAND CONE CHECK TEST FORM

### LINE EXPLANATION OF NEEDED INFORMATION

### NOTES:

- If the maximum deviation specification has been met, then continue to use the gauge correlation with the new Harvard Miniature Compaction results, from the new Check Test. If the maximum deviation specification does not meet, do not use that gauge correlation anymore. A new gauge correlation will be required, or use the referee method using Test Method Nev. T102.
- 2. If the Check Test does not meet the maximum deviation specification and a new correlation is required, it is permissible to use the failing Check Test as part of the new correlation.
- **3.** Even though the Check Tests are required every tenth acceptance test, this is a minimum only and if anything is suspect additional Check Tests may be required.

### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

### NUCLEAR GAUGE / SAND CONE CHECK TEST FORM

| Date            | Contract No.    |
|-----------------|-----------------|
| Material Type   | Nuclear Set No. |
| Material Source |                 |

### CORRELATION DATA

| Correlation Date      |  |
|-----------------------|--|
| Moisture Offset (MCF) |  |
| Wet Density Offset    |  |

SINGLE CHECK TEST (Every 25 Accep

(Every 25 Acceptence Tests with Offsets Enabled)

|          | Sand Cone   | Nuclear Gauge |                |
|----------|-------------|---------------|----------------|
| Test No. | Wet Density | Wet Density   | Difference (±) |
|          |             |               |                |

Maximum Deviation:

(± 0.032 Mg/m<sup>3</sup> or ± 2.0 lb/ft<sup>3</sup> Allowable)

### MODIFIED PROCTOR COMPACTION TEST RESULTS (Every 25 Acceptance Tests)

| Test No.                                                          |  |
|-------------------------------------------------------------------|--|
| Maximum Dry Density = (d) Mg/m <sup>3</sup> (lb/ft <sup>3</sup> ) |  |
| Optimum Moisture %                                                |  |

(if applicable)

| Corr. Max. Dry Density = (D) Mg/m <sup>3</sup> (lb/ft <sup>3</sup> ) |  |
|----------------------------------------------------------------------|--|
| Corr. Optimum Moisture %                                             |  |

| Remarks:        |                                                                                  |
|-----------------|----------------------------------------------------------------------------------|
| Tested By:      | Resident Engineer:                                                               |
| NDOT<br>040-003 |                                                                                  |
| Rev. 07/14      | Distribution: Headquarters Construction, District, Resident Engineer, Contractor |

### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

### NUCLEAR GAUGE / SAND CONE CHECK TEST FORM

| A. Date            | 7/12/2010             | D. Contract No.    | 3925 |  |
|--------------------|-----------------------|--------------------|------|--|
| B. Material Type   | Granular Backfill     | E. Nuclear Set No. | 33   |  |
| C. Material Source | Cinderlite - Goni Pit |                    |      |  |

### CORRELATION DATA

| F. Correlation Date      | 7/1/2010 |
|--------------------------|----------|
| G. Moisture Offset (MCF) | + 6.55   |
| H. Wet Density Offset    | + 2.3    |

SINGLE CHECK TEST (Every 25 Acceptence Tests with Offsets Enabled)

|             | J. Sand Cone | K. Nuclear Gauge |                   |
|-------------|--------------|------------------|-------------------|
| I. Test No. | Wet Density  | Wet Density      | L. Difference (±) |
| 60-SB-90    | 129.2        | 141.9            | - 12.7 pcf        |
|             | -            |                  |                   |

M. Maximum Deviation:

 $(\pm 0.032 \text{ Mg/m}^3 \text{ or } \pm 2.0 \text{ lb/ft}^3 \text{Allowable})$ 

MODIFIED PROCTOR COMPACTION TEST RESULTS

(Every 25 Acceptance Tests)

- 12.7 pcf

| N. Test No.                                                    | 60-SB-90 |
|----------------------------------------------------------------|----------|
| <b>O.</b> Maximum Dry Density = (d) Mg/m (lb/ft <sup>3</sup> ) | 118.2    |
| P. Optimum Moisture %                                          | 12.1     |

| (if appl                                                           | licable) |
|--------------------------------------------------------------------|----------|
| <b>Q.</b> Corr. Max. Dry Density = (D) Mg/n( <sup>3</sup> (lb/ft)) | 124.3    |
| R. Corr. Optimum Moisture %                                        | 10.9     |

### S. Remarks: Check test failed to meet the maximum deviation tolerances and is no longer valid. Re-correlation of the moisture density gauge will be necessary. RE and Contractor notified

| T. Tested By:                 | Leonard Cooper             | U. Resident Engineer:                   | Howard Koothrappali |
|-------------------------------|----------------------------|-----------------------------------------|---------------------|
| NDOT<br>040-003<br>Rev. 07/14 | Distribution: Headquarters | Construction, District, Resident Engine | eer, Contractor     |

### 040-003 Rev. 07/14

# NUCLEAR GAUGE / SAND CONE CHECK TEST FORM

| A - | Date the sample was taken (ex. 7/12/2010)                                                                                                                                                                                                                                                                              |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Material Type, as specified in the Contract Plans, or Special Provisions (ex. Granular Backfill)                                                                                                                                                                                                                       |
| C - | Material Source, where the material was produced (ex. Cinderlite - Goni Pit)                                                                                                                                                                                                                                           |
| D - | Contract number for the material being tested, found in the Contract Plans or Special Provisions (ex. 3925)                                                                                                                                                                                                            |
| Ε-  | Gauge Set number, assigned to the moisture density gauge that is used for testing the material (ex. 33)<br><b>NOTE:</b> Consultants shall use the serial number found on the back of the gauge                                                                                                                         |
| F - | Correlation Date, will be the original date that the moisture density gauge correlation was performed on this material (ex. 07/1/2010)                                                                                                                                                                                 |
| G - | Moisture Offset (MCF), that was established during the original moisture density gauge correlation (ex. + 6.55)                                                                                                                                                                                                        |
| Н-  | Wet Density Offset, that was established during the original moisture density gauge correlation (ex. + 2.3)                                                                                                                                                                                                            |
| 1-  | Test No., actual test number for this particular test. 60 is the<br>number of tests ran on that material, SB represents the material being tested (refer to<br>the Construction Manual for coding) and 90 is the minimum percent compaction<br>required (Standard Specifications or Special Provisions) (ex. 60-SB-90) |
| J - | Sand Cone Wet Density, determined per Test Method Nev. T102, from NDOT form 040-069 (ex. 129.2)                                                                                                                                                                                                                        |
| К-  | Nuclear Gauge Wet Density, determined per Test Method Nev. T103, from NDOT form 040-007, average of wet density (ex. 141.9)                                                                                                                                                                                            |
| L-  | Difference (±), Line J (Sand Cone Wet Density) - Line K (Nuclear Gauge Wet Density) = Line L (Difference (±)) (ex. 129.2 - 141.9 = - 12.7 pcf)                                                                                                                                                                         |
| M - | Maximum Deviation, place Line L (Difference $(\pm)$ ) in this location, if the number is within $\pm 0.032$ Mg/m3 ( $\pm 2.0$ pcf), continue to use this moisture density gauge correlation (ex 12.7 pcf) If tolerances exceed, re-correlation shall be required                                                       |

### 040-003 Rev. 07/14

# NUCLEAR GAUGE / SAND CONE CHECK TEST FORM

| N -    | Test No., actual test number for this particular test. 60 is the<br>number of tests ran on that material, SB represents the material being tested (refer to<br>the Construction Manual for coding) and 90 is the minimum percent compaction<br>required (Standard Specifications or Special Provisions) (ex. 60-SB-90)  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 -    | Maximum Dry Density = (d) Mg/m³ (lb/ft³), the highest dry density as established per Test Method Nev. T108 from NDOT form 040-069 (ex. 118.2)                                                                                                                                                                           |
| Ρ-     | Optimum Moisture %, as established per Test Method Nev. T108 from NDOT form 040-069 (ex. 12.1)                                                                                                                                                                                                                          |
| Q -    | Corr. Max. Dry Density = (D) Mg/m <sup>3</sup> (lb/ft <sup>3</sup> ), as established per test Method Nev. T108 from NDOT form 040-069 (ex. 124.3)                                                                                                                                                                       |
| R -    | Corr. Optimum Moisture %, as established per Test Method Nev. T108 from NDOT form 040-069 (ex. 10.9)                                                                                                                                                                                                                    |
| S-     | Remarks, anything that needs to be documented (ex. Check test failed to meet the maximum deviation tolerances and is no longer valid. Re-correlation of the moisture density gauge will be necessary. RE and Contractor notified)                                                                                       |
| т-     | Tested By, printed first and last name of the tester or testers who completed the test (ex. Leonard Cooper)                                                                                                                                                                                                             |
| U -    | Resident Engineer, or Assistant Resident Engineer signature on that specific crew verifying the accuracy of the reported results. (ex. Howard Koothrappali)                                                                                                                                                             |
| NOTES: |                                                                                                                                                                                                                                                                                                                         |
| 1.     | If the maximum deviation specification is within tolerances, continue to use the gauge correlation using the new Proctor Curve Compaction and Check Test results.<br>If the maximum deviation specification exceeds tolerances, re-correlation shall be required or use the referee method using Test Method Nev. T102. |
| 2.     | If the Check Test exceeds the maximum deviation specification and a new correlation is to be determined, it is permissible to use the failing Check Test as part of the new correlation process.                                                                                                                        |
| 3.     | Even though the Check Tests are required every twenty-five acceptance test, this is a minimum only and if anything is suspect additional Check Tests may be required.                                                                                                                                                   |
#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION COMPACTION REPORT

| Contract No.                                                                  | Test Hole No. (code)                                           |              |                    |               |               |                  |           |        |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|--------------|--------------------|---------------|---------------|------------------|-----------|--------|
| Date                                                                          | Station                                                        | -            |                    |               |               |                  |           |        |
|                                                                               | Embankment Depth                                               |              |                    |               |               |                  |           |        |
|                                                                               | Type of Material                                               |              |                    |               |               |                  |           |        |
|                                                                               | Compaction Equipment                                           |              |                    |               |               |                  |           |        |
| SAND VOLUME DATA                                                              |                                                                |              |                    |               |               | 1                |           |        |
| 1. Initial Weight of Sand                                                     | kg (lbs)                                                       |              |                    |               |               |                  |           |        |
| 2. Weight of Residue                                                          | kg (lbs)                                                       |              |                    |               |               |                  |           |        |
| 3. Weight of Sand Used, 1 - 2                                                 | kg (lbs)                                                       | -            |                    |               |               |                  |           |        |
| 4. Sand Density                                                               | Mg/m <sup>o</sup> (pcf)                                        |              |                    |               |               |                  |           |        |
| 5. Vol. Hole + Cone + Plate, 3 / 4                                            | 1 m <sup>3</sup> x 1000 (ft <sup>3</sup> )                     |              |                    |               |               |                  |           |        |
| 6. Vol. of Cone + Plate                                                       | m <sup>3</sup> x 1000 (ft <sup>3</sup> )                       |              |                    |               |               |                  |           |        |
| 7. Vol. of Hole, 5 - 6                                                        | m <sup>°</sup> x 1000 (ft <sup>°</sup> )                       |              |                    |               |               |                  |           |        |
| EXCAVATED SAMPLE                                                              |                                                                | Part (g)     | Total kg(lbs)      | Part (g)      | Total kg(lbs) | Part (g)         | Total k   | g(lbs) |
| 8. Wet Weight                                                                 | g                                                              |              |                    |               |               |                  |           |        |
| 9. Dry Weight                                                                 | g                                                              |              |                    |               |               |                  |           |        |
| 10. Weight of Water, 8 - 9                                                    | g                                                              |              |                    |               |               |                  |           |        |
| 11. % Moisture (10 / 9)100                                                    |                                                                | -            |                    |               |               |                  |           |        |
| 12. Dry Weight + 4.75 mm (+ #4)                                               | g                                                              |              |                    |               |               |                  |           |        |
| 13. Dry Weight - 4.75 mm (- #4)                                               | g                                                              |              |                    |               |               |                  |           |        |
| 14. FIELD DENSITY WEI, 8 Tota                                                 | I/7 Mg/m° (pct)                                                |              |                    |               |               |                  |           |        |
| 15. FIELD DENSITY DRY,                                                        | Mg/m° (pcf)                                                    |              |                    |               |               |                  |           |        |
| [14 / (100 + % MOISTURE)                                                      |                                                                |              |                    |               |               | V <b>T</b> 4 0 4 |           |        |
| DATA FOR TH                                                                   |                                                                |              | DENSITY DE         |               | ATION NE      | V 1101           | _         |        |
| Harvard Miniature Curve Test of                                               | n - 4.75 mm (- #4)                                             | Wet          | Dry %M             | Wet           | Dry %M        | Wet              | Dry       | %M     |
| Noto: For Matria areana / CO. 4                                               | 1.<br>4a/m <sup>3</sup>                                        |              |                    |               |               |                  |           |        |
| Note: For Metric, grams / $62.4 = N$                                          | //g/m 2.                                                       |              |                    |               |               |                  |           |        |
| For English, grams = pcf                                                      | 3.                                                             |              |                    |               |               |                  |           |        |
|                                                                               | 4.<br>5                                                        | -            |                    |               |               |                  | -         |        |
| 16 Total Sample approx Opt Mo                                                 | D.                                                             |              |                    |               |               |                  |           |        |
| 10. Total Sample, approx. Opt. No. $[(1 - P) \times 2] + [P \times Test Opt]$ | Moist 1                                                        |              |                    |               |               |                  |           |        |
| (1 - F) X 2] + [F X Test Opt.                                                 | G Nev T101                                                     |              |                    |               |               |                  |           |        |
| 17 Wt of Aggregate (4.75 mm to                                                | 37.5  mm(#4  to  1.5") - 4                                     | ·            |                    |               |               |                  |           |        |
| 18 Wt of Pycnometer – n                                                       | $(-7)^{-7}$                                                    | `            |                    |               |               |                  |           |        |
| 19 (Wt of Pyc + Water) - $p = M$                                              |                                                                |              | M =                |               | M =           |                  | M =       |        |
| 20  (Wt. of Pyc. + Water) - p = W                                             | $(n + \Lambda) = M$                                            |              | M –                |               | M _           |                  | M _       |        |
| 20. (Wt. of Fyc., Water, Aggregate                                            | $e(p + A) = w_1$                                               |              | $IVI_1 =$          |               | $IVI_1 =$     |                  | $IVI_1 =$ |        |
| 21. Wt. of Water Recovered from                                               | Pyc. = $M_2$                                                   |              | $M_2 =$            |               | $M_2 =$       |                  | $M_2 =$   |        |
|                                                                               |                                                                |              |                    |               |               | 1                |           |        |
| 22. If $M_1 - M_2 \le 14$ g, $G = A / (M - 1)$                                | M <sub>1</sub> )                                               |              |                    |               |               |                  |           |        |
| 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_2) - M_2] = 0$                    | M <sub>1</sub> ) + 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14)] |              |                    |               |               |                  |           |        |
|                                                                               |                                                                |              |                    |               |               | 1                |           |        |
| 24. Constant, K, (.90 Metric) (56.1                                           | 6 English)                                                     |              |                    |               |               |                  |           |        |
| 25. Decimal Equiv. of % + 4.75 mi                                             | m (+ #4), (1 - P) = 12 / 9                                     |              |                    |               |               |                  |           |        |
| 26. Decimal Equiv. of % - 4.75 mm                                             | n (- #4), P = 13 / 9                                           |              |                    |               |               |                  |           |        |
| 27. H.M.C.T., Dry = d                                                         | Mg/m <sup>3</sup> (pcf)                                        |              |                    |               |               |                  |           |        |
| 28. CALCULATED MAX. DENSIT                                                    | Y                                                              |              |                    |               |               |                  |           |        |
| D = GK (1- P) + Pd (1.03)                                                     | Mg/m³ (pcf)                                                    |              |                    |               |               |                  |           |        |
| 29. % COMPACTION = (15 / 28)1                                                 | 00                                                             |              |                    |               |               |                  |           |        |
| REMARKS:                                                                      |                                                                |              |                    |               |               |                  |           |        |
|                                                                               |                                                                |              |                    |               |               |                  |           |        |
|                                                                               |                                                                |              |                    |               |               |                  |           |        |
| IESTED BY:                                                                    |                                                                |              | RESIDENT           | ENGINEEF      | K:            |                  |           |        |
|                                                                               | Diotributions                                                  | Construction | District Destal    | nt Frains     | Contractor    |                  |           |        |
| 040-004<br>Pov. 11/09                                                         | Distribution: Headquarters                                     |              | , DISTRICT, RESIDE | nı ⊑rigineer, | Contractor    |                  |           |        |
|                                                                               |                                                                | 1            |                    |               |               |                  |           |        |

# STATE OF NEVADA DEPARTMENT OF TRANSPORTATION COMPACTION REPORT

| A. Contract No. 3925 C. Test Ho                                                                                                                                                                                                                                                                                                                                                                                                                                         | le No. (code)                                                                                                                                                        | 60-SB-90 (E                                                              | inglish)                                      |             |                                          |             |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|-------------|------------------------------------------|-------------|------------------|
| <b>B.</b> Date <b>7/12/2010 D.</b> Station                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      | "X" 7 + 22                                                               |                                               |             |                                          |             |                  |
| E. Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to Centerline                                                                                                                                                        | 2.0' Rt.                                                                 |                                               |             |                                          |             |                  |
| F. Embankn                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ment Depth                                                                                                                                                           | 2 ft                                                                     |                                               |             |                                          |             |                  |
| <b>G.</b> Type of M                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Material                                                                                                                                                             | Granular Ba                                                              | ackfill                                       |             |                                          |             |                  |
| H. Compact                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion Equipment                                                                                                                                                       | Vibratory R                                                              | oller                                         |             |                                          |             |                  |
| SAND VOLUME DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                          |                                               |             |                                          |             |                  |
| I. 1. Initial Weight of Sand kg                                                                                                                                                                                                                                                                                                                                                                                                                                         | g (lbs)                                                                                                                                                              | 50.0                                                                     |                                               |             |                                          |             |                  |
| J. 2. Weight of Residue kg                                                                                                                                                                                                                                                                                                                                                                                                                                              | g(lbs)                                                                                                                                                               | 18.1                                                                     |                                               |             |                                          |             |                  |
| K. 3. Weight of Sand Used, 1 - 2 kg                                                                                                                                                                                                                                                                                                                                                                                                                                     | g(lbs)                                                                                                                                                               | 31.9                                                                     |                                               |             |                                          |             |                  |
| L. 4. Sand Density N                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lg/m <sup>3</sup> (pcf)                                                                                                                                              | 84.6                                                                     |                                               |             |                                          |             |                  |
| M. 5. Vol. Hole + Cone + Plate, 3 / m                                                                                                                                                                                                                                                                                                                                                                                                                                   | n <sup>3</sup> x 1000 (ft <sup>3</sup> )                                                                                                                             | 0.377                                                                    |                                               |             |                                          |             |                  |
| N. 6. Vol. of Cone + Plate m                                                                                                                                                                                                                                                                                                                                                                                                                                            | n <sup>3</sup> x 1000((ft <sup>3</sup> ))                                                                                                                            | 0.199                                                                    |                                               |             |                                          |             |                  |
| <b>O.</b> 7. Vol. of Hole, 5 - 6                                                                                                                                                                                                                                                                                                                                                                                                                                        | n <sup>3</sup> x 1000 (ft <sup>5</sup> )                                                                                                                             | 0.178                                                                    |                                               |             |                                          |             |                  |
| EXCAVATED SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      | Part (g)                                                                 | Total kg(lbs)                                 | Part (g)    | Total kg(lbs)                            | Part (g)    | Total kg(lbs)    |
| P. 8. Wet Weight g                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      | 2587                                                                     | 23.0                                          |             |                                          |             |                  |
| Q. 9. Dry Weight g                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      | 2389                                                                     |                                               |             |                                          |             |                  |
| R. 10. Weight of Water, 8 - 9 g                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                      | 198                                                                      |                                               |             |                                          |             |                  |
| <b>S.</b> 11. % Moisture (10 / 9)100                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      | 8.3 %                                                                    |                                               |             |                                          |             |                  |
| <b>T.</b> 12. Dry Weight + 4.75 mm (+ #4) g                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      | 400                                                                      |                                               |             |                                          |             |                  |
| <b>U.</b> 13. Dry Weight - 4.75 mm (- #4) g                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      | 1989                                                                     |                                               |             |                                          |             |                  |
| V. 14. FIELD DENSITY WET, 8 Total / 7                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mg/m <sup>3</sup> (pcf)                                                                                                                                              | 129.2                                                                    |                                               |             |                                          |             |                  |
| W. 15. FIELD DENSITY DRY,                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mg/m <sup>3</sup> (pc)                                                                                                                                               | 119.3                                                                    |                                               |             |                                          |             |                  |
| [14 / (100 + % MOISTURE)]100                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |                                                                          |                                               |             |                                          |             |                  |
| DATA FOR THE CALC                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ULATED MAX                                                                                                                                                           | XIMUM DE                                                                 | ENSITY DE                                     | TERMIN      | ATION NEV                                | / T101      |                  |
| Harvard Miniature Curve Test on - 4.75 m                                                                                                                                                                                                                                                                                                                                                                                                                                | nm (- #4)                                                                                                                                                            | Wet [                                                                    | Dry %M                                        | Wet [       | Dry %M                                   | Wet I       | Dry %M           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>X.</b> 1.                                                                                                                                                         | 129.2 11                                                                 | 15.9 11.5                                     |             |                                          |             |                  |
| Note: For Metric, grams / $62.4 = Mg/m^3$                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.                                                                                                                                                                   | <134.9 11                                                                | 18.2 14.1>                                    |             |                                          |             |                  |
| For English, grams = pcf                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.                                                                                                                                                                   | *132.4 1 <sup>·</sup>                                                    | 14.5 15.6                                     |             |                                          |             |                  |
| $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.                                                                                                                                                                   |                                                                          |                                               |             |                                          |             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.                                                                                                                                                                   | *failed to ga                                                            | ain 1.4 g                                     |             |                                          |             |                  |
| Y. 16. Total Sample, approx. Opt. Moisture                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                          |                                               |             |                                          |             |                  |
| [(1 - P) x 2] + [P x Test Opt. Moist.]                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      | 12.                                                                      | .1 %                                          |             |                                          |             |                  |
| Apparent Specific Gravity Test, G, Nev. 7                                                                                                                                                                                                                                                                                                                                                                                                                               | F104                                                                                                                                                                 |                                                                          |                                               |             |                                          |             |                  |
| Z. 17. Wt. of Aggregate, (4.75 mm to 37.5 m                                                                                                                                                                                                                                                                                                                                                                                                                             | nm)(#4 to 1.5") =                                                                                                                                                    | 500                                                                      |                                               |             |                                          |             |                  |
| <b>AA.</b> 18. Wt. of Pycnometer = p                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      | 438                                                                      |                                               |             |                                          |             |                  |
| <b>BB.</b> 19. (Wt. of Pyc. + Water) - p = M                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | 1455                                                                     | M = <b>1017</b>                               |             | M =                                      |             | M =              |
| CC. 20. (Wt. of Pyc., Water, Aggregate) - (p                                                                                                                                                                                                                                                                                                                                                                                                                            | $(+ A) = M_1$                                                                                                                                                        | 1755                                                                     | M <sub>1</sub> = <b>817</b>                   |             | M <sub>1</sub> =                         |             | M <sub>1</sub> = |
| DD. 21. Wt. of Water Recovered from Pyc. =                                                                                                                                                                                                                                                                                                                                                                                                                              | = M <sub>2</sub>                                                                                                                                                     | 794                                                                      | M <sub>2</sub> = <b>794</b>                   |             | M _                                      |             | $M_2 =$          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                      |                                                                          | 2 -                                           |             | w <sub>2</sub> –                         |             | -                |
| <b>EE.</b> 22. If $M_1 - M_2 \le 14 \text{ g}$ , $G = A / (M - M_1)$                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                          | 2                                             |             | W <sub>2</sub> –                         |             | 2                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                      |                                                                          | 2                                             |             | 11/2 -                                   |             |                  |
| <b>FF.</b> 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_1) + M_2] = 0$                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14                                                                                                                            | 2.44                                                                     | 2                                             |             | 1112 -                                   |             |                  |
| <b>FF.</b> 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_1) + M_2]$                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14                                                                                                                            | 2.44                                                                     |                                               |             |                                          |             |                  |
| <b>FF.</b> 23. If M <sub>1</sub> - M <sub>2</sub> > 14 g, G = A / [(M - M <sub>1</sub> ) + <b>GG.</b> 24. Constant, K, (.90 Metric)(56.16 End                                                                                                                                                                                                                                                                                                                           | 0.5 (M₁ - M₂ - 14<br>                                                                                                                                                | 2.44                                                                     |                                               |             |                                          |             |                  |
| <b>FF.</b> 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_1) + GG. 24. Constant, K, (.90 Metric) (56.16 Eng.) HH. 25. Decimal Equiv. of % + 4.75 mm (+ \frac{4}{7}$                                                                                                                                                                                                                                                                                                        | 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14<br>glish)<br>#4), (1 - P) = 12 /                                                                                           | 2.44<br>56.16<br>0.167                                                   |                                               |             | W12 -                                    |             |                  |
| <b>FF.</b> 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_1) + GG. 24. Constant, K, (.90 Metric))(56.16 Eq. HH. 25. Decimal Equiv. of % + 4.75 mm (+ # II. 26. Decimal Equiv. of % - 4.75 mm (- #4),$                                                                                                                                                                                                                                                                      | 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14<br>glish)<br>#4), (1 - P) = 12 /<br>, P = 13 / 9                                                                           | 56.16<br>0.167<br>0.833                                                  |                                               |             |                                          |             |                  |
| <b>FF.</b> 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_1) + GG. 24. Constant, K, (.90 Metric))(56.16 Eng.HH. 25. Decimal Equiv. of % + 4.75 mm (+ #II. 26. Decimal Equiv. of % - 4.75 mm (- #4),JJ. 27. H.M.C.T., Dry = d$                                                                                                                                                                                                                                              | 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14<br>glish)<br>#4), (1 - P) = 12 /<br>, P = 13 / 9<br>/g/m <sup>3</sup> (pcf)                                                | 56.16<br>0.167<br>0.833<br>118.2                                         |                                               |             |                                          |             |                  |
| <b>FF.</b> 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_1) + GG. 24. Constant, K, (.90 Metric) (56.16 Eng. HH. 25. Decimal Equiv. of % + 4.75 mm (+ # II. 26. Decimal Equiv. of % - 4.75 mm (- #4), JJ. 27. H.M.C.T., Dry = d M KK. 28. CALCULATED MAX. DENSITY$                                                                                                                                                                                                         | 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14<br>glish)<br>#4), (1 - P) = 12 /<br>, P = 13 / 9<br>Ig/m <sup>3</sup> (pcf)                                                | 56.16<br>0.167<br>0.833<br>118.2                                         |                                               |             | W12 -                                    |             |                  |
| <b>FF.</b> 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_1) + GG. 24. Constant, K, (.90 Metric) (56.16 Eng. HH. 25. Decimal Equiv. of % + 4.75 mm (+ # II. 26. Decimal Equiv. of % - 4.75 mm (- #4), JJ. 27. H.M.C.T., Dry = d N KK. 28. CALCULATED MAX. DENSITY D = GK (1- P) + Pd (1.03) N$                                                                                                                                                                             | 0.5 ( $M_1 - M_2 - 14$<br>glish)<br>#4), (1 - P) = 12 /<br>#9<br>1g/m <sup>3</sup> (pcf)<br>1g/m <sup>3</sup> (pcf)                                                  | 56.16<br>0.167<br>0.833<br>118.2                                         |                                               |             |                                          |             |                  |
| FF. 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_1) + GG. 24. Constant, K, (.90 Metric) (56.16 EndHH. 25. Decimal Equiv. of % + 4.75 mm (+ #II. 26. Decimal Equiv. of % - 4.75 mm (- #4),JJ. 27. H.M.C.T., Dry = d MKK. 28. CALCULATED MAX. DENSITYD = GK (1- P) + Pd (1.03) MLL. 29. % COMPACTION = (15 / 28)100$                                                                                                                                                       | 0.5 ( $M_1 - M_2 - 14$<br>glish)<br>#4), (1 - P) = 12 /<br>, P = 13 / 9<br>$Mg/m^3$ (pcf)<br>$Mg/m^3$ (pcf)                                                          | 56.16<br>0.167<br>0.833<br>118.2<br>124.3<br>96 %                        |                                               |             |                                          |             |                  |
| FF. 23. If $M_1 - M_2 > 14 \text{ g}$ , $G = A / [(M - M_1) + GG. 24. Constant, K, (.90 Metric))(56.16 EndHH. 25. Decimal Equiv. of % + 4.75 mm (+ #II. 26. Decimal Equiv. of % - 4.75 mm (- #4),JJ. 27. H.M.C.T., Dry = d MKK. 28. CALCULATED MAX. DENSITYD = GK (1- P) + Pd (1.03) MLL. 29. % COMPACTION = (15 / 28)100MM. REMARKS Test on the culver$                                                                                                                | 0.5 ( $M_1 - M_2 - 14$<br>glish)<br>#4), (1 - P) = 12 /<br>, P = 13 / 9<br>1g/m <sup>3</sup> (pcf)<br>1g/m <sup>3</sup> (pcf)<br>rt pipe met spec                    | 56.16<br>0.167<br>0.833<br>118.2<br>124.3<br>96 %<br>cs. Jim Joh         | n (Contracto                                  | or) and Bob | • Black (NDO                             | T R.E.) not | ified of         |
| FF. 23. If $M_1 - M_2 > 14 \text{ g}$ , $G = A / [(M - M_1) + GG. 24. \text{ Constant}$ , K, (.90 Metric) (56.16 End<br>HH. 25. Decimal Equiv. of % + 4.75 mm (+ #<br>II. 26. Decimal Equiv. of % - 4.75 mm (- #4),<br>JJ. 27. H.M.C.T., Dry = d N<br>KK. 28. CALCULATED MAX. DENSITY<br>D = GK (1- P) + Pd (1.03) N<br>LL. 29. % COMPACTION = (15 / 28)100<br>MM. REMARKS Test on the culver<br>results.                                                               | 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14<br>glish)<br>#4), (1 - P) = 12 /<br>, P = 13 / 9<br>1g/m <sup>3</sup> (pcf)<br>1g/m <sup>3</sup> (pcf)<br>rt pipe met spec | 2.44<br>56.16<br>0.167<br>0.833<br>118.2<br>124.3<br>96 %<br>cs. Jim Joh | in (Contracto                                 | or) and Bob | ) Black (NDO                             | T R.E.) not | ified of         |
| FF. 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_1) + GG. 24. Constant, K, (.90 Metric) (56.16 EndHH. 25. Decimal Equiv. of % + 4.75 mm (+ #II. 26. Decimal Equiv. of % - 4.75 mm (- #4),JJ. 27. H.M.C.T., Dry = d NKK. 28. CALCULATED MAX. DENSITYD = GK (1- P) + Pd (1.03) NLL. 29. % COMPACTION = (15 / 28)100MM. REMARKS Test on the culverresults.$                                                                                                                 | 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14<br>glish)<br>#4), (1 - P) = 12 /<br>, P = 13 / 9<br>Mg/m <sup>3</sup> (pcf)<br>Mg/m <sup>3</sup> (pcf)<br>rt pipe met spec | 2.44<br>56.16<br>0.167<br>0.833<br>118.2<br>124.3<br>96 %<br>cs. Jim Joh | n (Contracto                                  | pr) and Bob | Black (NDO                               | T R.E.) not | ified of         |
| FF. 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_1) + GG. 24. Constant, K, (.90 Metric) (56.16 EndHH. 25. Decimal Equiv. of % + 4.75 mm (+ #II. 26. Decimal Equiv. of % - 4.75 mm (- #4),JJ. 27. H.M.C.T., Dry = d MKK. 28. CALCULATED MAX. DENSITYD = GK (1- P) + Pd (1.03) MLL. 29. % COMPACTION = (15 / 28)100MM. REMARKS Test on the culverresults.NN. TESTED BY Tyler James$                                                                                        | 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14<br>glish)<br>#4), (1 - P) = 12 /<br>, P = 13 / 9<br>Mg/m <sup>3</sup> (pcf)<br>Mg/m <sup>3</sup> (pcf)<br>rt pipe met spec | 2.44<br>56.16<br>0.167<br>0.833<br>118.2<br>124.3<br>96 %<br>cs. Jim Joh | in (Contracto                                 | or) and Bob | NH2 –       Black (NDO       Black (NDO  | T R.E.) not | ified of         |
| FF. 23. If $M_1 - M_2 > 14$ g, $G = A / [(M - M_1) + GG. 24. Constant, K, (.90 Metric) (56.16 EndHH. 25. Decimal Equiv. of % + 4.75 mm (+ #II. 26. Decimal Equiv. of % - 4.75 mm (- #4),JJ. 27. H.M.C.T., Dry = d MKK. 28. CALCULATED MAX. DENSITYD = GK (1- P) + Pd (1.03) MLL. 29. % COMPACTION = (15 / 28)100MM. REMARKS Test on the culverresults.NN. TESTED BY Tyler JamesNDOT$                                                                                    | 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14<br>glish)<br>#4), (1 - P) = 12 /<br>, P = 13 / 9<br>1g/m <sup>3</sup> (pcf)<br>1g/m <sup>3</sup> (pcf)<br>rt pipe met spec | 2.44<br>56.16<br>0.167<br>0.833<br>118.2<br>124.3<br>96 %<br>cs. Jim Joh | n (Contracto                                  | or) and Bob | D Black (NDO                             | T R.E.) not | ified of         |
| FF. 23. If $M_1 - M_2 > 14 \text{ g}$ , $G = A / [(M - M_1) +$ GG. 24. Constant, K, (.90 Metric) (56.16 End         HH. 25. Decimal Equiv. of % + 4.75 mm (+ #)         J. 26. Decimal Equiv. of % - 4.75 mm (- #4),         JJ. 27. H.M.C.T., Dry = d         KK. 28. CALCULATED MAX. DENSITY         D = GK (1- P) + Pd (1.03)         NM. REMARKS         Test on the culver         results.         NN. TESTED BY         Tyler James         NDOT         040-004 | 0.5 ( $M_1 - M_2 - 14$<br>glish)<br>#4), (1 - P) = 12 /<br>, P = 13 / 9<br>1g/m <sup>3</sup> (pcf)<br>1g/m <sup>3</sup> (pcf)<br>rt pipe met spec                    | 2.44<br>56.16<br>0.167<br>0.833<br>118.2<br>124.3<br>96 %<br>cs. Jim Joh | n (Contracto<br>RESIDENT<br>District, Resider | br) and Bob | Black (NDO       Enders       Sofr Slack | T R.E.) not | ified of         |

#### **COMPACTION REPORT**

- A Contract number for the material being tested, found in the contract plans or special provisions (EX. 3925)
- **B** Date the sample was taken (EX. 7/12/2010)
- C Test Hole No., actual test number for this particular test. (EX. 60-SB-90) 60 is the number of tests ran on that material, SB represents the material being tested (refer to the Construction Manual for coding) and 90 is the minimum percent compaction required (Standard Specifications or Special Provisions) (Ex. 60-SB-90)
- **D** Station, approximate sample location, found in the Contract Plans or on the jobsite survey stakes (EX. "X" 7 + 22)
- E Distance to Centerline, distance right or left of centerline that the compaction sample was taken (EX. 2.0' Rt.)
- **F** Embankment Depth, depth at which the compaction sample was taken (EX. 2' from fin. grade) (Depth may also be found on the slope stakes or by using the elevation)
- **G** Type of Material as specified, found in the contract plans or special provisions (EX. Granular Backfill)
- H Compaction Equipment, type of equipment used to compact the material (EX. Vibratory Roller)
- Initial Weight of Sand in pounds or kilograms used to fill the test hole and cone (EX. 50.0) NOTE: Minimum of 50 lb needed
- J Weight of residue remaining in the bucket after the test hole and cone are filled (EX. 18.1)
- **K** Line I (Initial Weight of Sand) Line J (Weight of Residue) = Line K (Weight of Sand Used)(EX. 50.0 18.1 = 31.9)
- L Sand density is established per Test Method Nev. T102 during sand calibration, and reported on NDOT form 040-068 NOTE: Sand density number may change each time the sand is calibrated or re-calibrated (EX. 84.6)
- M Line K (Weight of Sand Used) / Line L (Sand Density) = Line M (Vol. Hole + Cone + Plate) (EX. 31.9 / 84.6 = 0.377)

#### **COMPACTION REPORT**

| N - | Volume of the cone and plate is established per Test Method Nev. T102 (EX. 0.199)                                                                                                                                                                                                                        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - | Line M (Vol. Hole + Cone + Plate) - Line N (Vol. of Cone + Plate) = Line O (Vol. of Hole) (EX. 0.377 - 0.199 = 0.178 (minimum volume of hole 0.15)) <b>NOTE:</b> If the test hole is less than 4.2 (Metric) or 0.15 (English), the test is invalid and another test shall be performed immediately       |
| Ρ-  | Wet Weight (left side) - representative split of the entire sample excavated from the test hole Total Wet Weight (right side) - entire sample excavated from the test hole per Test Method Nev. T102 (EX. 2587 g / 23.0 lb)                                                                              |
| Q - | Dry Weight of sample after all moisture has been removed, per Test Method Nev. T112 (EX. 2389)                                                                                                                                                                                                           |
| R - | Weight of Water, Line P (Wet Weight) - Line Q (Dry Weight) = Line R (Weight of Water)<br>(EX. 2587 - 2389 = 198)                                                                                                                                                                                         |
| S - | % Moisture, Line R (Weight of Water) / Line Q (Dry Weight) x 100 = Line S (% Moisture)(EX. (198 / 2389) X 100 = 8.3%)                                                                                                                                                                                    |
| т-  | Dry Weight + 4.75 mm (+ # 4), dry weight of sample (from Line R) after being screened<br>over the No. + 4.75 mm (+ # 4) sieve and being washed per Test Method Nev. T102<br>(EX. 400) <b>NOTE:</b> Line T (Dry Weight + 4.75 mm (+ # 4)) + Line U (Dry Weight - 4.75mm<br>(- # 4)) = Line Q (Dry Weight) |
| U - | Dry Weight - 4.75 mm (- # 4), Dry Weight of sample (from Line R) after being screened over the No 4.75 mm (- # 4) sieve, per Test Method Nev. T102 (EX. 1989) <b>NOTE:</b><br>Line T (Dry Weight + 4.75 mm (No. 4)) + Line U (Dry Weight - 4.75mm (No. 4)) = Line Q (Dry Weight)                         |
| V - | Field Density Wet, Line P (Total Wet Weight) / Line O (Vol. Of hole) = Line V (Field Density Wet) (EX. 23.0 / 0.178 = 129.2)                                                                                                                                                                             |
| W - | Field Density Dry, [Line V (Field Density Wet) / (100 + Line S (% Moisture))] x 100 = Density Wet)Density Dry) (EX. [129.2 / (100 + 8.3)] X 100 = 119.3)                                                                                                                                                 |
| X - | Harvard Miniature Curve Test, curve is based on a fraction of the total weight material, excavated from the test hole passing the No. 4.75 mm (No. 4) sieve, per Test Method Nev. T101 (EX. $#1 = ((134.9 - 118.2) / 118.2)) \times 100 = 14.1\%)$                                                       |

#### **COMPACTION REPORT**

| Υ -  | Total Sample, Approx. Opt. Moisture, [Line HH (Dec. Equiv. of $\%$ + 4.75 mm (+ # 4) x 2] + [Line II (Dec. Equiv. of $\%$ - 4.75 mm (- # 4) x Line X (Test Optimum Moisture)] = Line Y (Total Sample, Approx. Opt. Moist.) EX. ((0.167 x 2) + (.833 x 14.1)) = 12.1%)                      |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z -  | Weight of Aggregate (# 4 to 1.5"), dry weight of No. + 4.75 mm (+ # 4) of the test sample shall be 500 g per Test Method Nev. T104 (EX. 500)                                                                                                                                               |
| AA - | Weight of dry Pycnometer with lid, clean and dry, per Test Method Nev. T104 (EX. 438)                                                                                                                                                                                                      |
| BB - | (Wt. Of Pyc. + Water) - p, per Test Method Nev. T104 (EX. 1455 M = 1017<br>(Line BB (Weight of Pyc. + Water) - Line AA (Pyc.) = M)                                                                                                                                                         |
| CC - | (Wt. Of Pyc., Water, Aggregate - $(p + A)$ ) = M <sub>1</sub> , per Test Method Nev. T104 (EX. 1755 M <sub>1</sub> = 817 [(Line CC (Wt. of Pyc. + Water + Agg.)] - [Line AA (Wt. of Pyc.) + Line Z (Wt. of Agg.)] = M <sub>1</sub> ) <b>NOTE:</b> Make sure Pycnometer is not leaking      |
| DD - | (Wt. Of Water Recovered from Pyc.), per Test Method Nev. T104, (EX. 794 $M_2 = 794$ Weight from Line DD)                                                                                                                                                                                   |
| EE - | If $M_1 - M_2 < 14$ g, G = A / (M - $M_1$ ) then use this formula (EX. 817 - 794 = 23 this exceeds 14 g use formula on Line FF)                                                                                                                                                            |
| FF - | If $M_1 - M_2 > 14$ g then use this formula G = A / [(M - M <sub>1</sub> ) + 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14)]<br>(EX. G = 500 / [(1017 - 817) + 0.5 (817 - 794 - 14)] = 2.44                                                                                                    |
| GG - | Constant, k, (.90 Metric) (56.16 English)<br>( <b>Metric Number</b> is .90, since 90% of the specific gravity of + # 4 material equates to 90% of 1 ft <sup>3</sup> of water) ( <b>English Number</b> 56.16 comes from 62.4 (1lb/ft <sup>3</sup> of water) x .90 = 56.16)                  |
| НН - | Decimal Equiv. of % + 4.75 mm (+ # 4), 1 - P, Line T (Dry Weight of % + 4.75 mm (+ # 4)) / Line Q (Dry Weight) = Line HH (EX. 400 / 2389 = 0.167) <b>NOTE:</b> Line HH (Dec. Equiv. of % + 4.75 mm (+ # 4)) + Line II (Dec. Equiv. of % - 4.75 mm (- # 4)) = 1.0 (this shall always occur) |
| II - | Line U (Dry Weight - 4.75 mm (- # 4)) / Line Q (Dry Weight)= Line JJ<br>(EX. 1989 / 2389 = 0.833) Note: Line HH (Dec. Equiv. of % + 4.75 mm (+ # 4)) +<br>Line II (Dec. Equiv. of % - 4.75 mm (- # 4)) = 1.0 ( <b>this shall always occur</b> )                                            |

### **COMPACTION REPORT**

| JJ -   | H.M.C.T., Dry, Line X (highest dry density per Test Method Nev. T101) becomes Line JJ (EX. 118.2 = 118.2)                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| КК -   | CALCULATED MAX. DENSITY, [Line FF (Appr. Specific Gravity) x Line GG (Constant)] x Line HH (Dec. Equiv. of $\%$ + 4.75 mm (+ # 4) + [Line II (Dec. Equiv. of $\%$ - 4.75 mm (- # 4)) x Line JJ (H.M.C.T., Dry)] x 1.03 (Constant) (EX. (2.44 x 56.16 x 0.167) + (0.833 x 118.2 x 1.03) = 124.3) <b>NOTE:</b> 1.03 comes from the 3% correction from the California Impact Tube Method                                                                                                     |
| LL -   | % Compaction, (Line W (Field Density Dry) / Line KK (Calculated Max. Density) x 100 = Line LL (% Compaction) (Ex. (119.3 / 124.3 x 100 = 96%)                                                                                                                                                                                                                                                                                                                                             |
| MM -   | Remarks, Anything that needs to be documented (EX. Test on the culvert pipe met specs. Jim John (contractor) and Bob Black (NDOT R.E.) notified of results)                                                                                                                                                                                                                                                                                                                               |
| NN -   | Print first and last name of the tester or testers who completed the test (EX. Tyler James)                                                                                                                                                                                                                                                                                                                                                                                               |
| 00 -   | Resident Engineer or Assistant R.E. signature on that specific crew (EX. Bob Black)                                                                                                                                                                                                                                                                                                                                                                                                       |
| NOTES: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.     | If 50 g or more is retained on the No. 4 sieve from the entire bucket of material obtained from the test hole, 500 g shall be obtained to complete this test. If 500 g is not obtained from the entire test hole bucket go back to the test hole and obtain more material until 500 g is obtained for Test Method Nev. T104. If there is less than 50 g retained on the No. 4 sieve enter a zero for the apparent specific gravity value and Test Method Nev. T104 shall not be required. |
| 2.     | Calibrate the volume of the cone and measuring vessel (hat) annually per Test Method Nev. T102.                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.     | Test Method Nev. T101 and T104 shall be run concurrently at every twenty compaction test.                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.     | Circle the appropriate units being used.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

# FIELD SAND EQUIVALENT WORKSHEET

| DATE:           |                 | CONTRACT:       |            |
|-----------------|-----------------|-----------------|------------|
| TESTER:         |                 | MATERIAL TYPE:  |            |
| TEST NO.        |                 | TEST NO         |            |
| CLAY READING    | SE              | CLAY READING    | SE         |
| SAND READING    | 0.2.            | SAND READING    | 0.2.       |
| CLAY READING    |                 | CLAY READING    |            |
| SAND READING    | S.E.            | SAND READING    | S.E.       |
| CLAY READING    |                 | CLAY READING    |            |
| SAND READING    | S.E.            | SAND READING    | S.E.       |
| AVERAGE VALUES: | S.E.            | AVERAGE VALUES: | S.E.       |
| TEST NO         |                 | TEST NO         |            |
| CLAY READING    | <u>е</u> Е      | CLAY READING    | <u>с</u> Е |
| SAND READING    | S.e.            | SAND READING    | 3.E.       |
| CLAY READING    |                 | CLAY READING    |            |
| SAND READING    | S.E.            | SAND READING    | S.E.       |
| CLAY READING    |                 | CLAY READING    |            |
| SAND READING    | S.E.            | SAND READING    | S.E.       |
| AVERAGE VALUES: | S.E.            | AVERAGE VALUES: | S.E.       |
|                 | Resident Engine | eer:            |            |

NDOT 040-006 Rev. 11/07

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

# FIELD SAND EQUIVALENT WORKSHEET

| A. | DATE:    | 07/12/2010        |                      |            | C. CONTRACT:             | 3925          |
|----|----------|-------------------|----------------------|------------|--------------------------|---------------|
| В. | TESTER:  | Joe Tester        |                      |            | <b>D.</b> MATERIAL TYPE: | Concrete Sand |
|    |          |                   |                      |            | Γ                        |               |
| E. | TEST NO. | T-1-113           |                      |            | TEST NO                  |               |
| F. | CLAY RE  | ADING <u>4.6</u>  | H.                   | <u>е</u> г | CLAY READING             |               |
| G. | SAND RE  | ADING 3.8         | <del>- 02.0</del> 03 | _3.E.      | SAND READING             | 3.E.          |
| I. | CLAY RE  | ADING 4.4         | К.                   |            | CLAY READING             |               |
| J. | SAND RE  | ADING <u>3.6</u>  | <del>-81.8</del> 82  | S.E.       | SAND READING             | S.E.          |
| L. | CLAY RE  | ADING <b>4.3</b>  | N.                   |            | CLAY READING             |               |
| м. | SAND RE  | ADING 3.5         | <del>-81.4</del> 82  | S.E.       | SAND READING             | S.E.          |
| 0. |          | AVERAGE VALUES: - | <del>82.3</del> 83   | S.E.       | AVERAGE VALUE            | S:S.E.        |
|    | TEST NO. |                   | _                    |            | TEST NO.                 |               |
|    | CLAY RE  | ADING             | -                    |            | CLAY READING             |               |
|    | SAND RE  | ADING             |                      | S.E.       | SAND READING             | S.E.          |
|    | CLAY RE  | ADING             |                      |            | CLAY READING             |               |
|    | SAND RE  | ADING             | }                    | S.E.       | SAND READING             | S.E.          |
|    |          |                   |                      |            |                          |               |
|    |          |                   |                      | S.E.       |                          | S.E.          |
|    | SAND RE  |                   | J                    |            |                          | ]             |
|    |          | AVERAGE VALUES:   |                      | S.E.       | AVERAGE VALUE            | S:S.E.        |
|    |          |                   | P. Reside            | ent Engir  | neer: Bob Resident       |               |

NDOT 040-006 Rev. 11/07

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

### FIELD SAND EQUIVALENT WORKSHEET

| A - | Date the sample was taken (EX. 07/12/2010)                                                                                                                                                                                              |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Print first and last name of the tester or testers who completed the test (EX. Joe Tester)                                                                                                                                              |
| C - | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                             |
| D - | Material Type as specified, found in the Contract Plans or Special Provisions (EX. Concrete Sand)                                                                                                                                       |
| Ε-  | Test number for this particular test (EX. T-1-113, T = acceptance test; 1 = first acceptance test of the day; $113$ = number of days the material has been tested <b>NOTE:</b> Test number shall correlate to the sieve being performed |
| F - | Clay reading, level of clay suspension at the end of test specimen no. 1, per Test per Test Method Nev. T227 (EX. 4.6)                                                                                                                  |
| G - | Sand reading, level of sand using the weighted foot assembly, for test specimen no. 1 per Test Method Nev. T227 (EX. 13.8 (reading) - 10" (per Test Method Nev. T227) = 3.8 (sand reading)                                              |
| Η-  | S.E., (Line G (sand reading) / Line F (clay reading)) x $100 =$ Line H (S.E.) (EX. (3.8 / 4.6) x $100 =$ 82.6 = 83.0) <b>NOTE:</b> Always round this number up to the next whole number                                                 |
| ŀ   | Clay reading, level of clay suspension at the end of test specimen no. 2, per Test Method Nev. T227 (EX. 4.4)                                                                                                                           |
| J - | Sand reading, level of sand using the weighted foot assembly, for test specimen no. 2 per Test Method Nev. T227 (EX. 13.6 (reading) - 10" (per Test Method Nev. T227) = 3.6 (sand reading)                                              |
| К-  | S.E., (Line J (sand reading) / Line I (clay reading)) x $100 =$ Line K (S.E.) (EX. (3.6 / 4.4) x $100 = 81.8 = 82.0$ ) <b>NOTE:</b> Always round this number up to the next whole number                                                |
| L-  | Clay reading, level of clay suspension at the end of test specimen, per Test Method Nev. T227 (EX. 4.3)                                                                                                                                 |

### FIELD SAND EQUIVALENT WORKSHEET

| M - | Sand reading, level of sand using the weighted foot assembly for test specimen no. 3, per Test Method Nev. T227 (EX. 13.5 (reading) - 10" (per Test Method Nev. T227) = 3.5 (sand reading)                                                                                                                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N - | S.E., (Line M (sand reading) / Line L (clay reading)) x 100 = Line N (S.E.) (EX. $(3.5 / 4.3) \times 100 = 81.4 = 82.0)$ <b>NOTE:</b> Always round this number up to the next whole number                                                                                                                                |
| 0 - | Average value is the average of the three whole S.E. numbers recorded to the tenth.<br>Cross out and record to the whole number. Line H (S.E.)+ Line K (S.E.) + Line N (S.E.)<br>= Line O (Average Values) (EX. $(83 + 82 + 82) / 3 = 82.3 = 83.0$ ) <b>NOTE:</b> Always round<br>this number up to the next whole number |
| Ρ-  | Resident Engineer or the Assistant Resident Engineer signature on that specific crew (EX. Bob Resident)                                                                                                                                                                                                                   |

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

| Standard Counts                                 | Contract No.                        |                            |            |              |   |
|-------------------------------------------------|-------------------------------------|----------------------------|------------|--------------|---|
| Density Moisture                                | Aoisture Date                       |                            |            |              |   |
|                                                 | Nuclear Set No.                     |                            |            |              |   |
|                                                 | Correlation Date                    |                            |            |              |   |
|                                                 |                                     |                            |            |              |   |
| Test Number                                     |                                     |                            |            |              |   |
| Station                                         |                                     |                            |            |              |   |
| Distance to Centerline                          |                                     |                            |            |              |   |
| Embankment Depth                                |                                     |                            |            |              |   |
| Type of Material                                |                                     |                            |            |              |   |
| Compaction Equipment                            |                                     |                            |            |              |   |
|                                                 | WET DEN                             | ISITY                      |            |              |   |
| Probe Depth                                     |                                     |                            |            |              |   |
| Counts                                          | <u> </u>                            |                            |            |              | - |
| Wet Density #1 Ma/m <sup>3</sup> (pcf)          |                                     |                            |            |              |   |
| Wet Density #2 Mg/m <sup>3</sup> (pcf)          |                                     |                            |            |              |   |
| Wet Density #3 Mg/m <sup>3</sup> (pcf)          |                                     |                            |            |              |   |
| Wet Density #3 Mg/m <sup>3</sup> (pcf)          | <u> </u>                            |                            |            |              |   |
| Average Wet Density Mg/m <sup>3</sup> (pcf)     |                                     |                            |            |              |   |
| Average wer Density Mg/III (pci)                |                                     |                            |            |              |   |
| Counto                                          |                                     |                            |            |              | _ |
| Counts                                          | $-+$ $\overline{-}$                 |                            |            |              |   |
| Moisture #1 Mg/m (pci) / M %                    |                                     |                            |            | <del>_</del> |   |
| Moisture #2 Mg/m <sup>2</sup> (pcr) / M %       |                                     |                            |            | <del>_</del> |   |
| Moisture #3 Mg/m <sup>2</sup> (pcr) / M %       |                                     |                            |            | <b> </b>     |   |
| Moisture #4 Mg/m° (pcf) / M %                   |                                     |                            |            |              |   |
| Avg. Moisture Mg/m° (pcf) / Avg. M %            |                                     |                            |            |              |   |
| [                                               | CORRELATIO                          | ON DATA                    |            |              |   |
| Moisture Offset (MCF)                           |                                     |                            |            |              |   |
| Wet Density Offset                              |                                     |                            |            |              |   |
| 0                                               | HARVARD MINIATURE COMP              | PACTION TEST RESULT        | rs         |              |   |
| H.M.C.T., $Dry = d Mg/m^3$ (pcf)                |                                     |                            |            |              |   |
| Total Sample, Approx. Opt. Moisture             |                                     |                            |            |              |   |
| Appar. Spec. Grav. + 4.75 mm (+ No. 4           | )                                   |                            |            |              |   |
| Dec. Equiv. of % + 4.75 mm (+ No. 4)            |                                     |                            |            |              |   |
| Calculated Max. Density Mg/m <sup>3</sup> (pcf) |                                     |                            |            |              |   |
|                                                 | DRY DEN                             | ISITY                      |            |              |   |
| Dry Density #1 Mg/m <sup>3</sup> (pcf)          |                                     |                            |            |              |   |
| Dry Density #2 Mg/m <sup>3</sup> (pcf)          |                                     |                            |            |              |   |
| Dry Density #3 Mg/m <sup>3</sup> (pcf)          |                                     |                            |            |              |   |
| Dry Density #4 Mg/m <sup>3</sup> (pcf)          |                                     |                            |            |              |   |
| Average Dry Density Mg/m <sup>3</sup> (pcf)     |                                     |                            |            |              |   |
| % Compaction Average                            |                                     |                            |            |              |   |
| Accepted or Rejected                            |                                     |                            |            |              |   |
|                                                 |                                     |                            |            |              |   |
|                                                 |                                     |                            |            |              |   |
| Pomarka:                                        |                                     |                            |            |              |   |
|                                                 |                                     |                            |            |              |   |
|                                                 |                                     |                            |            |              |   |
|                                                 |                                     |                            |            |              |   |
| Tested Dut                                      |                                     | Decident Englisher         |            |              |   |
|                                                 |                                     | Resident Engineer:         |            |              |   |
| 51                                              |                                     |                            |            |              |   |
| 1-007                                           |                                     |                            |            |              |   |
| v. 03/09 Distributi                             | ion: Headquarters Construction, Dis | strict, Resident Engineer, | Contractor |              |   |

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

| <b>G</b> - Tes<br><b>H</b> - Sta              | Density<br>2202 | Moisture <b>B. 1070</b>       | D -        | <b>D</b> /       |               |                     |       |   |       |
|-----------------------------------------------|-----------------|-------------------------------|------------|------------------|---------------|---------------------|-------|---|-------|
| <b>A.</b><br><b>G</b> - Tes<br><b>H</b> - Sta | . 2202          | B. 1070                       |            | Date             |               | 7-12-20             | 10    |   |       |
| G - Tes<br>H - Sta                            |                 |                               | E -        | Nuclear S        | Set No.       | 33                  |       |   |       |
| G - Tes<br>H - Sta                            |                 |                               | F -        | Correlatio       | on Date       | 7-1-20 <sup>-</sup> | 10    | _ |       |
| <b>G</b> - Tes<br><b>H</b> - Sta              |                 |                               |            |                  |               |                     |       |   |       |
| H - Sta                                       | est Number      |                               |            | 60-5             | SB-90         |                     |       |   |       |
|                                               | ation           |                               |            | "X" <sup>-</sup> | 7 + 22        |                     |       |   |       |
| l - Dis                                       | stance to Cen   | terline                       |            | 3.0              | ft Lt.        |                     |       |   |       |
| J- Em                                         | nbankment De    | epth                          |            | 2.0 ft belov     | w fin. grade  |                     |       |   |       |
| <b>К -</b> Тур                                | pe of Material  |                               |            | Granula          | r Backfill    |                     |       |   |       |
| L - Co                                        | ompaction Equ   | uipment                       |            | Wa               | cker          |                     |       |   |       |
| —                                             |                 |                               |            |                  | WET DENSIT    | Y                   |       | - |       |
| M - Pro                                       | obe Depth       |                               |            | <u>4</u> i       | in.           |                     |       |   |       |
| N -                                           | Cou             | unts                          |            | 2164 -           | <u> </u>      |                     | _     | - |       |
| <b>O -</b> We                                 | et Density #1   | Mg/m <sup>3</sup> (pcf)       |            | 14               | 1.9           |                     |       |   |       |
| P- We                                         | et Density #2   | Mg/m° (pcf)                   |            | 14               | 1.8           |                     |       |   |       |
| Q-We                                          | et Density #3   | Mg/m° (pcf)                   |            |                  |               |                     |       |   |       |
| R-We                                          | et Density #4   | Mg/m° (pcf)                   | <u>,</u>   |                  |               |                     |       |   |       |
| S- Ave                                        | verage Wet De   | ensity Mg/m° (pcf)            | )          | 14               | 1.9           |                     |       |   |       |
|                                               |                 |                               |            | MOIS             | STURE AND MOI | STURE %             |       |   |       |
|                                               | COL             |                               |            | 231 -            |               | -                   | <br>1 |   | <br>_ |
| U - Mo                                        | Disture #1 Mg/  | $m^{3}$ (pcf) M %             |            | 13.0             | 12.4          |                     |       |   |       |
| V - 110                                       | Disture #2 Mg/  | $m^{3}$ (pcf) ) M %           |            | 13.8             | 13.0          |                     |       |   |       |
| <b>VV -</b> Mo                                | Disture #3 Mg/  | $\frac{11}{m^3}$ (pci) /) M % |            |                  |               |                     |       |   |       |
|                                               | a Moioturo M    | $\frac{11}{\alpha}$           | 1 0/       | 12 7             | 10.7          |                     |       |   |       |
| <b>I -</b> AV(                                | y. Moisture M   | g/III (pci)/)Avg. IV          | 1 70       | 13.7             |               |                     |       |   |       |
| <b>7</b> - Mo                                 | aiatura Offaat  |                               |            | +                | 6 55          |                     |       | Τ |       |
|                                               | ot Donoity Off  |                               |            | +                | 2 2           |                     |       | - |       |
|                                               | et Density Off  | 561                           | Н/         |                  |               |                     |       |   |       |
| BB - HA                                       | MCT Drv =       | d Ma/m <sup>3</sup> (ncf)     |            |                  | 8 2           |                     | 30213 |   |       |
|                                               | ntal Sample A   | norox Opt Moistu              | ro         | 12               | <u></u><br>1  |                     |       |   |       |
|                                               | nar Snec Gr     | pprox. Opt. moistu            | (0, 4)     | 2                | 450           |                     |       |   |       |
|                                               | c Equiv of %    | 5 + 4 75 mm (+ No             | 4)         | 0.167            |               |                     |       | - |       |
| FF - Cal                                      | alculated Max.  | Density Ma/m <sup>3</sup> (6  | . 4)<br>fl | 124.3            |               |                     |       | - |       |
|                                               |                 |                               |            | •                |               | Y                   |       |   |       |
| <b>GG</b> - Drv                               | v Densitv #1    | /la/m <sup>3</sup> (ocf)      |            | 12               | 0.5           | -                   |       |   |       |
| HH - Dry                                      | y Density #2    | Mg/m <sup>3</sup> (pcf)       |            | 12               | 1.2           |                     |       |   |       |
| II - Dry                                      | y Density #3 N  | /lg/m <sup>3</sup> (pcf)      |            |                  |               |                     |       |   |       |
| JJ - Dry                                      | y Density #4 N  | /lg/m <sup>3</sup> (pcf)      |            |                  |               |                     |       |   |       |
| KK - Ave                                      | erage Dry De    | nsity Mg/m <sup>3</sup> (pcf) | )          | 12               | 20.9          |                     |       |   |       |
| LL - %(                                       | Compaction A    | Average                       |            | 97               | ' %           |                     |       |   |       |
| MM - Acc                                      | cepted or Rej   | ected                         |            | Α                |               |                     |       |   |       |

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                                                                                                                 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α-   | Density standard counts (EX. 2202) <b>NOTE:</b> Standard counts on the gauge that are determined at the beginning of each shift                                                                                                                                                                                   |
| В-   | Moisture standard counts (EX. 1070) <b>NOTE:</b> Standard counts on the gauge that are determined at the beginning of each shift                                                                                                                                                                                  |
| C -  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                                                                                                       |
| D -  | Date the sample was taken (EX. 7-12-2010)                                                                                                                                                                                                                                                                         |
| E-   | Nuclear set number that identifies the nuclear density gauge that was used for this test (EX. Set # 33)                                                                                                                                                                                                           |
| F -  | Correlation Date, actual date nuclear density gauge was correlated per Test Method Nev. T103 (EX. 7-01-10)                                                                                                                                                                                                        |
| G -  | Test number for this particular test. (EX. 60-SB-90) 60 is the number of tests ran on this material, SB represents the type of material being tested (Refer to the Construction Manual for coding) and 90 is the minimum percent compaction required (Refer to the Standard Specifications or Special Provisions) |
| н-   | Station, approximate sample location, found in the Contract Plans or on the jobsite survey stakes (EX. "X" 7 + 22)                                                                                                                                                                                                |
| 1-   | Distance to Centerline, distance right or left of centerline that the compaction test was taken (EX. 3.0 ft lt.)                                                                                                                                                                                                  |
| J -  | Embankment Depth, depth at which the compaction test was taken (EX. 2.0 ft below fin. grade) (Depth can also be found on slope stakes or by using the elevation)                                                                                                                                                  |
| К-   | Type of Material as specified, found in the Contract Plans or Special Provisions (EX. Granular Backfill)                                                                                                                                                                                                          |
| L -  | Compaction Equipment, type of equipment used to compact the material (EX. Wacker)                                                                                                                                                                                                                                 |
| М -  | Probe Depth, depth at which the probe was set at to take this test (EX. 4 in.)                                                                                                                                                                                                                                    |

# NUCLEAR COMPACTION REPORTS FOR SOILS AND AGGREGATES

- N Counts, density counts for first and second reading (Press "shift button" and "counts button" after each shot to access the density counts) If there is a difference greater than 6% of the average (between the counts) then two additional tests will need to be taken immediately. The difference between the counts cannot be greater than the average of the counts. Multiplied by 0.06, equals the maximum allowable. (EX. 2164 2205 = 41 2164 + 2205 = 4369 / 2 = 2184.5 = 2185 x .06 = 131.1 = 131 (maximum allowable), Since 41 is less than 131, this test will not need four nuke shots. If it were to exceed the 131 maximum allowable then two additional shots shall be taken. When four shots are needed you do not need to write the counts down for shots three and four.
- **O** Wet Density # 1, reading obtained from the gauge (EX. 141.9)
- P Wet Density # 2, reading obtained from the gauge (EX. 141.8)
- Q Wet Density # 3, reading obtained from the gauge (Only necessary if the wet counts are not within 6% rule per Test Method Nev. T103) (EX. N/A)
- **R** Wet Density # 4, reading obtained from the gauge (Only necessary if the wet counts are not within 6% rule per Test Method T103) (EX. N/A)
- S Average Wet Density, average of all wet density readings from the gauge Line O (Wet Density) + Line P (Wet Density) / 2 = Line S (Average Wet Density) (EX. 141.9 + 141.8) = 283.7 / 2 = 141.85 = 141.9)
- **T** Moisture counts for first and second reading. (Press "shift button" and "counts button" after each shot to access the density counts) If there is a difference greater than 6% of the average (between the counts) then two additional tests will need to be taken immediately. The difference between the counts cannot be greater than the average of the counts. Multiplied by 0.06, equals the maximum allowable. (EX. 231 241 = 10  $231 + 241 = 472 / 2 = 236 \times .06 = 14.16 = 14$  (maximum allowable) Since 10 is less than 14, this test will not need four nuke shots. If it were to exceed the 14 (maximum allowable), then two additional shots shall be taken. When four shots are needed you do not need to write the counts down for shots three and four. (**NOTE:** It will usually be the moisture counts that do not meet the 6% rule)
- U Moisture # 1 with two moisture numbers obtained from the gauge, the first value is the moisture reading the second value is the moisture %. (EX. 13.6 is the moisture reading and 12.4 is the moisture percent)

# NUCLEAR COMPACTION REPORTS FOR SOILS AND AGGREGATES

#### LINE EXPLANATION OF NEEDED INFORMATION

| V -  | Moisture # 2 with two moisture numbers obtained from the gauge. The first value is the moisture reading and the second value is the moisture %. (EX. 13.8 is the moisture reading and 13.0 is the moisture percent) |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W -  | Moisture # 3 with two moisture readings obtained from the gauge (Only necessary if the counts are not within the 6% rule per Test Method Nev. T103) (EX. N/A)                                                       |
| X -  | Moisture # 4 with two moisture readings obtained from the gauge (Only necessary if the counts are not within the 6% rule per Test Method Nev. T103) (EX. N/A)                                                       |
| Y -  | Average Moisture, average of the moisture readings and % moistures. (Line U (Moisture) + Line V (Moisture)) / 2 = Line Y (Avg. Moisture) (EX. $13.6 + 13.8 = 27.4 / 2 = 13.7$<br>12.4 + 13.0 = 25.4 / 2 = 12.7)     |
| Z -  | Moisture Offset, number established from the gauge correlation, completed on NDOT Form 040-026 (EX. + 6.55)                                                                                                         |
| AA - | Wet Density Offset, number established from the gauge correlation, completed on NDOT form 040-026 (EX. + 2.3)                                                                                                       |
| BB - | H.M.C.T., Dry, number established from the gauge correlation, completed on NDOT form 040-026 until a check test is required, then the number will come from NDOT form 040-003. (EX. 118.2)                          |
| CC - | Total Sample, Approx. Opt. Moisture, number established from the gauge correlation, completed on NDOT form 040-026 until a check test is required, then the number will come from NDOT form 040-003. (EX. 12.1)     |
| DD - | Appar. Spec. Grav., Number established from the gauge correlation, completed on NDOT form 040-026 until a check test is required, then the number will come from NDOT form 040-003. (EX. 2.450)                     |
| EE - | Dec. Equiv. Of % + 4.75 mm (+ # 4) Number established from the gauge correlation, completed on NDOT form 040-026 until a check test is required, then the number will come from NDOT form 040-003. (EX. 0.167)      |
| FF - | Calculated Max. Density, number established from the gauge correlation, completed on                                                                                                                                |

- Calculated Max. Density, number established from the gauge correlation, completed on form 040-026 until a check test is required, then the number will come from NDOT form 040-003. (EX. 124.3)

| LINE   | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GG -   | Dry Density # 1 obtained from the gauge. (EX. 120.5)                                                                                                                                                                                                |
| нн -   | Dry Density # 2 obtained from the gauge. (EX. 121.2)                                                                                                                                                                                                |
| II -   | Dry Density # 3 obtained from the gauge if the wet density counts or moisture counts exceed the 6% rule per Test Method Nev. T103. (EX. N/A)                                                                                                        |
| JJ -   | Dry Density # 4 obtained from the gauge if the wet density counts or moisture counts exceed the 6% rule per Test Method Nev. T103. (EX. N/A)                                                                                                        |
| КК -   | Average of Dry Density, Line GG (Dry Density) + Line HH (Dry Density) / 2 = Line KK (Average Dry Density) (EX. 120.5 + 121.2 = 241.7 / 2 = 120.9)                                                                                                   |
| LL -   | % Compaction Average, (Line KK (Average Dry Density) / Line FF (Calculated Max. Density)) x 100 = Line LL (% Compaction Average) EX. (120.9 / 124.3) x 100 = 97% Compaction) NOTE: If compaction result fails, all failures shall be circled in red |
| MM -   | Accepted or Rejected, if material passes compaction spec. write an "A" for accept, If material does not pass spec. write "R" for reject                                                                                                             |
| NN -   | Remarks, anything that needs to be documented (EX. Culvert pipe met specs. 207.03.01, inspector and contractor notified of results)                                                                                                                 |
| 00 -   | Tested by, print first and last name of the tester or testers who completed the test (EX. Tyler James)                                                                                                                                              |
| PP -   | Resident Engineer or Assistant Resident Engineer signature on that specific crew                                                                                                                                                                    |
| NOTES: |                                                                                                                                                                                                                                                     |
| 1.     | Any vertical edge over 6 inches is considered a trench as per the manufacturer. The trench correction factor offset should be used per the gauge operation manual.                                                                                  |
| 2.     | All failures shall be circled in red.                                                                                                                                                                                                               |
| 3.     | If the compaction test fails to meet the minimum percent compaction a re-test shall be completed on the material per Test Method Nev. T103.                                                                                                         |

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

| Daily Standard Counts                                       | Contract No.                  |                                       |     |
|-------------------------------------------------------------|-------------------------------|---------------------------------------|-----|
| Density Moisture                                            | Date                          |                                       |     |
|                                                             | Nuclear Set No.               |                                       |     |
|                                                             | Correlation Date              |                                       |     |
|                                                             |                               |                                       |     |
| Test No. (code)                                             |                               |                                       |     |
| Station                                                     |                               |                                       |     |
| Distance to Centerline                                      |                               |                                       |     |
| Embankment Depth                                            |                               |                                       |     |
| Type of Material                                            |                               |                                       |     |
| Compaction Equipment                                        |                               |                                       |     |
|                                                             | WET DEN                       |                                       |     |
| Probe Depth                                                 |                               |                                       |     |
|                                                             |                               |                                       |     |
| Wet Density #1 Mg/m° (lb/ft°)                               |                               |                                       |     |
| Wet Density #2 Mg/m° (lb/ft°)                               |                               |                                       | _   |
| Wet Density #3 Mg/m° (lb/ft°)                               |                               |                                       |     |
| wet Density #4 Mg/m° (Ib/ft°)                               |                               |                                       |     |
| Average Wet Density Mg/m° (lb/ft°)                          |                               |                                       |     |
| Counto                                                      |                               | MOISTURE %                            |     |
|                                                             |                               | $-+$ $\overline{-}$                   |     |
| $\frac{1}{10000000000000000000000000000000000$              | <u> </u>                      |                                       |     |
| $\frac{1}{10000000000000000000000000000000000$              | <u> </u>                      |                                       |     |
| Moisture #3 Mg/III ( $D/II$ ) / $M$ %                       |                               |                                       |     |
| Ava Moisture Ma/ $m^3$ (lb/ft <sup>3</sup> ) / Ava M %      |                               |                                       |     |
|                                                             |                               |                                       |     |
| Moisture Offset (MCF)                                       |                               |                                       |     |
| Wet Density Offset                                          |                               |                                       |     |
| Met Denety Chieft                                           |                               | PACTION TEST RESULTS                  |     |
| Test No.                                                    |                               |                                       |     |
| Maximum Dry Density = (d) $Mg/m^3$ (lb/ft <sup>3</sup>      | )                             |                                       |     |
| Optimum Moisture %                                          | /                             |                                       |     |
| (if applicable)                                             |                               |                                       |     |
| Corr. Max. Dry Density = (D) Mg/m <sup>3</sup> (lb/f        | t <sup>3</sup> )              |                                       |     |
| Corr. Optimum Moisture %                                    |                               |                                       |     |
|                                                             | DRY DEM                       |                                       |     |
| Dry Density #1 Mg/m <sup>3</sup> (lb/ft <sup>3</sup> )      |                               |                                       |     |
| Dry Density #2 Mg/m <sup>3</sup> (lb/ft <sup>3</sup> )      |                               |                                       |     |
| Dry Density #3 Mg/m <sup>3</sup> (lb/ft <sup>3</sup> )      |                               |                                       |     |
| Dry Density #4 Mg/m <sup>3</sup> (lb/ft <sup>3</sup> )      |                               |                                       |     |
| Average Dry Density Mg/m <sup>3</sup> (lb/ft <sup>3</sup> ) |                               |                                       |     |
| % Compaction Average                                        |                               |                                       |     |
| Accepted or Rejected                                        |                               |                                       |     |
|                                                             |                               |                                       |     |
| Remarks:                                                    |                               |                                       |     |
|                                                             |                               |                                       |     |
|                                                             |                               |                                       |     |
|                                                             |                               |                                       |     |
| Tested By:                                                  |                               | Resident Engineer:                    |     |
|                                                             |                               |                                       |     |
| т                                                           |                               |                                       |     |
| -007                                                        |                               |                                       |     |
| . 07/14 Distributio                                         | n: Headquarters Construction, | District, Resident Engineer, Contract | tor |

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

#### NUCLEAR COMPACTION REPORT FOR SOILS AND AGGREGATES

|         | Daily Stan                            | dard Counts                                                     | C.                                       | Contract   | No.       |         | 3925        |       |   |  |
|---------|---------------------------------------|-----------------------------------------------------------------|------------------------------------------|------------|-----------|---------|-------------|-------|---|--|
|         | Density                               | Moisture                                                        | D.                                       | Date       |           |         | 7/12/2010   |       |   |  |
| Α.      | 2202                                  | B. 1070                                                         | E.                                       | Nuclear S  | Set No.   |         | 33          |       |   |  |
|         |                                       |                                                                 | F.                                       | Correlatio | on Date   |         | 7/1/2010    |       |   |  |
|         |                                       |                                                                 |                                          |            |           |         |             |       |   |  |
| G.      | Test No. (cod                         | le)                                                             |                                          | 6          | 0-SB-90   |         |             |       |   |  |
| Н.      | Station                               |                                                                 |                                          | "2         | X" 7 + 22 | 2       |             |       |   |  |
| I.      | Distance to C                         | enterline                                                       |                                          |            | 3.0 ' Lt  |         |             |       |   |  |
| J.      | Embankment                            | Depth                                                           |                                          | 2.0 ' bel  | ow finis  | h grade |             |       |   |  |
| Κ.      | Type of Mate                          | rial                                                            |                                          | Gran       | ular Bad  | ckfill  |             |       |   |  |
| L.      | Compaction E                          | Equipment                                                       |                                          |            | Wacker    |         | -           |       |   |  |
|         |                                       |                                                                 |                                          |            | WET       |         | Y           |       | 1 |  |
| M.      | Probe Depth                           |                                                                 |                                          |            | 4 in.     |         |             |       |   |  |
| N.      |                                       | Counts                                                          |                                          | 2164       |           | 2205    | -           |       | - |  |
| 0.      | Wet Density a                         | #1 Mg/m (lb/ft <sup>s</sup> )                                   | <u>}</u>                                 |            | 141.9     |         |             |       |   |  |
| Ρ.      | Wet Density a                         | #2 Mg/m°((lb/ft°)                                               | )                                        |            | 141.8     |         |             |       |   |  |
| Q.<br>D | Wet Density a                         | #3 Mg/m <sup>3</sup> (lb/ft <sup>3</sup> )                      |                                          |            |           |         |             |       |   |  |
| к.<br>с | vvet Density                          | #4 Mg/m <sup>2</sup> (ID/ft <sup>2</sup> )                      | 11-14-3                                  |            | 4 4 4 0   |         |             |       |   |  |
| э.      | Average vvet                          | Density Mg/m                                                    |                                          | MO         | 141.9     |         |             |       |   |  |
| т       |                                       | Counto                                                          |                                          | 221        | ISTURE /  | 2/1     | SIURE %     |       |   |  |
|         | Moisturo #1 N                         | La/m <sup>3</sup> (lb/ft <sup>3</sup> )/ M                      | 0/_                                      | 13.6       | <u> </u>  | 12/     |             | <br>  |   |  |
| v.      | Moisture #2 M                         | Mg/m (lb/ft <sup>3</sup> ) / M                                  | /0<br>%                                  | 13.0       |           | 13.0    |             |       | 1 |  |
| w       | Moisture #2 M                         | $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ | %                                        | 10.0       |           | 10.0    |             |       | 1 |  |
| X.      | Moisture #4 M                         | //g/m <sup>3</sup> (lb/ft <sup>3</sup> ) / M                    | %                                        |            |           |         |             |       |   |  |
| Y.      | Ava Moisture                          | $Ma/m^{3}(lb/ft^{3})$                                           | Ava M%                                   | 13.7       |           | 12.7    |             |       |   |  |
| ••      | , trg. molotare                       |                                                                 | , trg. 11 /0                             |            | CORRE     |         | ΑΤΑ         |       |   |  |
| Z.      | Moisture Offs                         | et (MCF)                                                        |                                          |            | + 6.55    |         |             |       |   |  |
| AA.     | Wet Density                           | Offset                                                          |                                          |            | + 2.3     |         |             |       |   |  |
|         | , , , , , , , , , , , , , , , , , , , |                                                                 | MOD                                      | IFIED PRO  | OCTOR C   | OMPACT  | ION TEST RE | SULTS |   |  |
| BB.     | Test No.                              |                                                                 |                                          | 6          | 0-SB-90   | )       |             |       |   |  |
| CC.     | Maximum Dry                           | / Density = (d) N                                               | /lg/m <sup>3</sup> (lb/ft <sup>3</sup> ) |            | 118.2     |         |             |       |   |  |
| DD.     | Optimum Moi                           | isture %                                                        |                                          |            | 12.1      |         |             |       |   |  |
|         | _                                     | (if applicable)                                                 |                                          |            |           |         |             |       |   |  |
| EE.     | Corr. Max. Dr                         | ry Density = (D)                                                | Mg/m <sup>3</sup> (lb/ft <sup>3</sup> )  |            | 124.3     |         |             |       |   |  |
| FF.     | Corr. Optimu                          | m Moisture %                                                    |                                          |            | 10.9      |         |             |       |   |  |
|         | 1                                     |                                                                 |                                          |            | DRY       | DENSIT  | r           |       | • |  |
| GG.     | Dry Density #                         | 1 Mg/m (lb/ft)                                                  |                                          |            | 120.5     |         |             |       |   |  |
| HH.     | Dry Density #                         | 2 Mg/m (lb/ft <sup>3</sup> )                                    |                                          |            | 121.2     |         |             |       |   |  |
| 11.     | Dry Density #                         | <sup>t</sup> 3 Mg/m <sup>3</sup> (lb/ft <sup>3</sup> )          |                                          |            |           |         |             |       |   |  |
| JJ.     | Dry Density #                         | 4 Mg/m <sup>3</sup> (lb/ft <sup>3</sup> )                       |                                          |            | 100 -     |         |             |       |   |  |
| KK.     | Average Dry                           | Density Mg/m <sup>3</sup>                                       | lb/ft³))                                 |            | 120.9     |         |             |       |   |  |
| LL.     | % Compactio                           | n Average                                                       |                                          |            | 97        |         |             |       |   |  |
| MM.     | Accepted or I                         | Rejected                                                        |                                          |            | Α         |         |             |       |   |  |
|         |                                       |                                                                 |                                          |            |           |         |             |       |   |  |

#### NN. Remarks: Inspector and Contractor notified of passing results

OO. Tested By: Leonard Cooper

PP. Resident Engineer: Howard Koothrappali

NDOT 040-007 Rev. 07/14

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

| <u>LINE</u> | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                                                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A -         | Density Standard Counts, (ex. 2202)<br><b>NOTE:</b> Standard gauge counts as determined at the beginning of each shift                                                                                                                                                                                               |
| В-          | Moisture Standard Counts (ex. 1070)<br><b>NOTE:</b> Standard gauge counts as determined at the beginning of each shift                                                                                                                                                                                               |
| C -         | Contract number for the material being tested, found in the Contract Plans or Special Provisions (ex. 3925)                                                                                                                                                                                                          |
| D -         | Date the test was performed (ex. 7/12/2010)                                                                                                                                                                                                                                                                          |
| E-          | Gauge Set number, assigned to the moisture density gauge that is used for testing the material (ex. 33)<br>NOTE: Consultants shall use the serial number found on the back of the gauge                                                                                                                              |
| F -         | Correlation Date, will be the original date that the moisture density gauge correlation was performed on this material (ex. 07/1/2010)                                                                                                                                                                               |
| G -         | Test No. (code), actual test number for this particular test. 60 is the number of tests ran on that material, SB represents the material being tested (refer to the Construction Manual for coding) and 90 is the minimum percent compaction required (Standard Specifications or Special Provisions) (ex. 60-SB-90) |
| н-          | Station, approximate sample location, found in the Contract Plans or on the jobsite survey stakes (ex. "X" 7 + 22)                                                                                                                                                                                                   |
| 1-          | Distance to Centerline, distance right or left of centerline that the compaction test was performed (ex. 3.0' Lt)                                                                                                                                                                                                    |
| J -         | Embankment Depth, depth at which the compaction test was taken (ex. 2.0' below finish grade) (Depth may also be found on the slope stakes or by using the elevation markers)                                                                                                                                         |
| К-          | Type of Material, as specified and found in the Contract Plans or Special Provisions (ex. Granular Backfill)                                                                                                                                                                                                         |
| L -         | Compaction Equipment, type of equipment used to compact the material (ex. Wacker)                                                                                                                                                                                                                                    |

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                                                                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| М -  | Probe Depth, depth at which the gauge probe was set when the test was performed. (ex. 4 in.)                                                                                                                                                                        |
| N -  | Counts, wet density counts for first and second reading (ex. 2164 - 2205)<br><b>NOTE:</b> If the difference between the two counts is greater than 6% of the average, two additional 1 minute tests shall be immediately performed per Test Method Nev. T103        |
| 0 -  | Wet Density #1, reading obtained from the gauge (ex. 141.9)                                                                                                                                                                                                         |
| Ρ-   | Wet Density #2, reading obtained from the gauge (ex. 141.8)                                                                                                                                                                                                         |
| Q -  | Wet Density #3, reading obtained from the gauge<br>(Only necessary if the density counts exceed 6% per Test Method Nev. T103)                                                                                                                                       |
| R -  | Wet Density #4, reading obtained from the gauge<br>(Only necessary if the density counts exceed 6% per Test Method Nev. T103)                                                                                                                                       |
| S -  | Avg. Wet Density, average of all wet density readings from the gauge Line O (Wet Density) + Line P (Wet Density) / 2 = Line S (Average Wet Density) (ex. 141.9 + 141.8 = 283.7 / 2 = 141.85 = 141.9)                                                                |
| т-   | Counts, moisture and moisture % counts for first and second reading (ex. 231 - 241) <b>NOTE:</b> If the difference between the two counts is greater than 6% of the average, two additional 1 minute tests shall be immediately performed per Test Method Nev. T103 |
| U -  | Moisture #1, with two moisture numbers obtained from the gauge, the first value is the moisture reading the second value is the moisture %. (ex. 13.6 is the moisture reading and 12.4 is the moisture percent)                                                     |
| V -  | Moisture #2, with two moisture numbers obtained from the gauge, the first value is the moisture reading the second value is the moisture %. (ex. 13.8 is the moisture reading and 13.0 is the moisture percent)                                                     |
| W -  | Moisture #3, with two moisture readings obtained from the gauge (Only necessary if the moisture counts exceed 6% per Test Method Nev. T103)                                                                                                                         |
| X -  | Moisture #4, with two moisture readings obtained from the gauge (Only necessary if the moisture counts exceed 6% per Test Method Nev. T103)                                                                                                                         |

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                                                                                                                      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Υ-   | Average Moisture, average of the moisture readings and % moistures. (Line U (Moisture) + Line V (Moisture)) / 2 = Line Y (Avg. Moisture) (ex. $13.6 + 13.8 = 27.4 / 2 = 13.7$ and $12.4 + 13.0 = 25.4 / 2 = 12.7$ )                                                                                                    |
| Z -  | Moisture Offset (MCF), number established from the gauge correlation, completed on NDOT form 040-026 (ex. + 6.55)                                                                                                                                                                                                      |
| AA - | Wet Density Offset, number established from the gauge correlation, completed on NDOT form 040-026 (ex. + 2.3)                                                                                                                                                                                                          |
| BB - | Test No., actual test number for this particular test. 60 is the<br>number of tests ran on that material, SB represents the material being tested (refer to<br>the Construction Manual for coding) and 90 is the minimum percent compaction<br>required (Standard Specifications or Special Provisions) (ex. 60-SB-90) |
| CC - | Maximum Dry Density = (d) Mg/m³ (lb/ft³), the highest dry density as established per Test Method Nev. T108 from NDOT form 040-069 (ex. 118.2)                                                                                                                                                                          |
| DD - | Optimum Moisture %, as established per Test Method Nev. T108 from NDOT form 040-069 (ex. 12.1)                                                                                                                                                                                                                         |
| EE - | Corr. Max. Dry Density = (D) Mg/m <sup>3</sup> (lb/ft <sup>3</sup> ), as established per test Method Nev. T108 from NDOT form 040-069 (ex. 124.3)                                                                                                                                                                      |
| FF - | Corr. Optimum Moisture %, as established per Test Method Nev. T108 from NDOT form 040-069 (ex. 10.9)                                                                                                                                                                                                                   |
| GG - | Dry Density #1, reading obtained from the gauge. (ex. 120.5)                                                                                                                                                                                                                                                           |
| нн - | Dry Density #2, reading obtained from the gauge. (ex. 121.2)                                                                                                                                                                                                                                                           |
| II - | Dry Density #3, reading obtained from the gauge.<br>(Only necessary if the density counts exceed 6% per Test Method Nev. T103)                                                                                                                                                                                         |
| JJ - | Dry Density #4, reading obtained from the gauge.<br>(Only necessary if the density counts exceed 6% per Test Method Nev. T103)                                                                                                                                                                                         |

| LINE   | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                                                                                                                                                               |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| КК -   | Average of Dry Density, Line GG (Dry Density) + Line HH (Dry Density) / 2 = Line KK (Average Dry Density) (ex. 120.5 + 121.2 = 241.7 / 2 = 120.9)                                                                                                                                                                                                               |
| LL -   | % Compaction Average, (Line KK (Average Dry Density) / Line EE (Corr. Max. Dry Density)) x 100 = Line LL (% Compaction Average) ex. (120.9 / 124.3) x 100 = 97% Compaction)<br><b>NOTE:</b> If its been determined that per Test Method Nev. T108 a corrected maximum dry density is not applicable, Line KK / Line CC shall be used to determine % compaction. |
| MM -   | Accepted or Rejected, if material passes compaction spec. write an "A" for accept, If material does not pass spec. write "R" for reject                                                                                                                                                                                                                         |
| NN -   | Remarks, anything that needs to be documented (ex. Inspector and Contractor notified of passing results)                                                                                                                                                                                                                                                        |
| 00 -   | Tested by, printed first and last name of the tester or testers who completed the test (ex. Leonard Cooper)                                                                                                                                                                                                                                                     |
| PP -   | Resident Engineer, or Assistant Resident Engineer signature on that specific crew verifying the accuracy of the reported results. (ex. Howard Koothrappali)                                                                                                                                                                                                     |
| NOTES: |                                                                                                                                                                                                                                                                                                                                                                 |
| 1.     | Any vertical edge over 6 inches is considered a trench as per the manufacturer. The trench correction factor offset should be used per the gauge operation manual.                                                                                                                                                                                              |
| 2.     | All failures shall be circled in red.                                                                                                                                                                                                                                                                                                                           |
| 3.     | If the compaction test fails to meet the minimum percent compaction a re-test shall be completed on the material per Test Method Nev. T103.                                                                                                                                                                                                                     |

| Date       |    |           |
|------------|----|-----------|
| Page       | of | <br>Pages |
| Report No. |    |           |

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

| Contract No. |  |
|--------------|--|
| Contractor   |  |

Spec. Reference

Material Covered By Report

#### DAILY REPORT OF TESTS MADE IN THE FIELD

| Roadway Line                                                                                               |                    |                    |           |           |                  |           |           |               |
|------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------|-----------|------------------|-----------|-----------|---------------|
| Station                                                                                                    |                    |                    |           |           |                  |           |           |               |
| Course (Lift)                                                                                              |                    |                    |           |           |                  |           |           |               |
| Source of Sample                                                                                           |                    |                    |           |           |                  |           |           | Specification |
| Acceptance Test No.                                                                                        |                    |                    |           |           |                  |           |           | Limit         |
| Information Test No.                                                                                       |                    |                    |           |           |                  |           |           |               |
| SIEVE SIZES                                                                                                | % Passing          | % Passing          | % Passing | % Passing | % Passing        | % Passing | % Passing |               |
| 75 mm (3")                                                                                                 |                    |                    |           |           |                  |           |           |               |
| 63 mm (2 <sup>1</sup> / <sub>2</sub> ")                                                                    |                    |                    |           |           |                  |           |           |               |
| 50 mm (2")                                                                                                 |                    |                    |           |           |                  |           |           |               |
| 37.5 mm (1 <sup>1</sup> / <sub>2</sub> ")                                                                  |                    |                    |           |           |                  |           |           |               |
| 31.5 mm (1 <sup>1</sup> /4")                                                                               |                    |                    |           |           |                  |           |           |               |
| 25 mm (1")                                                                                                 |                    |                    |           |           |                  |           |           |               |
| 19 mm (³/₄")                                                                                               |                    |                    |           |           |                  |           |           |               |
| 12.5 mm ( <sup>1</sup> / <sub>2</sub> ")                                                                   |                    |                    |           |           |                  |           |           |               |
| 9.5 mm ( <sup>3</sup> / <sub>8</sub> ")                                                                    |                    |                    |           |           |                  |           |           |               |
| 4.75 mm (No. 4)                                                                                            |                    |                    |           |           |                  |           |           |               |
| 2.36 mm (No. 8)                                                                                            |                    |                    |           |           |                  |           |           |               |
| 2.00 mm (No. 10)                                                                                           |                    |                    |           |           |                  |           |           |               |
| 1.18 mm (No. 16)                                                                                           |                    |                    |           |           |                  |           |           |               |
| 600 µm (No. 30)                                                                                            |                    |                    |           |           |                  |           |           |               |
| 425 µm (No. 40)                                                                                            |                    |                    |           |           |                  |           |           |               |
| 150 µm (No. 100)                                                                                           |                    |                    |           |           |                  |           |           |               |
| 75 µm (No. 200)                                                                                            |                    |                    |           |           |                  |           |           |               |
| Liquid Limit                                                                                               |                    |                    |           |           |                  |           |           |               |
| Plasticity Index                                                                                           |                    |                    |           |           |                  |           |           |               |
| % Fractured Face                                                                                           |                    |                    |           |           |                  |           |           |               |
| % Absorption                                                                                               |                    |                    |           |           |                  |           |           |               |
| Please check                                                                                               | k box if sieve res | ults are informati | onal      |           |                  |           |           |               |
| Quantity of Material Represented By Each Test: Remarks:                                                    |                    |                    |           |           |                  |           |           |               |
| Source of Materials:                                                                                       |                    |                    |           |           |                  |           |           |               |
| Sampled By:                                                                                                |                    |                    |           |           |                  |           |           |               |
| Tested By:                                                                                                 |                    |                    |           |           | Resident Enginee | r:        |           |               |
| NDOT<br>040-010<br>Rev. 2/09 Distribution: Headquarters Construction District Resident Engineer Contractor |                    |                    |           |           |                  |           |           |               |

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

A. Date 7/21/2010

| B. Page | 1 | of _ | 3 | Pages |
|---------|---|------|---|-------|
|---------|---|------|---|-------|

#### **C.** Report No. 1

D. Material Covered By Report

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

DAILY REPORT OF TESTS MADE IN THE FIELD

E. Contract No. 3925

F. Contractor Granite Construction Co.

G. Spec. Reference

704.03.03 and 704.02.03

Type I Class B Base

| H. Roadway Line                           | "X"                  |                    |                            |                             |                             |                          |                      |                  |
|-------------------------------------------|----------------------|--------------------|----------------------------|-----------------------------|-----------------------------|--------------------------|----------------------|------------------|
| I. Station                                | 7 + 22               |                    |                            |                             |                             |                          |                      |                  |
| J. Course (Lift)                          | 1 <sup>s⊤</sup> Lift |                    |                            |                             |                             |                          |                      |                  |
| K. Source of Sample                       | Windrow              |                    |                            |                             |                             |                          |                      | X. Specification |
| L. Acceptance Test No.                    | T-1-1                |                    |                            |                             |                             |                          |                      | Limit            |
| M. Information Test No.                   |                      |                    |                            |                             |                             |                          |                      |                  |
| N. SIEVE SIZES                            | % Passing            | % Passing          | % Passing                  | % Passing                   | % Passing                   | % Passing                | % Passing            |                  |
| 75 mm (3")                                |                      |                    |                            |                             |                             |                          |                      |                  |
| 63 mm (2 <sup>1</sup> / <sub>2</sub> ")   |                      |                    |                            |                             |                             |                          |                      |                  |
| 50 mm (2")                                |                      |                    |                            |                             |                             |                          |                      |                  |
| 37.5 mm (1 <sup>1</sup> / <sub>2</sub> ") | 100                  |                    |                            |                             |                             |                          |                      | 100              |
| 31.5 mm (1 <sup>1</sup> /4")              | 99                   |                    |                            |                             |                             |                          |                      | 80 - 100         |
| 25 mm (1")                                |                      |                    |                            |                             |                             |                          |                      |                  |
| 19 mm ( <sup>3</sup> / <sub>4</sub> ")    |                      |                    |                            |                             |                             |                          |                      |                  |
| 12.5 mm ( <sup>1</sup> / <sub>2</sub> ")  |                      |                    |                            |                             |                             |                          |                      |                  |
| 9.5 mm ( <sup>3</sup> / <sub>8</sub> ")   |                      |                    |                            |                             |                             |                          |                      |                  |
| 4.75 mm (No. 4)                           | 46                   |                    |                            |                             |                             |                          |                      | 30 - 65          |
| 2.36 mm (No. 8)                           |                      |                    |                            |                             |                             |                          |                      |                  |
| 2.00 mm (No. 10)                          |                      |                    |                            |                             |                             |                          |                      |                  |
| 1.18 mm (No. 16)                          | 22                   |                    |                            |                             |                             |                          |                      | 15 - 40          |
| 600 µm (No. 30)                           |                      |                    |                            |                             |                             |                          |                      |                  |
| 425 μm (No. 40)                           |                      |                    |                            |                             |                             |                          |                      |                  |
| <u>150 μm (No. 100)</u>                   |                      |                    |                            |                             |                             |                          |                      |                  |
| 75 μm (No. 200)                           | 7                    |                    |                            |                             |                             |                          |                      | 2 - 12           |
| O. Liquid Limit                           | 27                   |                    |                            |                             |                             |                          |                      | 35 MAX           |
| P. Plasticity Index                       | 4                    |                    |                            |                             |                             |                          |                      | 6 MAX            |
| Q. % Fractured Face                       | 90                   |                    |                            |                             |                             |                          |                      | 15% MIN          |
| R. % Absorption                           |                      |                    |                            |                             |                             |                          |                      |                  |
| S. 🗌 Please check bo                      | x if sieve results   | are informati      | onal                       |                             |                             |                          |                      |                  |
| T. Quantity of Material Rep               | presented By Each    | Test:              | 2000 Tons                  |                             | Y. Remarks:                 | Test met specs. Ja       | mes Fred (Granite Co | onstruction Co.) |
| U. Source of Materials:                   | Cin                  | derlite - Goni Pit | :                          |                             | and Jerr                    | y Pine (NDOT R.E.) no    | otified of results.  |                  |
| V. Sampled By:                            | Jane Doe             |                    |                            |                             |                             |                          |                      | _                |
| W. Lested By:                             | Jon Doe              |                    |                            |                             | Z. Resident Engl            | neer: <u>J</u> orry Pine |                      |                  |
| NDOT<br>040-010<br>Rev. 2/09              |                      |                    | Distribution: Headquarters | Construction, District, Res | sident Engineer, Contractor |                          |                      |                  |

#### DAILY REPORT OF TESTS MADE IN THE FIELD

| A-  | Date the sample was taken (EX. 7/21/2010)                                                                                                                                                                                         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Page, total number of all pages turned in together for this material being tested (EX. 1 of 3) Includes NDOT forms 040-010, 040-013 and 040-014                                                                                   |
| C-  | Report No., consecutive numbering starting at 1 and continuing through the last report<br>for this material (EX. 1) Refer to the Construction Manual for the correct numbering<br>procedures for a particular material or deposit |
| D-  | Material Covered by Report, material type as specified, found in the Contract Plans or Special Provisions. (EX. Type I Class B Base)                                                                                              |
| E-  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                       |
| F-  | Prime Contractor awarded the contract (EX. Granite Construction Co.)                                                                                                                                                              |
| G-  | Specification Reference, all of the specifications that apply to the material being tested, refer to the Standard Specifications and Special Provisions (EX. 704.03.03 and 704.02.03)                                             |
| н-  | Roadway Line designation found in the Contract Plans (EX. "X")                                                                                                                                                                    |
| ŀ   | Station, approximate sample location, found in the Contract Plans or on jobsite survey stakes (EX. 7 + 22)                                                                                                                        |
| J-  | Course or Lift of the sample being taken (EX. 1 <sup>st</sup> Lift)                                                                                                                                                               |
| К-  | Source of sample, exact area the sample was taken from (EX. Windrow)                                                                                                                                                              |
| L-  | Acceptance test number for that particular test (EX. T-1-1 T = Acceptance Test, $1 = $ first acceptance test of the day, $1 = $ number of days material has been tested) NOTE: This is not the working day number                 |
| М-  | Informational Test Number, identified the same as acceptance test but with an ( ${\sf I}$ ) for informational. (EX. N/A)                                                                                                          |
| N - | Sieve sizes % passing, number representing the % passing for each appropriate sieve, taken from NDOT form 040-013 and reported to the whole number on this form. (EX. 100, 99, 46, 22, 7)                                         |

#### DAILY REPORT OF TESTS MADE IN THE FIELD

| 0-  | Liquid Limit, number achieved by the completion of Test Method Nev. T210 reported on NDOT form 040-014 and reported to the whole number on this form (EX. 27)                                                                                               |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P-  | Plasticity Index, number achieved by the completion of Test Method Nev. T212 reported on NDOT form 040-014 and reported to the whole number on this form (EX. 4)                                                                                            |
| Q-  | % Fractured Face, number achieved by the completion of Test Method Nev. T230 reported on NDOT form 040-013 and reported to the whole number on this form (EX. 90)                                                                                           |
| R - | % Absorption, number achieved by the completion of Test Method Nev. T111 or T493 and reported on NDOT form 040-023 and reported to nearest 0.1 (EX. N/A)                                                                                                    |
| S - | Check this box if the sieve is an informational test but, the liquid limit, plasticity index, % fractured face, and absorption are acceptance tests, Line L will be used for the acceptance test number <b>NOTE:</b> Used primarily for plantmix aggregates |
| Τ-  | Quantity of material represented by this sample. Refer to the Minimum Required Samples and Tests Project in the Construction Manual (EX. 2000 Tons)                                                                                                         |
| U - | Source of Materials, name of the source where the material was produced (EX. Cinderlite - Goni Pit)                                                                                                                                                         |
| V - | Sampled By, print first and last name of the tester or testers who sampled the material (EX. Jane Doe)                                                                                                                                                      |
| W - | Tested By, print first and last name of the tester or testers who completed the test (EX. Jon Doe)                                                                                                                                                          |
| X - | Specification Limit requirements of the material being tested, found in the Standard Specifications or Special Provisions                                                                                                                                   |
| Υ - | Remarks, anything that needs to be documented (EX. Test met specs. James Fred (Granite Construction Co.) and Jerry Pine (NDOT R.E.) notified of results)                                                                                                    |
| Z - | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Jerry Pine)                                                                                                                                                           |

# DAILY REPORT OF TESTS MADE IN THE FIELD

### LINE EXPLANATION OF NEEDED INFORMATION

# NOTE:

**1.** All failures shall be circled in red.

7/21/2010 A. Date

| B. Page     | 1  | of | 9 | Pages |
|-------------|----|----|---|-------|
| C. Report N | 0. | 1  |   |       |

**D.** Material Covered By Report

Type 2C PBS Aggregates

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

E. Contract No. 3925

F. Contractor Granite Construction Co. G. Spec. Reference

#### DAILY REPORT OF TESTS MADE IN THE FIELD

705.03.01

| H. Roadway Line                           |                    |                   |                            |                             |                            |                         |                         |                  |
|-------------------------------------------|--------------------|-------------------|----------------------------|-----------------------------|----------------------------|-------------------------|-------------------------|------------------|
| I. Station                                |                    |                   |                            |                             |                            |                         |                         |                  |
| J. Course (Lift)                          | 1" Rock            | 3/4" Rock         | Crusher Fines              | Washed Sand                 |                            |                         |                         |                  |
| K. Source of Sample                       | Stockpile          | Stockpile         | Stockpile                  | Stockpile                   |                            |                         |                         | X. Specification |
| L. Acceptance Test No.                    | T-1-1              | T-1-1             | T-1-1                      | T-1-1                       |                            |                         |                         | Limit            |
| M. Information Test No.                   |                    |                   |                            |                             |                            |                         |                         |                  |
| N. SIEVE SIZES                            | % Passing          | % Passing         | % Passing                  | % Passing                   | % Passing                  | % Passing               | % Passing               |                  |
| 75 mm (3")                                |                    |                   |                            |                             |                            |                         |                         |                  |
| 63 mm (2 <sup>1</sup> / <sub>2</sub> ")   |                    |                   |                            |                             |                            |                         |                         |                  |
| 50 mm (2")                                |                    |                   |                            |                             |                            |                         |                         |                  |
| 37.5 mm (1 <sup>1</sup> / <sub>2</sub> ") | 100                |                   |                            |                             |                            |                         |                         |                  |
| 31.5 mm (1 <sup>1</sup> /4")              |                    |                   |                            |                             |                            |                         |                         |                  |
| 25 mm (1")                                | 99                 | 100               | 100                        | 100                         |                            |                         |                         |                  |
| 19 mm ( <sup>3</sup> / <sub>4</sub> ")    | 68                 | 100               | 100                        | 100                         |                            |                         |                         |                  |
| 12.5 mm ( <sup>1</sup> / <sub>2</sub> ")  | 10                 | 82                | 100                        | 100                         |                            |                         |                         |                  |
| 9.5 mm ( <sup>3</sup> / <sub>8</sub> ")   | 3                  | 46                | 100                        | 100                         |                            |                         |                         |                  |
| 4.75 mm (No. 4)                           | 2                  | 4                 | 86                         | 100                         |                            |                         |                         |                  |
| 2.36 mm (No. 8)                           |                    |                   |                            |                             |                            |                         |                         |                  |
| 2.00 mm (No. 10)                          | 2                  | 2                 | 45                         | 98                          |                            |                         |                         |                  |
| 1.18 mm (No. 16)                          | 2                  | 2                 | 33                         | 80                          |                            |                         |                         |                  |
| 600 µm (No. 30)                           |                    |                   |                            |                             |                            |                         |                         |                  |
| 425 µm (No. 40)                           | 2                  | 2                 | 20                         | 39                          |                            |                         |                         |                  |
| 150 µm (No. 100)                          | 1                  | 2                 | 11                         | 9                           |                            |                         |                         |                  |
| 75 µm (No. 200)                           | 1                  | 1                 | 8                          | 3                           |                            |                         |                         |                  |
| O. Liquid Limit                           | 26                 | 25                | 19                         | N/A                         |                            |                         |                         | 35 Max           |
| P. Plasticity Index                       | 7                  | 5                 | 1                          | NP                          |                            |                         |                         | 10 Max           |
| Q. % Fractured Face                       | 100                | 100               | N/A                        | N/A                         |                            |                         |                         | 80% Min          |
| R. % Absorption                           | 0.9                | 1.2               | N/A                        | N/A                         |                            |                         |                         | 4% Max           |
| S. 🗵 Please check bo                      | x if sieve results | are informati     | ional                      | •                           | -                          | •                       | •                       | •                |
| T. Quantity of Material Rep               | resented By Each   | n Test:           | 5000 Tons                  |                             | Y. Remarks:                | Tests for liquid limit  | t, plasticity, % fractu | ired face        |
| U. Source of Materials:                   | Hui                | newill Pit Stockp | oile, Thomas Canyon        |                             |                            | and % absorption m      | net specs. R.E. and     | Contractor       |
| V. Sampled By:                            | Fre                | d Flintstone      |                            |                             |                            | notified of results.    |                         |                  |
| W. Lested By:                             | Wil                | ma Flintstone     |                            |                             | Z. Resident Engi           | neer: <b>Beyco Jamo</b> | ,                       |                  |
| NDOT<br>040-010<br>Rev. 2/09              |                    |                   | Distribution: Headquarters | Construction, District, Res | ident Engineer, Contractor | قوب ہو ہے۔              |                         |                  |

### DAILY REPORT OF TESTS MADE IN THE FIELD

| A-  | Date the sample was taken (EX. 7/21/2010)                                                                                                                                                                                         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Page, total number of all pages turned in together for this material being tested (EX. 1 of 9) includes NDOT forms 040-010, 040-013, 040-014 and 040-023                                                                          |
| C-  | Report No., consecutive numbering starting at 1 and continuing through the last report<br>for this material (EX. 1) Refer to the Construction Manual for the correct numbering<br>procedures for a particular material or deposit |
| D-  | Material Covered By Report, material type as specified, found in the Contract Plans or Special Provisions (EX. Type 2C PBS Aggregates)                                                                                            |
| E-  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                       |
| F-  | Prime Contractor awarded the contract (EX. Granite Construction Co.)                                                                                                                                                              |
| G-  | Specification Reference, all of the specifications that apply to the material being tested, refer to the Standard Specifications and Special Provisions (EX. 705.03.01)                                                           |
| н-  | Roadway Line designation found in the Contract Plans (EX. N/A)                                                                                                                                                                    |
| ŀ   | Station, approximate sample location, found in the contract plans or on jobsite survey stakes (EX. N/A)                                                                                                                           |
| J-  | Course or Lift of the sample being taken (Note: For plantmix aggregates put the material type (EX. 1" Rock, 3/4" Rock, Crusher Fines, Washed Sand)                                                                                |
| К-  | Source of Sample, exact area the sample was taken from (EX. Stockpile)                                                                                                                                                            |
| L-  | Acceptance test number for that particular test (EX. T-1-1 $T =$ Acceptance Test,<br>1 = first acceptance test of the day, 1 = number of days material has been tested)<br><b>NOTE:</b> This is not the working day number        |
| M-  | Informational Test Number, identified the same as acceptance test but with an ( ${\sf I}$ ) for informational. (EX. N/A)                                                                                                          |
| N - | Sieve Sizes % Passing, number representing the % passing for each sieve, taken from NDOT form 040-013 and reported to the whole number (EX. 100, 99, 68, 10, 3, 2, 2, 2, 1, 1)                                                    |

### DAILY REPORT OF TESTS MADE IN THE FIELD

| 0-  | Liquid Limit, number achieved by the completion of Test Method Nev. T210 reported on NDOT form 040-014 and reported to the whole number on this form (EX. 26, 25, 19, N/A)                                                                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ρ-  | Plasticity Index, number achieved by the completion of Test Method Nev. T212 reported on NDOT form 040-014 and reported to the whole number on this form (EX. 7, 5, 1, NP)                                                                                 |
| Q-  | % Fractured Face, number achieved by the completion of Test Method Nev. T230 reported on NDOT form 040-013 and reported to the whole number on this form (EX. 100, 100, N/A, N/A)                                                                          |
| R - | % Absorption, number achieved by the completion of Test Method Nev. T111 and reported on NDOT form 040-023 and reported to nearest 0.1 (EX. 0.9, 1.2, N/A, N/A)                                                                                            |
| S - | Check this box if the sieve is an informational test but the liquid limit, plasticity index, % fractured face, and absorption are acceptance tests, Line L will be used for the acceptance test number <b>NOTE:</b> Used primarily for plantmix aggregates |
| т.  | Quantity of material represented by this sample. Refer to the Minimum Required Samples and Tests - Project in the Construction Manual (EX. 5000 Tons)                                                                                                      |
| U - | Source of Materials, name of the source where the material was produced (EX. Hunewill Pit Stockpile, Thomas Canyon)                                                                                                                                        |
| V - | Sampled By, Print first and last name of the tester or testers who sampled the material (EX. Fred Flintstone)                                                                                                                                              |
| W - | Tested By, print first and last name of the tester or testers who completed the test (EX. W. Flintstone)                                                                                                                                                   |
| X - | Specification Limit requirements of the material being tested, found in the Standard Specifications or Special Provisions                                                                                                                                  |
| Υ-  | Remarks, anything that needs to be documented (EX. Tests for liquid limit, plasticity limit, % fractured face and % absorption met specs. R.E. and contractor notified of results)                                                                         |
| Ζ-  | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Royce James)                                                                                                                                                         |

Page \_\_\_\_\_ of \_\_\_\_\_ Report No. \_\_\_\_ Contract No. \_\_\_\_\_ Contractor \_\_\_\_\_

# STATE OF NEVADA **DEPARTMENT OF TRANSPORTATION** DAILY PLANT REPORT OF ASPHALT MIXTURES

| TESTER'S REPORT            |           |             |            |            |               |               |                    | PLANT INSPECTOR'S REPORT                 |               |         |         |                                                           | STREET INSPECTOR'S REPORT |               |             |           |  |
|----------------------------|-----------|-------------|------------|------------|---------------|---------------|--------------------|------------------------------------------|---------------|---------|---------|-----------------------------------------------------------|---------------------------|---------------|-------------|-----------|--|
| Date Tested by             |           |             |            |            |               |               |                    |                                          | Co            | ntract  | No      |                                                           | Date Contract No          |               |             |           |  |
| SIEVE ANALYSIS SAMPLES     |           |             |            |            |               |               |                    | Inspection by                            |               |         |         |                                                           |                           | Inspection by |             |           |  |
| Specification References   |           |             |            |            |               |               |                    | of hotpla                                | nt            |         |         |                                                           | Type of wea               | ther          |             |           |  |
| Job-mix Formula No.        |           | Ν           | lix Desigr | n No.      |               |               | Sourc              | e of aspł                                | nalt          |         |         |                                                           |                           | (circle all u | units used) |           |  |
| Type of Mix                |           | J           | ob-mix bi  | tumen rat  | io            |               | Туре               | of asphal                                | t             |         |         |                                                           | Atmospheric               | temp. lov     | /high       | °C °F     |  |
| Sample Number              | 1         | 2           | з          | 1          | Job-Mix       | Specification | Sourc              | e of coar                                | se aggregate  |         |         |                                                           | Surface tem               | p. low        | /high       | °C °F     |  |
| Sample Number              | I         | 2           | 5          | 4          | Range         | Limits        | Sourc              | e of fine                                | aggregate     |         |         |                                                           | 1                         | PLANTMI       | K PLACED    |           |  |
| Bitumen Ratio              |           |             |            |            |               | ± 0.4         | Туре               | of minera                                | al filler     |         |         |                                                           | Plantmix pl               | aced          |             | t (tons)  |  |
| % Moisture (belt)          |           |             |            |            |               |               | Job-n              | nix Formu                                | ıla No.       |         |         |                                                           | Roadway                   | Starting      | Ending      | Course    |  |
| % Moisture (mix)           |           |             |            |            |               | 1% Max.       | Mix D              | esign No                                 |               |         |         |                                                           | Line                      | Station       | Station     | Course    |  |
| Pass 25 mm (1")            |           |             |            |            |               |               | Туре               | of Mixtur                                | e             |         |         |                                                           | 1<br>1                    |               |             |           |  |
| Pass 19 mm (3/4")          |           |             |            |            |               |               | Job-n              | nix bitume                               | en ratio      |         |         |                                                           |                           |               |             |           |  |
| Pass 12.5 mm (1/2")        |           |             |            |            |               |               |                    |                                          |               |         |         |                                                           |                           |               |             |           |  |
| Pass 9.5 mm (3/8")         |           |             |            |            |               |               | ]                  | REPO                                     | RT OF ASP     | HALT    | QUANT   | ITIES                                                     |                           |               |             |           |  |
| Pass 4.75 mm (No. 4)       |           |             |            |            |               |               | i<br>J             |                                          | (circle all   | units u | sed)    |                                                           |                           |               |             |           |  |
| Pass 2 mm (No. 10)         |           |             |            |            |               |               | Plant              | nix waste                                | ed            |         |         | t (tons)                                                  |                           |               |             |           |  |
| Pass 1.18 mm (No. 16)      |           |             |            |            |               |               | Expla              | Explanation of mix wasted                |               |         |         |                                                           | Plantmix wa               | sted          |             | t (tons)  |  |
| Pass 425 µm (No. 40)       |           |             |            |            |               |               | <u> </u>           |                                          |               |         |         |                                                           | Explanation               | of mix wasted |             |           |  |
| Pass 75 µm (No. 200)       |           |             |            |            |               |               | Minim              | ium asph                                 | alt temperatu | re      |         | °C °F                                                     |                           |               |             |           |  |
| Sample Number              | 5         | 6           | 7          | 8          | Job-Mix       | Specification | Mix te             | Mix temperature range (Job-mix) to °C °F |               |         |         | <sup>°</sup> F Job-mix minimum temperature <sup>°</sup> C |                           |               | °C °F       |           |  |
| Sample Number              | 5         | 0           | '          | 0          | Range         | Limits        | j F                | REPORT                                   | OF TEMPI      | ERAT    | URE AT  | PLANT                                                     | REPOR                     | T OF TEMPE    | RATURE A    | T PAVER   |  |
| Bitumen Ratio              |           |             |            |            |               | ± 0.4         | 1                  | Asphalt                                  | Complete      |         | Asphalt | Complete                                                  | I                         | Complete      |             | Complete  |  |
| % Moisture (belt)          |           |             |            |            |               |               | Time               | °C °F                                    | mix °C °F     | Time    | °C °F   | mix °C °F                                                 | Time                      | mix °C °F     | Time        | mix °C °F |  |
| % Moisture (mix)           |           |             |            |            |               | 1% Max.       |                    |                                          |               |         |         |                                                           |                           |               |             |           |  |
| Pass 25 mm (1")            |           |             |            |            |               |               |                    |                                          |               |         |         |                                                           |                           |               |             |           |  |
| Pass 19 mm (3/4")          |           |             |            |            |               |               | 1                  |                                          |               |         |         |                                                           | 1                         |               |             |           |  |
| Pass 12.5 mm (1/2")        |           |             |            |            |               |               |                    |                                          |               |         |         |                                                           |                           |               |             |           |  |
| Pass 9.5 mm (3/8")         |           |             |            |            |               |               | 1                  |                                          |               |         |         |                                                           |                           |               |             |           |  |
| Pass 4.75 mm (No. 4)       |           |             |            |            |               |               | 1                  |                                          |               |         |         |                                                           |                           |               |             |           |  |
| Pass 2 mm (No. 10)         |           |             |            |            |               |               | i                  |                                          |               |         |         |                                                           |                           |               |             |           |  |
| Pass 1.18 mm (No. 16)      |           |             |            |            |               |               | 1                  |                                          |               |         |         |                                                           |                           |               |             |           |  |
| Pass 425 µm (No. 40)       |           |             |            |            |               |               | Ī                  |                                          |               |         |         |                                                           |                           |               |             |           |  |
| Pass 75 µm (No. 200)       |           |             |            |            |               |               | :                  |                                          |               |         |         |                                                           | i                         |               |             |           |  |
| Remarks:                   |           |             | 1          | 1          | 1             |               | Rem                | arks:                                    |               |         | 1       |                                                           | Remarks:                  |               |             |           |  |
|                            |           |             |            |            |               |               | I                  |                                          |               |         |         |                                                           | I<br>I                    |               |             |           |  |
| Distribution: Handoustor   | Construe  | tion Distri | ot Pooido  | at Engines | r Contractor  |               | Boo:d              | ont Enci-                                | oor:          |         |         |                                                           |                           |               |             |           |  |
| Distribution. Headquarters | SCONSTRUC | uon, Distři | u, residel | n ⊏nginee  | i, Contractor |               | Resident Engineer: |                                          |               |         |         |                                                           |                           | NDU1 040-011  |             |           |  |
|                            |           |             |            |            |               |               | 1                  | 1                                        |               |         |         |                                                           |                           |               |             | Rev 10/08 |  |

 A.
 Page
 1
 of
 3

 B.
 Report No.
 1
 7
 3925

 C.
 Contract No.
 3925
 3925

D. Contractor Granite Construction Co.

# STATE OF NEVADA **DEPARTMENT OF TRANSPORTATION** DAILY PLANT REPORT OF ASPHALT MIXTURES

| TESTER'S REPORT                                                                   |                   |         |           |         |                  |                      |                           | PLANT INSPECTOR'S REPORT |                |          |           | STREET INSPECTOR'S REPORT |              |              |              |           |
|-----------------------------------------------------------------------------------|-------------------|---------|-----------|---------|------------------|----------------------|---------------------------|--------------------------|----------------|----------|-----------|---------------------------|--------------|--------------|--------------|-----------|
| E. Date 7-12-2010 F. T                                                            | Date Contract No. |         |           |         |                  |                      | Date Contract No.         |                          |                |          |           |                           |              |              |              |           |
|                                                                                   | Inspection by     |         |           |         |                  |                      | Inspection by             |                          |                |          |           |                           |              |              |              |           |
| G. Specification Reference                                                        | Type of ho        | otplant |           |         |                  |                      | Type of weat              | ther                     |                |          |           |                           |              |              |              |           |
| H. Job-mix Formula No.                                                            | 2                 | J       | Mix Desi  | ign No. | BF1              | 0-2                  | Source of                 | asphalt                  |                |          |           |                           |              | (circle all  | units used)  |           |
| I. Type of Mix Type 2 Pl                                                          | BS                | к       | . Job-mix | bitumen | ratio <u>5.3</u> | %                    | Type of as                | phalt                    |                |          |           |                           | Atmos. temp  | o. lo        | whigh _      | °C °F     |
| L Sample Number                                                                   | T_1_1             | 2       | 3         | 4       | Job-Mix          | Specification        | Source of                 | coarse a                 | ggregate       | _        |           |                           | Surface temp | p. lo        | whigh        | °C °F     |
|                                                                                   | 1-1-1             | 2       | 5         | 4       | Y. Range         | Z. Limits            | Source of                 | fine aggr                | egate          |          |           |                           | 1            | PLANTM       | X PLACED     |           |
| M. Bitumen Ratio                                                                  | 5.5               |         |           |         | 4.9 - 5.7        | ± 0.4                | Type of m                 | ineral fille             | r              |          |           |                           | Plantmix pl  | aced         |              | t (tons)  |
| N. % Moisture (belt)                                                              | 4.1               |         |           |         |                  |                      | Job-mix F                 | ormula N                 | 0.             |          |           |                           | ĺ            |              |              |           |
| O. % Moisture (mix)                                                               | 0.18              |         |           |         |                  | 1% Max.              | Mix Desig                 | n No.                    |                |          |           |                           | Roadway      | Starting     | Ending       |           |
| <b>P.</b> Pass 25 mm (1")                                                         | 100               |         |           |         | 100              | 100                  | Type of M                 | ixture                   |                |          |           |                           | Line         | Station      | Station      | Course    |
| Q. Pass 19 mm (3/4")                                                              | 93                |         |           |         | 88 - 95          | 90 - 100             | Job-mix bi                | tumen ra                 | tio            |          |           |                           |              |              |              |           |
| <b>R.</b> Pass 12.5 mm (1/2")                                                     |                   |         |           |         |                  |                      | 1                         |                          |                |          |           |                           |              |              |              |           |
| <b>S.</b> Pass 9.5 mm (3/8")                                                      | 66                |         |           |         | 60 - 74          | 63 - 85              | RE                        | PORT                     | OF ASPHA       | LT Q     | UANTIT    | IES                       |              |              |              |           |
| <b>T.</b> Pass 4.75 mm (No. 4)                                                    | 48                |         |           |         | 43 - 57          | 43 - 60              |                           | (                        | circle all uni | its used | d)        |                           |              |              |              |           |
| <b>U.</b> Pass 2 mm (No. 10)                                                      | 32                |         |           |         | 30 - 38          | 30 - 44              | Plantmix v                | vasted                   |                |          |           | t (tons)                  |              |              |              |           |
| V. Pass 1.18 mm (No. 16)                                                          |                   |         |           |         |                  |                      | Explanation of mix wasted |                          |                |          |           |                           | Plantmix was | sted         |              | t (tons)  |
| <b>W.</b> Pass 425 µm (No. 40)                                                    | 15                |         |           |         | 12 - 20          | 12 - 22              | 1                         |                          |                |          |           | Explanation of mix wasted |              |              |              |           |
| <b>Χ.</b> Pass 75 μm (No. 200)                                                    | 6                 |         |           |         | 4 - 8            | 3 - 8                | Minimum a                 | asphalt te               | mperature      |          |           | °C °F                     |              |              |              |           |
| Sampla Number                                                                     | Б                 | 6       | 7         | 0       | Job-Mix          | Specification        | Mix temp.                 | range (Jo                | ob-mix)        |          | to _      | <u></u> °°                | Job-mix mini | imum tempera | ature        | °C °F     |
| Sample Number                                                                     | 5                 | 0       | '         | 0       | Range            | Limits               | REP                       | ORT OF                   | TEMPER         | ATUR     | RE AT P   | LANT                      | REPOR        | T OF TEMPI   | ERATURE A    | T PAVER   |
| Bitumen Ratio                                                                     |                   |         |           |         |                  | ± 0.4                |                           |                          |                |          |           |                           | 1            |              |              |           |
| % Moisture (belt)                                                                 |                   |         |           |         |                  |                      |                           | Asphalt                  | Complete       |          | Asphalt   | Complete                  |              | Complete     |              | Complete  |
| % Moisture (mix)                                                                  |                   |         |           |         |                  | 1% Max.              | Time                      | °C °F                    | mix °C °F      | Time     | °C °F     | mix °C °F                 | Time         | mix °C °F    | Time         | mix °C °F |
| Pass 25 mm (1")                                                                   |                   |         |           |         |                  |                      | •<br>•<br>•               |                          |                |          |           |                           | <br>         |              |              |           |
| Pass 19 mm (3/4")                                                                 |                   |         |           |         |                  |                      |                           |                          |                |          |           |                           | 1            |              |              |           |
| Pass 12.5 mm (1/2")                                                               |                   |         |           |         |                  |                      |                           |                          |                |          |           |                           |              |              |              |           |
| Pass 9.5 mm (3/8")                                                                |                   |         |           |         |                  |                      | 1                         |                          |                |          |           |                           | 1            |              |              |           |
| Pass 4.75 mm (No. 4)                                                              |                   |         |           |         |                  |                      | 1                         |                          |                |          |           |                           | 1            |              |              |           |
| Pass 2 mm (No. 10)                                                                |                   |         |           |         |                  |                      |                           |                          |                |          |           |                           |              |              |              |           |
| Pass 1.18 mm (No. 16)                                                             |                   |         |           |         |                  |                      |                           |                          |                |          |           |                           | Ī            |              |              |           |
| Pass 425 µm (No. 40)                                                              |                   |         |           |         |                  |                      | i<br>I                    |                          |                |          |           |                           | 1            |              |              |           |
| Pass 75 µm (No. 200)                                                              |                   |         |           |         |                  |                      | •<br>•                    |                          |                |          |           |                           | +<br> <br>   |              |              |           |
| AA. Remarks: Tests meet specs, inspector and contractor notified.                 |                   |         |           |         | d                | Remarks<br>BB. Resid | :<br>ent Engir            | eer:                     | R. I.          | ĥn       |           | Remarks:                  |              |              | NDOT 040-011 |           |
| Distribution, Fredequation Construction, District, Resident Engineer, Constructor |                   |         |           |         |                  |                      | 2 Re                      |                          |                |          | Rev 10/08 |                           |              |              |              |           |

#### 040-011 Rev. 10/08

# DAILY PLANT REPORT OF ASPHALT MIXTURES

| Α-  | Page, total number of pages turned in together for this material being tested (EX. Page 1 of 3) NDOT forms 040-011, 040-013 and 040-050                                                                                                                                   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Report No., consecutive numbering starting with 1 and continuing on for every day plantmix is produced and placed on the jobsite (EX. 1) NOTE: Number sequence will start over with a new source and with a different material, such as PBS Type III, 3/8" Opengrade etc. |
| C - | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                                                               |
| D - | Contractor awarded the contract (EX. Granite Construction Co.)                                                                                                                                                                                                            |
| E - | Date the sample was taken (EX. 7-12-2010)                                                                                                                                                                                                                                 |
| F - | Tested by, Print name of the tester or testers who completed the tests (EX. Stew Simon)                                                                                                                                                                                   |
| G - | Specification References, all of the specifications that apply to the material being tested, refer to the Standard Specifications and Special Provisions etc. (EX. 705.03.01, 401.03.09, 401.02.02)                                                                       |
| Н-  | Job-Mix Formula No., number of the most current job-mix formula, written by the Resident Engineer (EX. 2)                                                                                                                                                                 |
| 1-  | Type of mix, material being tested (EX. Type 2 PBS)                                                                                                                                                                                                                       |
| J - | Mix Design Number assigned by Materials Division for this specific material (EX. BF10-2)                                                                                                                                                                                  |
| К-  | Job-Mix bitumen ratio, found on the current job-mix formula (EX. 5.3%)                                                                                                                                                                                                    |
| L - | Sample Number, actual test number for this particular test (EX. T-1-1 T = test, 1 = first acceptance test, 1 = first acceptance test of the day, 1 = number of days the material has been tested) NOTE: This is not the working day number                                |
| M - | Bitumen Ratio from the results of the ignition furnace (from the printed ticket), per Test Method Nev. T761 (EX. 5.5), reported to the nearest 0.1.                                                                                                                       |

#### 040-011 Rev. 10/08

# DAILY PLANT REPORT OF ASPHALT MIXTURES

| N - | % Moisture (belt), taken from the cold feed sample, from the belt at the hotplant, during plantmix production. Reported on NDOT form 040-011 and 040-013 (EX. 4.1)                                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - | % Moisture (mix), from the complete mix, taken from behind the paver, per Test Method Nev. T306 (EX. 0.18)                                                                                                   |
| Ρ-  | Percent passing the 1" sieve to the nearest whole number from NDOT form 040-050 (EX. 100)                                                                                                                    |
| Q - | Percent passing the 3/4" sieve to the nearest whole number from NDOT form 040-050 (EX. 93)                                                                                                                   |
| R - | Percent passing the $1/2$ " sieve to the nearest whole number from NDOT form 040-050 (EX. N/A)                                                                                                               |
| S - | Percent passing the 3/8" sieve to the nearest whole number from NDOT form 040-050 (EX. 66)                                                                                                                   |
| т-  | Percent passing the No. 4 sieve to the nearest whole number from NDOT form 040-050 (EX. 48)                                                                                                                  |
| U - | Percent passing the No. 10 sieve to the nearest whole number from NDOT form 040-050 (EX. 32)                                                                                                                 |
| V - | Percent passing the No. 16 sieve to the nearest whole number from NDOT form 040-050 (EX. N/A)                                                                                                                |
| W - | Percent passing the No. 40 sieve to the nearest whole number from NDOT form 040-050 (EX. 15)                                                                                                                 |
| X - | Percent passing the No. 200 sieve to the nearest whole number from NDOT form 040-050 (EX. 6)                                                                                                                 |
| Υ-  | Job-Mix Range, allowable tolerances for the bitumen ratio and individual sieves, found<br>on the Job-mix formula (EX. 4.9 - 5.7 job-mix range for the Bitumen Ratio and the<br>job-mix range for the sieves) |
| Z - | Specification Limits, allowable tolerances for the bitumen ratio, percent moisture of the complete mix and the sieve analysis, found in the Standard Specifications or the Special Provisions                |

#### 040-011 Rev. 10/08

# DAILY PLANT REPORT OF ASPHALT MIXTURES

| AA -   | Remarks, anything that needs to be documented that pertains to the testing of this sample (EX. Tests meet specs, inspector and contractor notified.) |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| BB -   | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. R. John)                                                       |
| NOTES: |                                                                                                                                                      |
| 1.     | Circle all applicable units                                                                                                                          |
| 2.     | Line L - There are no re-tests for plantmix, a failure is a failure                                                                                  |
| 3.     | Line AA - Write down what transpires with a failing test (EX. left in place, contractor removed etc.) have the Resident Engineer initial the remark. |

CONTRACT NO.\_\_\_\_\_

# STATE OF NEVADA DEPARTMENT OF TRANSPORTATION **FIELD MATERIAL SIEVE SHEET**

MATERIAL \_\_\_\_\_

| Test No.         |             |              |            | Test No.           |                      |             |              |            | Test No.           |                      |              |            |                    |           |            |           |
|------------------|-------------|--------------|------------|--------------------|----------------------|-------------|--------------|------------|--------------------|----------------------|--------------|------------|--------------------|-----------|------------|-----------|
| Size or Type     |             | Mix %        | 6          | Size or Type Mix % |                      |             |              |            | Size or Type Mix % |                      |              |            |                    |           |            |           |
| Sampled by       |             |              | Sampled by |                    |                      |             |              | Sampled by |                    |                      |              |            |                    |           |            |           |
| Tested by        |             | Tested by    |            |                    |                      |             | Tested by    |            |                    |                      |              |            |                    |           |            |           |
| Source           |             | Source       |            |                    |                      |             | Source       |            |                    |                      |              | Checked By |                    |           |            |           |
| Weights-Moisture | Weight      | Weights-Wash |            | -Frac. Face        | Weights-Moisture     | Weight      | Weights-Wash |            | -Frac. Face        | Weights-Moisture     | Weights-Wash |            | Weights-Frac. Face |           | Oneokea By |           |
|                  |             |              |            |                    |                      |             |              |            |                    |                      |              |            |                    |           |            |           |
|                  |             |              |            |                    |                      |             |              |            |                    |                      |              |            |                    |           |            |           |
|                  |             |              |            |                    |                      |             |              |            |                    |                      |              |            |                    |           |            |           |
| Moisture         | % Frac. Fac |              | ce %       |                    | Moisture             | % Frac. Fac |              | ;e %       |                    | Moisture             | % Frac. Fa   |            | ce %               |           |            |           |
| LL               |             | PI           |            |                    | LL                   | PI          |              | •          | LL                 |                      | PI           |            |                    |           |            |           |
| Sieve            | Weight      | %            | %          | Specs. Or          | Sieve                | Weight      | %            | %          | Specs. Or          | Sieve                | Weight       | %          | %                  | Specs. Or | Sum of     | Specs. Or |
| Sizes            | Ret.        | Ret.         | Pass       | % Pass             | Sizes                | Ret.        | Ret.         | Pass       | % Pass             | Sizes                | Ret.         | Ret.       | Pass               | % Pass    | %'s used   | % Pass    |
| 75 mm (3")       |             |              |            |                    | 75 mm (3")           |             |              |            |                    | 75 mm (3")           |              |            |                    |           |            |           |
| 63 mm (2½")      |             |              |            |                    | 63 mm (2½")          |             |              |            |                    | 63 mm (2½")          |              |            |                    |           |            |           |
| 50 mm (2")       |             |              |            |                    | 50 mm (2")           |             |              |            |                    | 50 mm (2")           |              |            |                    |           |            |           |
| 37.5 mm (1½")    |             |              |            |                    | 37.5 mm (1½")        |             |              |            |                    | 37.5 mm (1½")        |              |            |                    |           |            |           |
| 31.5 mm (1¼")    |             |              |            |                    | 31.5 mm (1¼")        |             |              |            |                    | 31.5 mm (1¼")        |              |            |                    |           |            |           |
| 25 mm (1")       |             |              |            |                    | 25 mm (1")           |             |              |            |                    | 25 mm (1")           |              |            |                    |           |            |           |
| 19 mm (¾")       |             |              |            |                    | 19 mm (¾")           |             |              |            |                    | 19 mm (¾")           |              |            |                    |           |            |           |
| 12.5 mm (½")     |             |              |            |                    | 12.5 mm (½")         |             |              |            |                    | 12.5 mm (½")         |              |            |                    |           |            |           |
| 9.5 mm (℁")      |             |              |            |                    | 9.5 mm ( <b>¾</b> ") |             |              |            |                    | 9.5 mm ( <b>¾</b> ") |              |            |                    |           |            |           |
| 4.75 mm (No. 4)  |             |              |            |                    | 4.75 mm (No. 4)      |             |              |            |                    | 4.75 mm (No. 4)      |              |            |                    |           |            |           |
| 2.36 mm (No. 8)  |             |              |            |                    | 2.36 mm (No. 8)      |             |              |            |                    | 2.36 mm (No. 8)      |              |            |                    |           |            |           |
| 2.00 mm (No. 10) |             |              |            |                    | 2.00 mm (No. 10)     |             |              |            |                    | 2.00 mm (No. 10)     |              |            |                    |           |            |           |
| 1.18 mm (No. 16) |             |              |            |                    | 1.18 mm (No. 16)     |             |              |            |                    | 1.18 mm (No. 16)     |              |            |                    |           |            |           |
| 600 µm (No. 30)  |             |              |            |                    | 600 µm (No. 30)      |             |              |            |                    | 600 µm (No. 30)      |              |            |                    |           |            |           |
| 425 µm (No. 40)  |             |              |            |                    | 425 µm (No. 40)      |             |              |            |                    | 425 µm (No. 40)      |              |            |                    |           |            |           |
| 300 µm (No. 50)  |             |              |            |                    | 300 µm (No. 50)      |             |              |            |                    | 300 µm (No. 50)      |              |            |                    |           |            |           |
| 150 µm (No.100)  |             |              |            |                    | 150 µm (No.100)      |             |              |            |                    | 150 µm (No.100)      |              |            |                    |           |            |           |
| 75 µm (No. 200)  |             |              |            |                    | 75 µm (No. 200)      |             |              |            |                    | 75 µm (No. 200)      |              |            |                    |           |            |           |
| Pan              |             |              |            |                    | Pan                  |             |              |            |                    | Pan                  |              |            |                    |           |            |           |
| Wash             |             |              |            |                    | Wash                 |             |              |            |                    | Wash                 |              |            |                    |           |            |           |

Remarks:

NDOT 040-013

Distribution: Headquarters Construction, District, Resident Engineer, Contractor
## STATE OF NEVADA DEPARTMENT OF TRANSPORTATION **FIELD MATERIAL SIEVE SHEET**

Z. CONTRACT NO <u>3925</u> AA. MATERIAL <u>Type I Class B Base Agg.</u> BB. DATE 7/21/2010

| A. Test No. T.       | -1-1              |                           |                |             | Test No.             | No.    |           |         |             |                      | Test No. |           |            |             |               |           |
|----------------------|-------------------|---------------------------|----------------|-------------|----------------------|--------|-----------|---------|-------------|----------------------|----------|-----------|------------|-------------|---------------|-----------|
| B. Size or Type      | Type IE           | 3                         | C. Mix         | <b>«</b> %  | Size or Type         |        |           | Mix %   | /<br>0      | Size or Type Mix %   |          |           |            |             |               |           |
| D. Sampled by        | Jane D            | oe                        |                |             | Sampled by           |        |           |         | Sampled by  |                      |          |           |            |             |               |           |
| E. Tested by         | Jon Do            | е                         |                |             | Tested by            |        |           |         |             | Tested by            |          |           |            |             |               |           |
| F. Source P          | rocesse           | ed Winc                   | lrow           |             | Source               |        |           |         |             | Source               |          |           |            |             |               | ockod By  |
| Weights-Moisture     | Weight            | s-Wash                    | Weights        | -Frac. Face | Weights-Moisture     | Weight | s-Wash    | Weights | -Frac. Face | Weights-Moisture     | Weight   | s-Wash    | Weights    | -Frac. Face | <b>CC.</b> Ch | eckeu by  |
| G. 2661              | к. 2 <sup>.</sup> | 411                       | N. '           | 1303        |                      |        |           |         |             |                      |          |           |            |             | ě             | รวษ       |
| н. 2411              | L. 2              | 251                       | o. '           | 1172        |                      |        |           |         |             |                      |          |           |            |             |               |           |
| ı. <b>250</b>        | м. 1              | 60                        | Ρ.             | 131         |                      |        |           |         |             |                      |          |           |            |             |               |           |
| J. Moisture 10.4     | %                 | <b>Q.</b> Frac. F         | -ace <b>89</b> | <b>.9</b> % | Moisture             | %      | Frac. Fac | e       | %           | Moisture             | %        | Frac. Fac | ac. Face % |             |               |           |
| R. LL 26             | 6.7               | <b>S.</b> PI              | 4              | .4          | LL                   |        | PI        |         |             | LL                   |          | PI        |            |             |               |           |
| Sieve                | Weight            | %                         | %              | Specs. Or   | Sieve                | Weight | %         | %       | Specs. Or   | Sieve                | Weight   | %         | %          | Specs. Or   | Sum of        | Specs. Or |
| T. Sizes             | U. Ret.           | V. Ret.                   | W. Pass        | X. % Pass   | Sizes                | Ret.   | Ret.      | Pass    | % Pass      | Sizes                | Ret.     | Ret.      | Pass       | % Pass      | %'s used      | % Pass    |
| 75 mm (3")           |                   |                           |                |             | 75 mm (3")           |        |           |         |             | 75 mm (3")           |          |           |            |             |               |           |
| 63 mm (2½")          |                   |                           |                |             | 63 mm (2½")          |        |           |         |             | 63 mm (2½")          |          |           |            |             |               |           |
| 50 mm (2")           |                   |                           |                |             | 50 mm (2")           |        |           |         |             | 50 mm (2")           |          |           |            |             |               |           |
| 37.5 mm (1½")        | 0                 | 0.0%                      | 100.0%         | 100         | 37.5 mm (1½")        |        |           |         |             | 37.5 mm (1½")        |          |           |            |             |               |           |
| 31.5 mm (1¼")        | 0                 | 0.0%                      | 100.0%         |             | 31.5 mm (1¼")        |        |           |         |             | 31.5 mm (1¼")        |          |           |            |             |               |           |
| 25 mm (1")           | 34                | 1.4%                      | 98.6%          | 80 - 100    | 25 mm (1")           |        |           |         |             | 25 mm (1")           |          |           |            |             |               |           |
| 19 mm (¾")           | 103               | 4.3%                      | 94.3%          |             | 19 mm (¾")           |        |           |         |             | 19 mm (¾")           |          |           |            |             |               |           |
| 12.5 mm (½")         | 415               | 17.2%                     | 77.1%          |             | 12.5 mm (½")         |        |           |         |             | 12.5 mm (½")         |          |           |            |             |               |           |
| 9.5 mm ( <b>¾</b> ") | 225               | 9.3%                      | 67.8%          |             | 9.5 mm ( <b>¾</b> ") |        |           |         |             | 9.5 mm ( <b>¾</b> ") |          |           |            |             |               |           |
| 4.75 mm (No. 4)      | 526               | 21.9<br><del>-21.8%</del> | 46.0%          | 30 - 65     | 4.75 mm (No. 4)      |        |           |         |             | 4.75 mm (No. 4)      |          |           |            |             |               |           |
| 2.36 mm (No. 8)      | 358               | 14.8%                     | 31.1%          |             | 2.36 mm (No. 8)      |        |           |         |             | 2.36 mm (No. 8)      |          |           |            |             |               |           |
| 2.00 mm (No. 10)     |                   |                           |                |             | 2.00 mm (No. 10)     |        |           |         |             | 2.00 mm (No. 10)     |          |           |            |             |               |           |
| 1.18 mm (No. 16)     | 222               | 9.2%                      | 21.9%          | 15 - 40     | 1.18 mm (No. 16)     |        |           |         |             | 1.18 mm (No. 16)     |          |           |            |             |               |           |
| 600 µm (No. 30)      | 126               | 5.2%                      | 16.7%          |             | 600 µm (No. 30)      |        |           |         |             | 600 µm (No. 30)      |          |           |            |             |               |           |
| 425 µm (No. 40)      |                   |                           |                |             | 425 µm (No. 40)      |        |           |         |             | 425 µm (No. 40)      |          |           |            |             |               |           |
| 300 µm (No. 50)      | 96                | 4.0%                      | 12.7%          |             | 300 µm (No. 50)      |        |           |         |             | 300 µm (No. 50)      |          |           |            |             |               |           |
| 150 µm (No.100)      | 81                | 3.4%                      | 9.3%           |             | 150 µm (No.100)      |        |           |         |             | 150 µm (No.100)      |          |           |            |             |               |           |
| 75 µm (No. 200)      | 56                | 2.3%                      | 7.0%           | 2 - 12      | 75 µm (No. 200)      |        |           |         |             | 75 µm (No. 200)      |          |           |            |             |               |           |
| Pan                  | 9                 | 0.4%                      | 6.6%           |             | Pan                  |        |           |         |             | Pan                  |          |           |            |             |               |           |
| Wash                 | 160               | 6.6%                      |                |             | Wash                 |        |           |         |             | Wash                 |          |           |            |             |               |           |

Y. Remarks: Test met specs. RE and Contractor notified of results.

NDOT 040-013

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

## FIELD MATERIAL SIEVE SHEET

## LINE EXPLANATION OF NEEDED MATERIAL

| Α-  | Test number for this particular test. (EX. T-1-1 T = Acceptance Test,<br>1 = first acceptance test of the day, 1 = number of days the material has been tested)<br>NOTE: If informational, test would be I-1-1 I = Informational Test, 1 = first informational<br>test of the day, 1 = number of days the material has been tested |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Size or Type of material being tested (EX. Type 1B)                                                                                                                                                                                                                                                                                |
| C - | Mix %, percentage of material used for plantmix aggregate or concrete aggregates (EX. N/A)                                                                                                                                                                                                                                         |
| D - | Print first and last name of the tester or testers who sampled the material (EX. Jane Doe)                                                                                                                                                                                                                                         |
| E-  | Print first and last name of the tester or testers who completed the test (EX. Jon Doe)                                                                                                                                                                                                                                            |
| F-  | Source, name of the location where the sample was taken (EX. Processed Windrow)                                                                                                                                                                                                                                                    |
| G - | Weights - Moisture, wet weight of the material after the sample has been split, per Test Method Nev. T203, weighed to the nearest whole number in grams (EX. 2661)                                                                                                                                                                 |
| Η-  | Total dry weight of the material after drying per Test Method Nev. T112, weighed to nearest whole number (EX. 2411)                                                                                                                                                                                                                |
| 1-  | Line G (wet weight) - Line H (dry weight) = Line I ((EX. 2661 - 2411 = 250)                                                                                                                                                                                                                                                        |
| J - | Moisture, Line G (wet weight) - Line H (dry weight) / Line H (dry weight) x 100 = Line J (moisture %) (EX. (2661 - 2411) / 2411 x 100 = 10.4)                                                                                                                                                                                      |
| К-  | Weights - Wash, total dry weight of the material after drying per Test Method Nev. T112 (weighed to the nearest whole number) (EX. 2411) NOTE: This number will be the same as Line H                                                                                                                                              |
| L-  | Dry weight of the material after it has been washed, per Test Method Nev. T206 (weighed to the nearest whole number) (EX. 2251)                                                                                                                                                                                                    |
| M - | Line K (dry weight) - Line L (washed dry weight) = Line M (minus No. 200 wash weight)<br>(EX. 2411 - 2251 = 160 washed through the No. 200 sieve) NOTE: The total dry weight<br>in the pan after shaking should not exceed 1% of the total dry weight or the test is<br>invalid                                                    |

## FIELD MATERIAL SIEVE SHEET

## LINE EXPLANATION OF NEEDED MATERIAL

| N - | Weights - Frac. Face, weight of the material retained on the No. 4 sieve and larger screens, per Test Method Nev. T230, weighed to the nearest whole number (EX. 1303)                                                                                                                                                                                                                                                                                                                                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - | Weight of the fractured aggregate per Test Method Nev. T230 (EX. 1172)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ρ-  | Line N (total weight of all No. + 4 and up material) - Line O (weight of fractured material) = Line P (weight of unfractured material) (EX. 1303 - 1172 = 131)                                                                                                                                                                                                                                                                                                                                                                      |
| Q - | Frac. Face %, Line O (weight of the fractured aggregate) / Line N (total weight of all No. + 4 material and up) x 100 = Line Q (percent fractured face) (EX. 1172 / 1303 x 100 = 89.9%) Refer to the Special Provisions or Standard Specifications to see if the fractured face is required                                                                                                                                                                                                                                         |
| R - | Liquid Limit result that was reported on NDOT form 040-014, per Test Method Nev. T210 (EX. 26.7)                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S - | Plasticity Index result that was reported on NDOT form 040-014, per Test Method Nev. T212 (EX. 4.4)                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| т-  | Sieves that are on the stack. Refer to the Special Provisions and Standard Specifications for the required specifications of the material being tested                                                                                                                                                                                                                                                                                                                                                                              |
| U - | Weight Ret., weight retained on each sieve in the stack weighed to the nearest whole number <b>NOTE:</b> All of column U (Weight Ret.) shall add up to Line K (dry weight), if it does not, adjust the highest weight retained in column U (Weight Ret.) so it equals Line K (dry weight)                                                                                                                                                                                                                                           |
| V - | % Ret., Line U (Weight Retained) / Line K (total dry weight) x 100 = Line V (% Ret.) (EX. Line U (No. 200 sieve is 56) / Line K (2411) x 100 = Line V (2.3%) NOTE: All of Column V shall add up to 100%, if it does not, adjust the highest percent retained to equal 100%, if its more than 0.3 this test is considered invalid and a new sieve shall be ran (EX. Line V (% Ret.) for the No. 4 Sieve was 21.8% and the total for column V is 99.9%, the % retained No. 4 sieve adjusted to 21.9% to allow column V to equal 100%) |
| W - | % Pass, Line W (% pass) + Line V (% Ret.) = Line W (% Pass) (EX. For the percent passing on the No. 200 sieve $6.6 + 0.4 = 7.0\%$ )                                                                                                                                                                                                                                                                                                                                                                                                 |
| X - | Specs. Or % Pass, specifications for the material or percent passing by mix design, (Refer to the Special Provisions or Standard Specifications)                                                                                                                                                                                                                                                                                                                                                                                    |

## FIELD MATERIAL SIEVE SHEET

## LINE EXPLANATION OF NEEDED MATERIAL

| Y -  | Sum of % used, add Line X, horizontally added together for the percent used when combining sieves                              |
|------|--------------------------------------------------------------------------------------------------------------------------------|
| Z -  | Specs. Or % Pass, specifications found in the Special Provisions or Standard Specifications                                    |
| AA - | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                    |
| BB - | Material type as specified, found in the Contract Plans or Special Provisions (EX. Type 1 Class B Base Agg.)                   |
| CC - | Date the sample was taken (EX. 07/21/2010)                                                                                     |
| DD - | Checked By, initials of the person who checked the math, verified the specifications and accuracy of the test report (EX. STP) |
| EE - | Remarks, anything that needs to be documented (EX. Test met specs. RE and Contractor notified of results                       |

## **GENERAL INFORMATION:**

| Maximum Allowable Quantity of Material Retained on a Sieve, g |                             |                   |  |  |  |  |  |
|---------------------------------------------------------------|-----------------------------|-------------------|--|--|--|--|--|
| Sieve Opening                                                 | Nominal Dimensions of Sieve |                   |  |  |  |  |  |
| Size                                                          | 203.2 mm (8 in.)            | 304.8 mm (12 in.) |  |  |  |  |  |
| 75 mm (3 in.)                                                 | '-                          | '12600            |  |  |  |  |  |
| 63 mm (2 1/2 in.)                                             | '-                          | '10600            |  |  |  |  |  |
| 50 mm (2 in.)                                                 | '3600                       | '8400             |  |  |  |  |  |
| 37.5 mm (1 1/2 in.)                                           | '2700                       | '6300             |  |  |  |  |  |
| 25.0 (1 in.)                                                  | '1800                       | '4200             |  |  |  |  |  |
| 19.0 mm (3/4 in.)                                             | '1400                       | '3200             |  |  |  |  |  |
| 12.5 mm (1/2 in.)                                             | '890                        | '2100             |  |  |  |  |  |
| 9.5 mm (3/8 in.)                                              | '670                        | '1600             |  |  |  |  |  |
| 4.75 mm (No. 4)                                               | '330                        | '800              |  |  |  |  |  |
| All sieves with                                               |                             |                   |  |  |  |  |  |
| openings smaller                                              | '200                        | '450              |  |  |  |  |  |
| than 4.75 (No. 4)                                             |                             |                   |  |  |  |  |  |

## FIELD MATERIAL SIEVE SHEET

LINE

## **EXPLANATION OF NEEDED MATERIAL**

## **GENERAL INFORMATION:**

|               | _                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |  |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Coarse Series |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 100 mm        |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 90 mm         |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 75 mm         |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 63 mm         |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 53 mm         |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 50 mm         |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 45 mm         |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 37.5 mm       |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 31.5 mm       |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 26.5 mm       |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 25.0 mm       |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 22.4 mm       |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 19.0 mm       |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 16.0 mm       |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 13.2 mm       |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 12.5 mm       |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 11.2 mm       |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 9.5 mm        |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 8.0 mm        |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 6.7 mm        |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 6.3 mm        |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 5.6 mm        |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
| 4.75 mm       |                                                                                                                                                                                                                                          | Ν                                                                                                                                                                                                                                                               |  |  |  |  |
|               | 2 Series<br>100 mm<br>90 mm<br>75 mm<br>63 mm<br>53 mm<br>50 mm<br>45 mm<br>37.5 mm<br>31.5 mm<br>26.5 mm<br>25.0 mm<br>19.0 mm<br>16.0 mm<br>13.2 mm<br>11.2 mm<br>11.2 mm<br>9.5 mm<br>8.0 mm<br>6.7 mm<br>6.3 mm<br>5.6 mm<br>4.75 mm | 2 Series<br>100 mm<br>90 mm<br>75 mm<br>63 mm<br>53 mm<br>50 mm<br>45 mm<br>37.5 mm<br>31.5 mm<br>26.5 mm<br>25.0 mm<br>25.0 mm<br>25.0 mm<br>19.0 mm<br>19.0 mm<br>16.0 mm<br>13.2 mm<br>11.2 mm<br>11.2 mm<br>9.5 mm<br>8.0 mm<br>6.3 mm<br>5.6 mm<br>4.75 mm |  |  |  |  |

| Fine             | Series      |  |  |  |  |  |
|------------------|-------------|--|--|--|--|--|
| No. 5            | 4.0 mm      |  |  |  |  |  |
| No. 6            | 3.35 mm     |  |  |  |  |  |
| No. 7            | 2.80 mm     |  |  |  |  |  |
| No. 8            | 2.36 mm     |  |  |  |  |  |
| No. 10           | 2.00 mm     |  |  |  |  |  |
| No. 12           | 1.70 mm     |  |  |  |  |  |
| No. 14           | 1.40 mm     |  |  |  |  |  |
| No. 16           | 1.18 mm     |  |  |  |  |  |
| No. 18           | 1.00 mm     |  |  |  |  |  |
| No. 20           | 850 µm      |  |  |  |  |  |
| No. 25           | 710 µm      |  |  |  |  |  |
| No. 30           | 600 µm      |  |  |  |  |  |
| No. 35           | 500 µm      |  |  |  |  |  |
| No. 40           | 425 µm      |  |  |  |  |  |
| No. 45           | 355 µm      |  |  |  |  |  |
| No. 50           | 300 µm      |  |  |  |  |  |
| No. 60           | 250 µm      |  |  |  |  |  |
| No. 70           | 212 µm      |  |  |  |  |  |
| No. 80           | 180 µm      |  |  |  |  |  |
| No. 100          | 150 µm      |  |  |  |  |  |
| No. 120          | 125 µm      |  |  |  |  |  |
| No. 140          | 106 µm      |  |  |  |  |  |
| No. 170          | 90 µm       |  |  |  |  |  |
| No. 200          | 75 µm       |  |  |  |  |  |
| No. 230          | 63 µm       |  |  |  |  |  |
| No. 270          | 53 µm       |  |  |  |  |  |
| No. 325          | 45 µm       |  |  |  |  |  |
| No. 400          | 38 µm       |  |  |  |  |  |
| No. 450          | 32 µm       |  |  |  |  |  |
| No. 500          | 25 µm       |  |  |  |  |  |
| No. 635          | 20 µm       |  |  |  |  |  |
| Regul            | Regular Pan |  |  |  |  |  |
| Extended Rim Pan |             |  |  |  |  |  |
| Regular Cover    |             |  |  |  |  |  |
| Cover with Ring  |             |  |  |  |  |  |

-

## STATE OF NEVADA DEPARTMENT OF TRANSPORTATION **FIELD MATERIAL SIEVE SHEET**

AA. CONTRACT NO. <u>3925</u> BB. MATERIAL <u>PBS Type 2C Aggregate</u> CC. DATE 7/21/2010

| A. Test No.          | T-1-1    |                            |         |                  | Test No. <b>T-1-1</b> |           |                          |          |                               | Test No. <b>T-1-1</b>               |            |               |                     |             |           |           |
|----------------------|----------|----------------------------|---------|------------------|-----------------------|-----------|--------------------------|----------|-------------------------------|-------------------------------------|------------|---------------|---------------------|-------------|-----------|-----------|
| B. Size or Type      | 1" Roc   | k                          | C. Mi   | x % <b>28</b>    | Size or Type 3        | /4" Roc   | k                        | Mix %    | 5 <b>12</b>                   | Size or Type Crusher Fines Mix % 55 |            |               |                     |             |           |           |
| <b>D.</b> Sampled by | Fred Fl  | instone                    | )       |                  | Sampled by <b>Fre</b> |           | Sampled by <b>Fr</b>     | ed Flins | tone                          |                                     |            |               |                     |             |           |           |
| E. Tested by         | /ilma Fl | instone                    | •       |                  | Tested by Wilm        | a Flinst  | one                      |          |                               | Tested by Wiln                      | na Flinst  | one           |                     |             |           |           |
| F. Source Hui        | newill P | it Stock                   | kpile   |                  | Source Hunew          | ill Pit S | tockpile                 | ;        |                               | Source Hunev                        | vill Pit S | tockpile      | е                   |             |           | acked By  |
| Weights-Moisture     | Weight   | s-Wash                     | Weights | -Frac. Face      | Weights-Moisture      | Weight    | s-Wash                   | Weights  | s-Frac. Face Weights-Moisture |                                     | Weight     | s-Wash        | -Wash Weights-Frac. |             | DD. Ch    | lecked by |
| G. 2887              | K. 2880  | )                          | N. 2825 | 5                | 2634                  | 26        | 25                       | 2        | 531                           | 596                                 | 5          | 88            |                     | 0           |           | ราษ       |
| H. 2880              | L. 2864  |                            | O. 2825 | 5                | 2625                  | 26        | 601                      | 2        | 531                           | 588                                 | 5          | 43            |                     | 0           |           |           |
| I. 7                 | M. 16    |                            | P. 0    |                  | 9                     | 2         | 4                        |          | 0                             | 8                                   | 4          | 5             |                     | 0           |           |           |
| J. Moisture 0.2      | %        | <b>Q.</b> Frac. I          | -ace 10 | 00 %             | Moisture 0.3          | %         | Frac. Fac                | e 10     | 00 %                          | Moisture 1.4                        | · %        | Frac. Fac     | ce N                | <b>/A</b> % |           |           |
| R. LL 26.            | 2        | <b>S.</b> PI               | 6       | .5               | LL 24.6               | -         | PI                       | 5.2      |                               | LL 19.1                             | _          | PI            | 1.4                 |             |           |           |
| Sieve                | Weight   | %                          | %       | Specs. Or        | Sieve                 | Weight    | %                        | %        | Specs. Or                     | Sieve                               | Weight     | %             | %                   | Specs. Or   | Sum of    | Specs. Or |
| T. Sizes             | U. Ret.  | V. Ret.                    | W. Pass | <b>X.</b> % Pass | Sizes                 | Ret.      | Ret.                     | Pass     | % Pass                        | Sizes                               | Ret.       | Ret.          | Pass                | % Pass      | Y. % used | Z. % Pass |
| 75 mm (3")           |          |                            |         |                  | 75 mm (3")            |           |                          |          |                               | 75 mm (3")                          |            |               |                     |             |           |           |
| 63 mm (2½")          |          |                            |         |                  | 63 mm (2½")           |           |                          |          |                               | 63 mm (2½")                         |            |               |                     |             |           |           |
| 50 mm (2")           |          |                            |         |                  | 50 mm (2")            |           |                          |          |                               | 50 mm (2")                          |            |               |                     |             |           |           |
| 37.5 mm (1½")        | 0        | 0.0%                       | 100.0%  | 28.0 %           | 37.5 mm (1½")         |           |                          |          |                               | 37.5 mm (1½")                       |            |               |                     |             |           |           |
| 31.5 mm (1¼")        | 0        | 0.0%                       | 100.0%  | 28.0 %           | 31.5 mm (1¼")         |           |                          |          |                               | 31.5 mm (1¼")                       |            |               |                     |             |           |           |
| 25 mm (1")           | 26       | 0.9%                       | 99.1%   | 27.7 %           | 25 mm (1")            | 0         | 0.0%                     | 100.0%   | 12.0%                         | 25 mm (1")                          | 0          | 0.0%          | 100.0%              | 55.0%       |           |           |
| 19 mm (¾")           | 889      | 30.9%                      | 68.2%   | 19.1 %           | 19 mm (¾")            | 0         | 0.0%                     | 100.0%   | 12.0%                         | 19 mm (¾")                          | 0          | 0.0%          | 100.0%              | 55.0%       |           |           |
| 12.5 mm (½")         | 1672     | 58.0<br><del>-58.1</del> % | 10.2%   | 2.9%             | 12.5 mm (½")          | 482       | 18.4%                    | 81.6%    | 9.8%                          | 12.5 mm (½")                        | 0          | 0.0%          | 100.0%              | 55.0%       |           |           |
| 9.5 mm ( <b>¾</b> ") | 208      | 7.2%                       | 3.0%    | 0.8%             | 9.5 mm ( <b>¾</b> ")  | 937       | 35.7%                    | 45.9%    | 5.5%                          | 9.5 mm ( <b>¾</b> ")                | 0          | 0.0%          | 100.0%              | 55.0%       |           |           |
| 4.75 mm (No. 4)      | 30       | 1.0%                       | 2.0%    | 0.6%             | 4.75 mm (No. 4)       | 1112      | 42.3<br><del>42.4%</del> | 3.6%     | 0.4%                          | 4.75 mm (No. 4)                     | 81         | 13.8%         | 86.2%               | 47.4%       |           |           |
| 2.36 mm (No. 8)      |          |                            |         |                  | 2.36 mm (No. 8)       |           |                          |          |                               | 2.36 mm (No. 8)                     |            |               |                     |             |           |           |
| 2.00 mm (No. 10)     | 5        | 0.2%                       | 1.8%    | 0.5%             | 2.00 mm (No. 10)      | 42        | 1.6%                     | 2.0%     | 0.2%                          | 2.00 mm (No. 10)                    | 244        | 41,4<br>41.5% | 44.8%               | 24.6%       |           |           |
| 1.18 mm (No. 16)     | 2        | 0.1%                       | 1.7%    | 0.5%             | 1.18 mm (No. 16)      | 3         | 0.1%                     | 1.9%     | 0.2%                          | 1.18 mm (No. 16)                    | 68         | 11.6%         | 33.2%               | 18.3%       |           |           |
| 600 µm (No. 30)      |          |                            |         |                  | 600 µm (No. 30)       |           |                          |          |                               | 600 µm (No. 30)                     |            |               |                     |             |           |           |
| 425 µm (No. 40)      | 4        | 0.1%                       | 1.6%    | 0.4%             | 425 µm (No. 40)       | 4         | 0.2%                     | 1.7%     | 0.2%                          | 425 µm (No. 40)                     | 80         | 13.6%         | 19.6%               | 10.8%       |           |           |
| 300 µm (No. 50)      |          |                            |         |                  | 300 µm (No. 50)       |           |                          |          |                               | 300 µm (No. 50)                     |            |               |                     |             |           |           |
| 150 µm (No.100)      | 6        | 0.2%                       | 1.4%    | 0.4%             | 150 µm (No.100)       | 6         | 0.2%                     | 1.5%     | 0.2%                          | 150 µm (No.100)                     | 48         | 8.2%          | 11.4%               | 6.3%        |           |           |
| 75 µm (No. 200)      | 8        | 0.3%                       | 1.1%    | 1.3%             | 75 µm (No. 200)       | 7         | 0.3%                     | 1.2%     | 0.1%                          | 75 µm (No. 200)                     | 19         | 3.2%          | 8.2%                | 4.5%        |           |           |
| Pan                  | 14       | 0.5%                       | 0.6%    | 0.2%             | Pan                   | 8         | 0.3%                     | 0.9%     | 0.1%                          | Pan                                 | 3          | 0.5%          | 7.7%                | 4.2%        |           |           |
| Wash                 | 16       | 0.6%                       |         |                  | Wash                  | 24        | 0.9%                     |          |                               | Wash                                | 45         | 7.7%          |                     |             |           |           |

EE. Remarks: Test met specs. RE and Contractor notified of the results.

NDOT 040-013

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

STATE OF NEVADA DEPARTMENT OF TRANSPORTATION **FIELD MATERIAL SIEVE SHEET**  AA. CONTRACT NO. <u>3925</u> BB. MATERIAL <u>PBS Type 2C Aggregate</u> CC. DATE 7/21/2010

| A. Test No.          | . Test No. <b>T-1-1</b> |                          |         |             |                      | Test No. |            |         |                      |                      |        | Test No.  |                         |           |           |              |
|----------------------|-------------------------|--------------------------|---------|-------------|----------------------|----------|------------|---------|----------------------|----------------------|--------|-----------|-------------------------|-----------|-----------|--------------|
| B. Size or Type      | Washe                   | d Sand                   | C. Miz  | x%5         | Size or Type         |          |            | Mix %   | % Size or Type Mix % |                      |        |           |                         |           |           |              |
| D. Sampled by        |                         | Sampled by               |         |             |                      |          | Sampled by |         |                      |                      |        |           |                         |           |           |              |
| E. Tested by         | /ilma Fl                | instone                  | •       |             | Tested by            |          |            |         |                      | Tested by            |        |           |                         |           |           |              |
| F. Source Hu         | newill P                | it Stock                 | kpile   |             | Source               |          |            |         |                      | Source               |        |           |                         |           |           | acked By     |
| Weights-Moisture     | Weight                  | s-Wash                   | Weights | -Frac. Face | Weights-Moisture     | Weight   | s-Wash     | Weights | -Frac. Face          | Weights-Moisture     | Weight | s-Wash    | Wash Weights-Frac. Face |           | DD. Ch    | lecked by    |
| G. 1260              | K. 1169                 | 1                        | N. 0    |             |                      |          |            |         |                      |                      |        |           |                         |           | 3         | \$ <i>79</i> |
| H. 1169              | L. 1141                 |                          | O. 0    |             |                      |          |            |         |                      |                      |        |           |                         |           |           |              |
| l. 91                | M. 28                   |                          | P. 0    |             |                      |          | -          |         |                      |                      |        |           |                         |           |           |              |
| J. Moisture 7.8      | %                       | Q. Frac. F               | ace N/  | /A %        | Moisture             | %        | Frac. Fac  | e       | %                    | Moisture             | %      | Frac. Fac | e                       | %         |           |              |
| R.LL N//             | 4                       | <b>S.</b> PI             | N       | /P          | LL                   |          | PI         |         | -                    | LL                   |        | PI        | -                       | -         |           |              |
| Sieve                | Weight                  | %                        | %       | Specs. Or   | Sieve                | Weight   | %          | %       | Specs. Or            | Sieve                | Weight | %         | %                       | Specs. Or | Sum of    | Specs. Or    |
| T. Sizes             | U. Ret.                 | V. Ret.                  | W. Pass | X. % Pass   | Sizes                | Ret.     | Ret.       | Pass    | % Pass               | Sizes                | Ret.   | Ret.      | Pass                    | % Pass    | Y. % used | Z. % Pass    |
| 75 mm (3")           |                         |                          |         |             | 75 mm (3")           |          |            |         |                      | 75 mm (3")           |        |           |                         |           |           |              |
| 63 mm (2½")          |                         |                          |         |             | 63 mm (2½")          |          |            |         |                      | 63 mm (2½")          |        |           |                         |           |           |              |
| 50 mm (2")           |                         |                          |         |             | 50 mm (2")           |          |            |         |                      | 50 mm (2")           |        |           |                         |           |           |              |
| 37.5 mm (1½")        |                         |                          |         |             | 37.5 mm (1½")        |          |            |         |                      | 37.5 mm (1½")        |        |           |                         |           |           |              |
| 31.5 mm (1¼")        |                         |                          |         |             | 31.5 mm (1¼")        |          |            |         |                      | 31.5 mm (1¼")        |        |           |                         |           |           |              |
| 25 mm (1")           | 0                       | 0.0%                     | 100.0%  | 5.0%        | 25 mm (1")           |          |            |         |                      | 25 mm (1")           |        |           |                         |           | 99.7%     | 100          |
| 19 mm (¾")           | 0                       | 0.0%                     | 100.0%  | 5.0%        | 19 mm (¾")           |          |            |         |                      | 19 mm (¾")           |        |           |                         |           | 91.1%     | 88 - 95      |
| 12.5 mm (½")         | 0                       | 0.0%                     | 100.0%  | 5.0%        | 12.5 mm (½")         |          |            |         |                      | 12.5 mm (½")         |        |           |                         |           | 72.7%     | 70 - 85      |
| 9.5 mm ( <b>¾</b> ") | 0                       | 0.0%                     | 100.0%  | 5.0%        | 9.5 mm ( <b>¾</b> ") |          |            |         |                      | 9.5 mm ( <b>¾</b> ") |        |           |                         |           | 66.3%     | 60 - 78      |
| 4.75 mm (No. 4)      | 0                       | 0.0%                     | 100.0%  | 5.0%        | 4.75 mm (No. 4)      |          |            |         |                      | 4.75 mm (No. 4)      |        |           |                         |           | 53.4%     | 43 - 60      |
| 2.36 mm (No. 8)      |                         |                          |         |             | 2.36 mm (No. 8)      |          |            |         |                      | 2.36 mm (No. 8)      |        |           |                         |           |           |              |
| 2.00 mm (No. 10)     | 29                      | 2.5%                     | 97.5%   | 4.9%        | 2.00 mm (No. 10)     |          |            |         |                      | 2.00 mm (No. 10)     |        |           |                         |           | 30.2%     | 30 - 44      |
| 1.18 mm (No. 16)     | 203                     | 17.4%                    | 80.1%   | 4.0%        | 1.18 mm (No. 16)     |          |            |         |                      | 1.18 mm (No. 16)     |        |           |                         |           |           |              |
| 600 µm (No. 30)      |                         |                          |         |             | 600 µm (No. 30)      |          |            |         |                      | 600 µm (No. 30)      |        |           |                         |           |           |              |
| 425 µm (No. 40)      | 483                     | 41.2<br><del>41.3%</del> | 38.9%   | 1.9%        | 425 µm (No. 40)      |          |            |         |                      | 425 µm (No. 40)      |        |           |                         |           | 13.3%     | 12 - 22      |
| 300 µm (No. 50)      |                         |                          |         |             | 300 µm (No. 50)      |          |            |         |                      | 300 µm (No. 50)      |        |           |                         |           |           |              |
| 150 µm (No.100)      | 353                     | 30.2%                    | 8.7%    | 0.4%        | 150 µm (No.100)      |          |            |         |                      | 150 µm (No.100)      |        |           |                         |           |           |              |
| 75 µm (No. 200)      | 70                      | 6.0%                     | 2.7%    | 0.1%        | 75 µm (No. 200)      |          |            |         |                      | 75 µm (No. 200)      |        |           |                         |           | 5.0%      | 3 - 8        |
| Pan                  | 3                       | 0.3%                     | 2.4%    | 0.1%        | Pan                  |          |            |         |                      | Pan                  |        |           |                         |           |           |              |
| Wash                 | 28                      | 2.4%                     |         |             | Wash                 |          |            |         |                      | Wash                 |        |           |                         |           |           |              |

EE. Remarks: Test met specs. RE and Contractor notified of the results.

NDOT 040-013

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

## FIELD MATERIAL SIEVE SHEET

## LINE EXPLANATION OF NEEDED MATERIAL

| Α-  | Test number for this particular test. (EX. T-1-1 T = Acceptance Test, 1 = first acceptance test of the day, 1 = number of days the material has been tested) NOTE: If informational test would be I-1-1 I = Informational Test, 1 = first informational test of the day, 1 = number of days the material has been tested |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В - | Size or Type of material being tested (EX. 1" Rock)                                                                                                                                                                                                                                                                      |
| C - | Mix %, percentage of material used for plantmix aggregate or concrete aggregates (EX. 1" Rock = 28%, you would find this information from the approved mix design, job mix Formula or from the Contractor)                                                                                                               |
| D - | Print first and last name of the tester or testers who sampled the material (EX. Fred Flinstone)                                                                                                                                                                                                                         |
| Ε-  | Print first and last name of the tester or testers who completed the test (EX. Wilma Flinstone)                                                                                                                                                                                                                          |
| F - | Source, name of the location where the material was produced (EX. Hunewill Pit Stockpile)                                                                                                                                                                                                                                |
| G - | Weights-Moisture, wet weight of the material after sample has been split, per Test Method Nev. T203, weighed to the nearest whole number in grams (EX. 2887)                                                                                                                                                             |
| Н-  | Total dry weight of the material per Test Method Nev. T112, weighed to nearest whole number (EX. 2880)                                                                                                                                                                                                                   |
| 1-  | Line G (wet weight) - Line H (dry weight) = Line I (weight in moisture)<br>(EX. 2887 - 2880 = 7)                                                                                                                                                                                                                         |
| J - | Moisture, Line G (wet weight) - Line H (dry weight) / Line H (dry weight) x 100 = Line J (moisture %) (EX. (2887 - 2880) / 2880 X 100 = 0.2)                                                                                                                                                                             |
| К-  | Weights - Wash, total dry weight of the material per Test Method Nev. T112 (weighed to the nearest whole number) (EX. 2880). NOTE: This number will be the same as Line H                                                                                                                                                |
| L-  | Dry weight of the material after it has been washed, per Test Method Nev. T206 (weighed to the nearest whole number) (EX. 2864)                                                                                                                                                                                          |

## FIELD MATERIAL SIEVE SHEET

## LINE EXPLANATION OF NEEDED MATERIAL

| M - | Line K (dry weight) - Line L (washed dry weight) = Line M (minus No. 200 wash weight)<br>(EX. 2880 - 2864 = 16 washed through the No. 200 sieve) NOTE: The total weight in the<br>pan after shaking should not exceed 1% of the total dry weight or the test is invalid                                                                                                                                                                                                                                                                                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N - | Weights - Frac. Face, weight of the material retained on the No. 4 sieve and larger screens, per Test Method Nev. T230, weighed to the nearest whole number (EX. 2825)                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 - | Weight of the fractured aggregate per Test Method Nev. T230 (EX. 2825)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ρ-  | Line N (total weight of all No. + 4 and up material) - Line O (weight of fractured material) = Line P (weight of unfractured material) (EX. 2825 - 2825 = 0)                                                                                                                                                                                                                                                                                                                                                                                                               |
| Q - | Frac. Face %, Line O (weight of the fractured aggregate) / Line N (total weight of all No. + 4 and up material) x 100 = Line Q (percent fractured face) (EX. 2825 / 2825 x 100 = 100%). Refer to the Special Provisions and the Standard Specifications to see if fractured face is required                                                                                                                                                                                                                                                                               |
| R - | Liquid Limit number that was determined on NDOT form 040-014, per Test Method Nev. T210 (EX. 26.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| S - | Plasticity Index that was determined on NDOT form 040-014, per Test Method Nev. T212 (EX. 6.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| т-  | Sieves that are on the stack. Refer to the Special Provisions and the Standard Specifications for the required specifications on the material being tested                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U - | Weight Ret., weight retained on each sieve in the stack, reported to the nearest whole number <b>NOTE:</b> All of Column U (Weight Ret.) shall add up to Line K (dry weight), if it does not, adjust the highest weight retained in Column U (Weight Ret.) so it equals Line K (Dry Weight)                                                                                                                                                                                                                                                                                |
| V - | % Ret., Line U (Weight Ret.) / Line K (dry weight) x 100 = Line V (% Ret.)<br>(EX. Line U (No. 200 sieve is 8) / Line K (2880) x 100 = Line V (0.3%)) <b>NOTE:</b> All of<br>Column V shall add up to 100%, if it does not, adjust the highest percent retained, to<br>equal 100%, if its more than 0.3, this sieve is invalid and a new sieve shall be ran (EX.<br>Line V (% Ret.) for the 1/2" Sieve = 58.1%, and the total for column V is 100.1%,<br>therefore the % retained for the 1/2" sieve will need to be adjusted to 58.0% to allow<br>Column V to equal 100%) |

## FIELD MATERIAL SIEVE SHEET

## LINE EXPLANATION OF NEEDED MATERIAL

| W -    | % Pass, Line W (% Pass) + Line V (% Ret.) = Line W (% Pass) (EX. For the percent passing on the No. 200 sieve $0.6 + 0.5 = 1.1\%$ )                                                                                                                                                                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X -    | Specs. or % Pass, specifications for the material or the percent passing by mix design, (refer to the Special Provisions or the Standard Specifications) Line W (% Passing) x Line C (Mix % decimal equivalent) = Line X (Specs or % Passing) (EX. Using the No. 200 sieve 1.1% x 0.28% = 0.3% passing) |
| Υ-     | Sum of % used, add Line X (mix design % pass), horizontally added together for each individual sieve size and each individual material to get the sum of the % used. (EX. Using the No. 200 sieve, add all Line X's up horizontally for each individual material $0.3 + 0.1 + 4.5 + 0.1 = 5.0$ )        |
| Z -    | Specs. Or % Pass, specifications found in the Special Provisions or Standard Specifications                                                                                                                                                                                                             |
| AA -   | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                                                                                             |
| BB -   | Material Type, as specified, found in the Contract Plans or Special Provisions (EX. PBS Type 2C Aggregate)                                                                                                                                                                                              |
| CC -   | Date the sample was taken. (EX. 7/21/2010)                                                                                                                                                                                                                                                              |
| DD -   | Checked By, initials of the person who checked the math, verified the specifications and accuracy of the test report                                                                                                                                                                                    |
| EE -   | Remarks, anything that needs to be documented (EX. Test met specs. RE and Contractor notified of the results.)                                                                                                                                                                                          |
| NOTES: |                                                                                                                                                                                                                                                                                                         |
| 1.     | This example is used for submitting material to Materials Division for a Bituminous Mix Design.                                                                                                                                                                                                         |
| 2.     | When completing the weekly checks of the stockpiles for plantmix aggregates, the next test number would be T-1-2 with the informational box checked on NDOT form                                                                                                                                        |

040-010.

#### FIELD MATERIAL SIEVE SHEET

## LINE EXPLANATION OF NEEDED MATERIAL

#### NOTES:

- **3.** The 0.3 rule comes from AASHTO T27, if the amounts differ by more than 0.3% based on the original dry mass, the results are invalid.
- **4.** Do not deduct lime from the original sample, run the sieve as is.

## **GENERAL INFORMATION:**

| Maximum Allowable Quantity of Material Retained on a Sieve, g |                             |                   |  |
|---------------------------------------------------------------|-----------------------------|-------------------|--|
| Sieve Opening                                                 | Nominal Dimensions of Sieve |                   |  |
| Size                                                          | 203.2 mm (8 in.)            | 304.8 mm (12 in.) |  |
| 75 mm (3 in.)                                                 | -                           | 12600             |  |
| 63 mm (2 1/2 in.)                                             | -                           | 10600             |  |
| 50 mm (2 in.)                                                 | 3600                        | 8400              |  |
| 37.5 mm (1 1/2 in.)                                           | 2700                        | 6300              |  |
| 25.0 (1 in.)                                                  | 1800                        | 4200              |  |
| 19.0 mm (3/4 in.)                                             | 1400                        | 3200              |  |
| 12.5 mm (1/2 in.)                                             | 890                         | 2100              |  |
| 9.5 mm (3/8 in.)                                              | 670                         | 1600              |  |
| 4.75 mm (No. 4)                                               | 330                         | 800               |  |
| All sieves with                                               |                             |                   |  |
| openings smaller                                              | 200                         | 450               |  |
| than 4.75 (No. 4)                                             |                             |                   |  |

## FIELD MATERIAL SIEVE SHEET

## LINE EXPLANATION OF NEEDED MATERIAL

## NOTES:

5.

| Coarse Series |         |  |
|---------------|---------|--|
| 4"            | 100 mm  |  |
| 3 - 1/2"      | 90 mm   |  |
| 3"            | 75 mm   |  |
| 2 - 1/2"      | 63 mm   |  |
| 2.12"         | 53 mm   |  |
| 2"            | 50 mm   |  |
| 1-3/4"        | 45 mm   |  |
| 1-1/2"        | 37.5 mm |  |
| 1-1/4"        | 31.5 mm |  |
| 1.06"         | 26.5 mm |  |
| 1"            | 25.0 mm |  |
| 7/8"          | 22.4 mm |  |
| 3/4"          | 19.0 mm |  |
| 5/8"          | 16.0 mm |  |
| 0.530"        | 13.2 mm |  |
| 1/2"          | 12.5 mm |  |
| 7/16"         | 11.2 mm |  |
| 3/8"          | 9.5 mm  |  |
| 5/16"         | 8.0 mm  |  |
| 0.265"        | 6.7 mm  |  |
| 1/4"          | 6.3 mm  |  |
| No. 3-1/2     | 5.6 mm  |  |
| No. 4         | 4.75 mm |  |

| Fine Series     |           |  |
|-----------------|-----------|--|
| No. 5           | 4.0 mm    |  |
| No. 6           | 3.35 mm   |  |
| No. 7           | 2.80 mm   |  |
| No. 8           | 2.36 mm   |  |
| No. 10          | 2.00 mm   |  |
| No. 12          | 1.70 mm   |  |
| No. 14          | 1.40 mm   |  |
| No. 16          | 1.18 mm   |  |
| No. 18          | 1.00 mm   |  |
| No. 20          | 850 µm    |  |
| No. 25          | 710 µm    |  |
| No. 30          | 600 µm    |  |
| No. 35          | 500 µm    |  |
| No. 40          | 425 µm    |  |
| No. 45          | 355 µm    |  |
| No. 50          | 300 µm    |  |
| No. 60          | 250 µm    |  |
| No. 70          | 212 µm    |  |
| No. 80          | 180 µm    |  |
| No. 100         | 150 µm    |  |
| No. 120         | 125 µm    |  |
| No. 140         | 106 µm    |  |
| No. 170         | 90 µm     |  |
| No. 200         | 75 µm     |  |
| No. 230         | 63 µm     |  |
| No. 270         | 53 µm     |  |
| No. 325         | 45 µm     |  |
| No. 400         | 38 µm     |  |
| No. 450         | 32 µm     |  |
| No. 500         | 25 µm     |  |
| No. 635         | 20 µm     |  |
| Regul           | ar Pan    |  |
| Extended        | l Rim Pan |  |
| Regula          | r Cover   |  |
| Cover with Ring |           |  |

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION FIELD L.L., AND P.I. WORK SHEET

| CONTRACT NO TESTER |               | DATE SA    | DATE SAMPLED         |                   |                                         |
|--------------------|---------------|------------|----------------------|-------------------|-----------------------------------------|
| EST NO             |               | MATERIAL   |                      | DATE TE           | ESTED                                   |
| LOCATION OF SAMPLE |               |            |                      |                   |                                         |
|                    | Watch Glasses | No. 1      |                      | Watch Glasses No. | .2                                      |
| y Weight           |               | Wet Weight | Dry Wei              | ght               | Wet Weight                              |
| ire Weight         |               | Dry Weight | Tare We              | eight             | Dry Weight                              |
| No.                | of Blows      |            |                      | No. of Blows      | - <u> </u>                              |
| % c                | of Moisture   |            |                      | % of Moisture     |                                         |
|                    | Watch Glasses | No. 3      |                      | Watch Glas        | sses No. 4                              |
| y Weight           |               | Wet Weight | Dry Wei              | ght               | Wet Weight                              |
| are Weight         |               | Dry Weight | Tare We              | eight             | Dry Weight                              |
| No.<br>% c         | of Blows      |            | L.L.<br>P.L.<br>P.I. | % of Moisture     |                                         |
| 4                  |               |            |                      |                   |                                         |
| 35                 |               |            |                      |                   | × · · · · · · · · · · · · · · · · · · · |
| 3                  |               |            |                      |                   |                                         |
| 25-                |               |            |                      |                   |                                         |
| 2                  |               |            |                      |                   |                                         |
| 15-                |               |            |                      |                   |                                         |
|                    |               |            |                      |                   |                                         |

(Signature)

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION FIELD L.L., AND P.I. WORK SHEET

| CONTRACT NO. 3925                                            | B. TESTER Wilm                                                 | a Flinstone                                  | <b>C.</b> DATE SA                        | AMPLED <u>7/21</u>                    | 2010   |
|--------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|------------------------------------------|---------------------------------------|--------|
| TEST NO. <b>T-1-1</b>                                        | E. MATERIAL <u>1" Ro</u>                                       | ock                                          | <b>F.</b> DATE T                         | ESTED <u>7/22</u>                     | 2/2010 |
| LOCATION OF SAMPLE                                           | Hunewill Pit Stockpil                                          | е                                            |                                          |                                       |        |
| Watch Glasse                                                 | s No. 1                                                        | Wat                                          | ch Glasses No. 2                         |                                       |        |
| Dry Weight 25.56                                             | I. Wet Weight 27.51                                            | H. Dry Weight                                | 35.37                                    | I. Wet Weight                         | 38.31  |
| Tare Weight 17.97                                            | K. Dry Weight 25.56                                            | J. Tare Weight                               | 24.25                                    | K. Dry Weight                         | 35.37  |
| L. <u>7.59</u>                                               | M. <u>1.95</u>                                                 | _ L.                                         | 11.12                                    | M                                     | 2.94   |
| N. No. of Blows                                              | 35                                                             |                                              | N. No. of Blows                          | 23                                    |        |
| O. % of Moisture                                             | 25.7                                                           |                                              | O. % of Moisture                         | 26.4                                  |        |
| Watch Glasse                                                 | s No. 3                                                        |                                              | Watch Glasses                            | s No. 4                               |        |
| Dry Weight 31.49                                             | I. Wet Weight 34.73                                            | P. Dry Weight                                | 30.87                                    | Q. Wet Weight                         | 32.44  |
| Tare Weight 19.48                                            | K. Dry Weight 31.49                                            | R. Tare Weight                               | 22.90                                    | S. Dry Weight                         | 30.87  |
| L. <u>12.01</u>                                              | M. <u>3.24</u>                                                 | Т.                                           | 7.97                                     | U                                     | 1.57   |
| O. % of Moisture                                             | 27.0 X. P.L.<br>Y. P.I.                                        | 19.7<br>6.5                                  | V. % of Moisture                         | 19.7                                  |        |
|                                                              | 26 27                                                          | 28                                           |                                          |                                       |        |
| . Remarks (Required for N P                                  | P. results): From a 6000g                                      | sample, 91.11g of ma                         | terial (hand morta                       | red) was obtained                     |        |
| . Remarks (Required for N.F<br>passing the #40 sieve. Used a | P. results): From a 6000g<br>an automatic liquid limit device. | sample, 91.11g of ma<br>Contractor and Resid | terial (hand morta<br>ent Engineer notif | rred) was obtained<br>fed of results. |        |

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

## 040-014 Rev. 6/05

## FIELD L.L., AND P.I. WORK SHEET

## LINE EXPLANATION OF NEEDED INFORMATION

| A - | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Tester, Print first and last name of the tester or testers who completed the test (EX. Wilma Flintstone)                                                                                                                        |
| C - | Date the sample was taken (EX. 7/21/2010)                                                                                                                                                                                       |
| D - | Test number for this particular test (EX. T-1-1 T = Acceptance Test, 1 = first test of the day, 1 = number of days material has been tested) <b>NOTE:</b> this test number should be the same number as the corresponding sieve |
| E - | Material, type of as specified, found in the Contract Plans or Specials (EX. 1" Rock)                                                                                                                                           |
| F - | Actual date the sample was tested, which should always be the next day (EX 7/22/2010)                                                                                                                                           |
| G - | Location of sample, where the material came from (EX. Hunewill Pit Stockpile)                                                                                                                                                   |
| Η-  | Dry weight of material, per Test Method Nev. T210 (EX. 25.56 Watch Glass No. 1) (weight includes glass weight)                                                                                                                  |
| 1-  | Wet weight of the material, per Test Method Nev. T210 prior to drying (EX. 27.51 Watch Glass No. 1) (wet weight includes the glass weight)                                                                                      |
| J - | Tare weight of the glass by itself (this weight is obtained before running any part of the test) (EX. 17.97 Watch Glass No. 1)                                                                                                  |
| К-  | Dry weight of the material, per Test Method Nev. T210 (EX. 25.56 Watch Glass No. 1) (dry weight includes glass weight)                                                                                                          |
| L-  | Line H (Dry Weight) - Line J (Tare Weight) = Line L (Dry Weight of Material)<br>(EX. 25.56 - 17.97 = 7.59 Watch Glass No. 1)                                                                                                    |
| M - | Line I (Wet Weight) - Line K (Dry Weight) = Line M (Weight of Water)<br>(EX. 27.51 - 25.56 = 1.95 Watch Glass No. 1)                                                                                                            |
| N - | Number of blows that it takes to close the groove of the soil cake per Test Method Nev. T210 (EX. 35 blows)                                                                                                                     |

## 040-014 Rev. 6/05

## FIELD L.L., AND P.I. WORK SHEET

## LINE EXPLANATION OF NEEDED INFORMATION

| 0 - | % of Moisture, Line M (Weight of Water) / Line L (Dry Weight of Material) X 100 = Line O (% of Moisture) (EX. (1.95 / 7.59) x 100 = 25.7 Watch Glass No. 1) <b>NOTE:</b> Repeat Lines H - O for Watch Glass No. 1, No. 2, and No. 3                                                                                                                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ρ-  | Dry weight of the material per Test Method Nev. T211/T212 (dry weight includes glass weight)                                                                                                                                                                                                                                                                                                                                  |
| Q - | Wet weight of the material per Test Method Nev. T211/T212 prior to drying (wet weight includes the glass weight)                                                                                                                                                                                                                                                                                                              |
| R - | Tare weight of the glass by itself (this weight is obtained before running any part of the test)                                                                                                                                                                                                                                                                                                                              |
| S - | Dry weight of the material per Test Method Nev. T211/T212 (dry weight includes glass weight)                                                                                                                                                                                                                                                                                                                                  |
| т-  | Line P (Dry Weight) - Line R (Tare Weight of the Glass) = Line T (Dry Weight of Material) (EX. 30.87 - 22.90 = 7.97)                                                                                                                                                                                                                                                                                                          |
| U - | Line Q (Wet Weight) - Line S (Dry Weight) = Line U (Weight of Water)<br>(EX. 32.44 - 30.87 = 1.57)                                                                                                                                                                                                                                                                                                                            |
| V - | % of Moisture, Line U (Weight of Water) / Line T (Dry Weight of Material) x 100 = Line V (% of Moisture or P.L. (Plastic Limit)) (EX. (1.57 / 7.97) x 100 = 19.7)                                                                                                                                                                                                                                                             |
| W - | Liquid Limit, where the graphed line intersects the 25 shock ordinate line on the semi-logarithmic graph (EX. 26.2)                                                                                                                                                                                                                                                                                                           |
| X - | Plastic Limit from Line V (EX. 19.7)                                                                                                                                                                                                                                                                                                                                                                                          |
| Υ - | Plasticity Index, Line W (Liquid Limit) - Line X (Plastic Limit) = Line Y (Plasticity Index) (EX. 26.2 - 19.7 = 6.5) <b>NOTE:</b> This number shall not be a negative number, if it is start the test over, it is an invalid test.                                                                                                                                                                                            |
| Z - | Graph Line N and Line O on the logarithmic chart, numbers on the left represent Lines N (number of blows), numbers on the bottom represent Lines O (% of Moisture) <b>NOTE:</b> there shall not be more than .3 of a percent (3 lines on the graph) between the two lines crossing the 25 shock ordinate line for the number of blows, Line W comes from the % of moisture and where it intersects the 25 shock ordinate line |

#### 040-014 Rev. 6/05

### FIELD L.L., AND P.I. WORK SHEET

#### LINE EXPLANATION OF NEEDED INFORMATION

- AA Remarks, anything that needs to be documented, should include sample size how much was obtained from the # 40 material, if the material was to granular, N.P., if the test met specs. or did not meet specs., material was hand mortared etc. (EX. From a 6000g sample obtained 91.11g of material (hand mortared) was obtained passing the # 40 sieve. Used an Automatic Liquid Limit Device. Contractor and Resident Engineer notified of results.
- BB Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Dillon James)

#### NOTES:

| 1. | If you obtain less than 85 g of material after hand mortaring the test cannot be ran and INSUFF. MAT. will be written across Lines W, X and Y and an explanation is needed on Line Z under remarks |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | There must be at least 10 blows between Line N. on watch Glass No. 1 and Line N for Watch Glass No. 3, if there is not then the test is invalid and another one shall be ran                       |
| 3. | On the semi-logarithmic graph there shall be no more than .3 of a percent (3 lines on the graph) between the two lines that crossing the 25 shock ordinate line, if there is                       |

then the test is invalid and another complete test shall be started

## STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

## REPORT OF TESTS OF PORTLAND CEMENT CONCRETE PAVEMENT

| Date Reported                                                                                                                                                                   | Contract No.                                                                                                                                      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sampled by                                                                                                                                                                      | Contractor                                                                                                                                        |  |  |
| Specification Reference                                                                                                                                                         | Mix Design No                                                                                                                                     |  |  |
| Brand of Cement                                                                                                                                                                 | Туре                                                                                                                                              |  |  |
| Brand of Admixture(s)                                                                                                                                                           |                                                                                                                                                   |  |  |
| Brand of Curing Agent                                                                                                                                                           |                                                                                                                                                   |  |  |
| Brand of Air Entraining Admixture                                                                                                                                               |                                                                                                                                                   |  |  |
| Source of Fine Aggregate                                                                                                                                                        |                                                                                                                                                   |  |  |
| Source of Water                                                                                                                                                                 |                                                                                                                                                   |  |  |
| Batch Ticket No.                                                                                                                                                                | Quantity Batched <u>m<sup>3</sup> (yd<sup>3</sup>)</u>                                                                                            |  |  |
| TESTS F                                                                                                                                                                         | OR CONCRETE BEAMS                                                                                                                                 |  |  |
| Field Set Number                                                                                                                                                                |                                                                                                                                                   |  |  |
| Test Number                                                                                                                                                                     |                                                                                                                                                   |  |  |
| Location/Station                                                                                                                                                                |                                                                                                                                                   |  |  |
| Date Sampled                                                                                                                                                                    |                                                                                                                                                   |  |  |
| Date Tested                                                                                                                                                                     |                                                                                                                                                   |  |  |
| Class of Concrete                                                                                                                                                               |                                                                                                                                                   |  |  |
| Total Weight Fine Agg., kg/m <sup>3</sup> (lb/yd <sup>3</sup> )                                                                                                                 |                                                                                                                                                   |  |  |
| Total Weight Coarse Agg., kg/m <sup>3</sup> (lb/yd <sup>3</sup> )                                                                                                               |                                                                                                                                                   |  |  |
| Total Water Added, L/m <sup>3</sup> (gal/yd <sup>3</sup> )                                                                                                                      |                                                                                                                                                   |  |  |
| 7 Day Modulus of Rupture, MPa (psi)                                                                                                                                             |                                                                                                                                                   |  |  |
| 28 Day Modulus of Rupture, MPa (psi)                                                                                                                                            |                                                                                                                                                   |  |  |
| * Day Modulus of Rupture, MPa (psi)                                                                                                                                             |                                                                                                                                                   |  |  |
| Slump, mm (in)                                                                                                                                                                  |                                                                                                                                                   |  |  |
| Total Weight of all Materials Batched                                                                                                                                           |                                                                                                                                                   |  |  |
| Unit Weight, kg/m <sup>3</sup> (lb/ft <sup>3</sup> )                                                                                                                            |                                                                                                                                                   |  |  |
| Yield, m <sup>3</sup> (yd <sup>3</sup> )                                                                                                                                        |                                                                                                                                                   |  |  |
| **Water/Cement Ratio                                                                                                                                                            |                                                                                                                                                   |  |  |
| Entrained Air %                                                                                                                                                                 |                                                                                                                                                   |  |  |
| <ul> <li>*Spare beam to test in case of a faulty break or if it</li> <li>**(Water Added to Batch + Free Water on Aggregat</li> <li>Free Water = Total Moisture Conte</li> </ul> | is desired to vary the breaking schedule.<br>te + Water added in Field) ÷ Total Cementitious Material<br>nt of the Aggregates – Absorbed Moisture |  |  |
| Remarks:                                                                                                                                                                        |                                                                                                                                                   |  |  |
| Tested by:                                                                                                                                                                      | Resident Engineer:                                                                                                                                |  |  |
| NDOT<br>040-016 Distribution: Headquarters Construction, Mater<br>Rev. 11/10                                                                                                    | rials Division – Structural Lab, District, Resident Engineer, Contractor                                                                          |  |  |

## STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

#### REPORT OF TESTS OF PORTLAND CEMENT CONCRETE PAVEMENT

| A. Date Reported                     | B. Contract No.   | 3925                     |
|--------------------------------------|-------------------|--------------------------|
| C. Sampled by M. Smart               | D. Contractor     | Granite Construction Co. |
| E. Specification Reference 409.03.13 | F. Mix Design No. | 503628                   |

| G. Brand of Cement    | Nevada         |
|-----------------------|----------------|
| I. Brand of Admixture | (s) Daracem 55 |

H. Type II

J. Brand of Curing Agent WR Seal Tight 2500 White

K. Brand of Air Entraining Admixture Darex II

M. Source of Coarse Aggregate(s) Dayton Materials

N. Source of Water <u>City</u>

O. Batch Ticket No. <u>112756</u> P. Quantity Batched <u>10</u> m<sup>3</sup> (yd<sup>3</sup>)

| TESTS FOR CONCRETE BEAMS                                             |                                                |  |
|----------------------------------------------------------------------|------------------------------------------------|--|
| Q. Field Set Number                                                  | Set 1                                          |  |
| R. Test Number                                                       | 1                                              |  |
| S. Location/Station                                                  | "X" 7+22 Lt.                                   |  |
| T. Date Sampled                                                      | 7/12/2010                                      |  |
| U. Date Tested                                                       | 7/16/2010                                      |  |
| V. Class of Concrete                                                 | P.C.A.A.                                       |  |
| W. Total Weight Fine Agg., kg/m <sup>3</sup> (lb/yd <sup>3</sup> )   | 1382                                           |  |
| X. Total Weight Coarse Agg., kg/m <sup>3</sup> (lb/yd <sup>3</sup> ) | 2013                                           |  |
| Y. Total Water Added, L/m <sup>3</sup> (gal/yd <sup>3</sup> )        | 29                                             |  |
| Z. 7 Day Modulus of Rupture, MPa (psi)                               | 610 PSI                                        |  |
| AA. 28 Day Modulus of Rupture, MPa (psi)                             | 745 PSI                                        |  |
| BB. * <u>10</u> Day Modulus of Rupture, MPa (psi)                    | 610 PSI                                        |  |
| CC. Slump, mm (in)                                                   | 2 1/2"                                         |  |
| DD. Total Weight of all Materials Batched                            | 38784                                          |  |
| EE. Unit Weight, kg/m <sup>3</sup> ((b/ft <sup>3</sup> )             | 128.7                                          |  |
| FF. Yield, m <sup>3</sup> ((yd <sup>3</sup> ))                       | 0.99                                           |  |
| GG. **Water/Cement Ratio                                             | 0.38                                           |  |
| HH. Entrained Air %                                                  | 4.6                                            |  |
| *Spare beam to test in case of a faulty break or                     | if it is desired to vary the breaking schedule |  |

are beam to test in case of a faulty break or if it is desired to vary the breaking schedule.

\*\*(Water Added to Batch + Free Water on Aggregate + Water added in Field) ÷ Total Cementitious Material

| •         | Free Water = Total Moisture Content of the Aggregates – Absorbed Moisture |
|-----------|---------------------------------------------------------------------------|
| I Domarka | First Brook mot spoe Contractor and P.E. notified of results              |

| II. Remarks: | First Break met spec. Contractor and R.E. notified of results. |
|--------------|----------------------------------------------------------------|
|              | ·                                                              |

| JJ. Tested by: | M. Smart                                | KK. Resident Engineer: _                                            | Sarra Jones |
|----------------|-----------------------------------------|---------------------------------------------------------------------|-------------|
| NDOT           | Distribution: Headquarters Construction | Materials Division – Structural Lab. District. Resident Engineer. C |             |
| Rev. 11/10     |                                         | 2                                                                   | onitaotoi   |

# REPORT OF TESTS OF PORTLAND CEMENT CONCRETE PAVEMENT

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A -  | Date the beam was tested (EX. 8/9/2010)                                                                                                                                                                           |
| В-   | Contract number for the material being tested, found on the Contract Plans or Special Provisions (EX. 3925)                                                                                                       |
| C -  | Sampled by, Print first and last name of the tester or testers who sampled the material (EX. Mudd and Stone)                                                                                                      |
| D -  | Contractor awarded the contract (EX. Granite Construction Co.)                                                                                                                                                    |
| Е-   | Specification References, all of the specifications that apply to the material being tested, refer to the Standard Specifications and Special Provisions (EX. 409.03.13)                                          |
| F -  | Mix Design number assigned by the Materials Division for this specific material (Mix Design approved by the State Materials Division) (EX. 503628)                                                                |
| G -  | Brand of Cement, found on the approved mix design (EX. Nevada)                                                                                                                                                    |
| н-   | Type of Cement, found on the approved mix design (EX. Type II)                                                                                                                                                    |
| ۱-   | Brand of Admixture, found on the approved mix design (EX. Daracem 55)                                                                                                                                             |
| J -  | Brand of Curing Agent, given by the contractor, found on the certificate of compliance <b>NOTE:</b> Check the current QPL for this project and verify that the curing compound is an approved material to be used |
| К-   | Brand of Air Entraining Admixture, found on the approved Mix Design (EX. Darex II)                                                                                                                                |
| L -  | Source of Fine Aggregate, found on the approved mix design (EX. Dayton Materials) <b>NOTE:</b> Where the material was produced                                                                                    |
| М -  | Source of Coarse Aggregate, found on the approved Mix Design (EX. Dayton Materials) <b>NOTE:</b> Where the material was produced                                                                                  |
| N -  | Source of Water, found on the approved Mix Design (EX. City) <b>NOTE:</b> Source will either be City or Domestic                                                                                                  |

## REPORT OF TESTS OF PORTLAND CEMENT CONCRETE PAVEMENT

#### LINE EXPLANATION OF NEEDED INFORMATION

- **O** Batch Ticket No., number assigned to the batch ticket found on the batch ticket (EX. 112756)
- **P** Quantity Batched, Total amount of the single load batched (EX. 10 yd<sup>3</sup>)
- **Q** Field Set Number, number designated to the beams being tested (EX. Set No. 1)
- **R** Test number, is the same as the field sample number (EX. 1)
- **S** Approximate sample location, found on the Contract Plans or jobsite survey stakes (EX. "X" 7 + 22 LT.)
- **T** Date the sample was taken (EX. 7/12/2010)
- **U** Date the material was tested (EX. 7/16/2010)
- V Class of concrete found in the Contract Plans or Special Provisions (EX. P.C.A.A.)
- **W** Total weight of Fine Aggregate (found on the delivery ticket) divided by  $yd^3$  of total concrete batched (found on the delivery ticket) (EX. 13820 / 10 = 1382 lb/ft<sup>3</sup>)
- **X** Total weight of Coarse Aggregate (found on the delivery ticket) divided by  $yd^3$  of total concrete batched (found on the delivery ticket) (EX. 20130 / 10 = 2013 lb/ft<sup>3</sup>)
- Y Total weight of water (found on the delivery ticket) divided by the yd<sup>3</sup> of total concrete batched (found on the delivery ticket) NOTE: If water has been indicated in lbs on the delivery ticket, divide by 8.33 (weight of one gallon of water) then divided by the total yd<sup>3</sup> of concrete batched (EX. 2416 / 8.33 = 290 / 10 = 29gal / yd<sup>3</sup>)
- **Z** 7 day Modulus of Rupture see Test Method Nev. T442, using the following formula:  $R = \frac{1.5 \text{ Pl}}{\text{Bd}^2}$ (EX. 610 psi)
  - Note: Read pSi off of the Beam Breaker Worksheet if unable to use formula
- **AA** 28 day Modulus of Rupture per Test Method Nev. T442, using the following formula:  $R = \underbrace{1.5 \text{ Pl}}_{Bd^2}$ (EX. 745 psi)

Note: Read pSi off of the Beam Breaker Worksheet if unable to use formula

# REPORT OF TESTS OF PORTLAND CEMENT CONCRETE PAVEMENT

## LINE EXPLANATION OF NEEDED INFORMATION

| BB - | 10 day Modulus of Rupture per Test Method Nev. T442, using the following formula:<br>$R = \frac{1.5 \text{ Pl}}{\text{Bd}^2}$ (EX. 610 psi)<br>Note: Read pSi off of the Beam Breaker Worksheet if unable to use formula |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                          |
| CC - | Slump results per Test Method Nev. T438 (EX. 2 1/2")                                                                                                                                                                     |
| DD - | Total weight of all material from the batch ticket (EX. 38784)                                                                                                                                                           |
| EE - | Unit weight per Test Method Nev. T435 (EX. 128.7 lb/ft <sup>3</sup> )                                                                                                                                                    |
| FF - | Yield is figured per Test Method Nev. T435 # 2 under calculations<br>$S = \frac{Wa + W_1 + Wc + Ww}{W}$ (EX. 0.99)                                                                                                       |
| GG - | Water added to Batch + Free Water on Aggregate + Water added in Field) / Total Cementitious Material = Water/Cement Ratio (EX. 0.38)                                                                                     |
| нн - | Percent of entrained air per Test Method Nev. T431 (EX. 4.6 %)                                                                                                                                                           |
| II - | Remarks, anything that needs to be documented (EX. First break met spec. Contractor and R.E. notified of results.)                                                                                                       |
| J] - | Tested By, print first and last name of the tester or testers who completed the test (EX. M. Smart)                                                                                                                      |
| КК - | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Sarra Jones)                                                                                                                       |

| Material Type<br>Lift, Lane & Direction<br>Width and Depth<br>Lot/Sublot |                             |                     | Contract Nun<br>Date<br>Gauge Set N<br>Tested By | nber<br>umber |               |
|--------------------------------------------------------------------------|-----------------------------|---------------------|--------------------------------------------------|---------------|---------------|
|                                                                          |                             | TEST S              | SECTION                                          |               |               |
| Sta                                                                      | Sta                         | Sta                 | St                                               | a             | Sta           |
|                                                                          |                             |                     |                                                  |               |               |
|                                                                          |                             |                     |                                                  |               |               |
|                                                                          |                             |                     |                                                  |               |               |
|                                                                          |                             |                     |                                                  |               |               |
|                                                                          |                             |                     |                                                  |               |               |
|                                                                          |                             |                     |                                                  |               |               |
|                                                                          |                             |                     |                                                  |               |               |
| Random Number Blo                                                        | ck:                         | Begi                | inning Station                                   |               |               |
|                                                                          |                             | Endi                | ing Station                                      |               |               |
| (A x length = longitudinal,                                              | B x width = transverse)     |                     |                                                  |               |               |
| A                                                                        |                             |                     | B                                                |               |               |
| Х                                                                        | =                           |                     |                                                  | х             | =             |
| х                                                                        | =                           |                     |                                                  | х             | _ =           |
| X                                                                        | =                           |                     |                                                  | X             |               |
| × ×                                                                      |                             |                     |                                                  | X             |               |
| ^                                                                        |                             |                     |                                                  | ^             |               |
|                                                                          |                             |                     |                                                  |               |               |
| TARGET DENSITY N                                                         | 1g/m <sup>3</sup> (pcf)     |                     | From (RICE)                                      | test number   |               |
| TEST #                                                                   | -PM-                        | -PM-                | -PM-                                             | -PM-          | -PM-          |
| STATION                                                                  |                             |                     |                                                  |               |               |
| nearest 10m (25 ft.)                                                     |                             |                     |                                                  |               |               |
| Distance from edge                                                       | * Joint                     | * Joint             | * Joint                                          | * Join        | t Soint       |
| Left or Right                                                            |                             |                     |                                                  |               |               |
| NUCLEAR 1                                                                |                             |                     |                                                  |               |               |
| DENSITY 2                                                                |                             |                     |                                                  |               |               |
| READINGS 3                                                               |                             |                     |                                                  |               |               |
| 4                                                                        |                             |                     |                                                  |               |               |
| Average Density                                                          |                             |                     |                                                  |               |               |
| Corrected Density                                                        |                             |                     |                                                  |               |               |
| % Relative Compaction                                                    |                             |                     |                                                  |               |               |
| Correction Foster                                                        |                             |                     |                                                  |               |               |
| Correction Factor                                                        |                             |                     |                                                  | amarka.       |               |
| * Maran Tana Ora di ang                                                  | Densil Marks <sup>3</sup> ( | \                   |                                                  | emarks:       |               |
| ^ Mean Test Section I                                                    | Density, Mg/m° (pcf         | )=                  |                                                  |               |               |
| * Net Applicable                                                         | /e Compaction=              | iono or Joint Donoi | tian                                             |               |               |
| Not Applicable                                                           | to Partial Test Sect        | ions of Joint Densi | lies                                             |               |               |
| loint Test Specificatio                                                  |                             | in                  |                                                  |               |               |
| Single Test Specificat                                                   | tion M                      | lin.                | Max                                              |               |               |
| Mean Test Section St                                                     | necification M              | in                  | Max                                              | L             |               |
| mean rest dection of                                                     |                             |                     |                                                  |               |               |
|                                                                          |                             |                     |                                                  | Accente       | d Rejected    |
| Resident Engineer S                                                      | Signature                   |                     |                                                  | (Circle one   | of the above) |
| 0                                                                        |                             |                     |                                                  | ,             | ,             |
|                                                                          |                             |                     |                                                  |               |               |

NDOT 040-017 Rev. 5/05

| <b>A.</b> Material Type<br><b>B.</b> Lift, Lane & Directi | Material TypeTYPE II PBSLift, Lane & DirectionLIFT 1, LANE 1 and 2, NB |          |              |                      | E. Contract Number         3925           F. Date         7/12/2010 |              |                |                            |                  |          |
|-----------------------------------------------------------|------------------------------------------------------------------------|----------|--------------|----------------------|---------------------------------------------------------------------|--------------|----------------|----------------------------|------------------|----------|
| C. Width and Depth                                        |                                                                        | 22.0'    | 2.5"         |                      | G. Gauge Set Numb                                                   |              |                | r                          | 142              |          |
| <b>D.</b> Lot/Sublot                                      |                                                                        |          |              |                      | H. 1                                                                | ested        | Ву             |                            | Jane Doe         |          |
| I Sta 125+0                                               | 6                                                                      | Sta 12   | 91+77        | TEST S               | ECTION                                                              |              | Sta 117+       | 48                         | Sta <b>114</b> + | 07       |
|                                                           |                                                                        |          |              |                      | 110100                                                              |              |                |                            |                  |          |
| 126 + 50                                                  | 124 ± 00                                                               |          |              | 121 + 50             |                                                                     | 119 + 00     |                | 116 + 50                   |                  | 114 + 00 |
| J. Random Number E                                        | Block:<br>B x width = t                                                | <b>1</b> |              | <b>K.</b> B<br>L. Er | eginning S<br>nding Stati                                           | tation<br>on | "Z" 1<br>"Z" 1 | 26+50<br>14+00             |                  |          |
| <b>M.</b> A                                               | Ν.                                                                     | _        | О.           |                      | Ρ.                                                                  | В            |                | Q.                         |                  | R.       |
| <b>0.576</b> ×                                            | 250.0                                                                  | =        | 144          | 1.0                  | 0                                                                   | .730         | х              | 22.0                       | =                | 16.1     |
| 0.892 X                                                   | 250.0                                                                  | =        | 223          | 3.0                  | 0                                                                   | .948         | х              | 22.0                       | =                | 20.9     |
| 0.669 X                                                   | 250.0                                                                  | =        | 167          | 7.3                  | 0                                                                   | .726         | X              | 22.0                       | =                | 16.0     |
| 0.609 X                                                   | 250.0                                                                  |          | 154          | 2.3                  | 0                                                                   | .482<br>824  | X              | 22.0                       | =                | 10.0     |
| 0.971 ×                                                   | 230.0                                                                  | _        | 242          |                      |                                                                     | .024         | ^              | 22.0                       | -                | 10.1     |
| S. TARGET DENSIT                                          | Y Mg/m <sup>3</sup> (                                                  | ocf)1    | 47.6         |                      | T. From (F                                                          | RICE) t      | est number     | <u>T-1-1</u>               |                  |          |
| U. TEST #                                                 | <b>1</b> -P                                                            | M- 1     | <b>1</b> -P  | M- <b>2</b>          | <b>1</b> -P                                                         | M- <b>3</b>  | 1-             | PM- <b>4</b>               | 1-PN             | 1-5      |
| V. STATION                                                | 125+                                                                   | 00       | 121-         | <b>⊦</b> 75          | 119                                                                 | +75          | 1              | 17+50                      | 114              | +00      |
| nearest 10m (25 ft.)                                      | 16                                                                     | * loint  | 21           | * loint              | 16                                                                  | * loint      | 11             | * loint                    | 19               | * loint  |
| X Left or Right                                           |                                                                        | J0111    | L eft        | 30111                |                                                                     | 30111        | l eft          | 30111                      | l eft            | Joint    |
| NUCLEAR Y. 1                                              | 141 0                                                                  | 133.9    | 140 7        | 134.0                | 141.3                                                               | 137          | 138.1          | 136.4                      | 140 7            | 134 7    |
| DENSITY Z. 2                                              | 140.7                                                                  | 134.3    | 140.6        | 134.3                | 140.7                                                               | 139          | 138.3          | 136.4                      | 140.6            | 135.7    |
| READINGS AA. 3                                            | 140.8                                                                  |          | 140.7        |                      | 140.6                                                               |              | 138.3          |                            | 140.7            |          |
| <b>BB.</b> 4                                              | 140.2                                                                  |          | 141.3        |                      | 140.7                                                               |              | 137.5          |                            | 140.3            |          |
| CC. Average Density                                       | 140.7                                                                  | 134.1    | 140.8        | 134.2                | 140.8                                                               | 138          | 138.1          | 136.4                      | 140.6            | 135.2    |
| DD. Corrected Density                                     | 139.3                                                                  | 132.8    | 139.4        | 132.9                | 139.4                                                               | 137          | 136.7          | 135.0                      | 139.2            | 133.8    |
| EE. % Relative Comp.                                      | 94                                                                     | 90       | 94           | 9                    | 94                                                                  | 93           | 93             | 91                         | 94               | 91       |
| FF. Correction Factor                                     |                                                                        |          |              | 0.99                 |                                                                     |              | Demerica       | Toot coot:                 |                  | amalata  |
|                                                           |                                                                        |          | /= -         | 400.0                |                                                                     | LL.          | Remarks.       | Test section               | on ran to c      | orrelate |
| GG." Mean Test Sect                                       | ion Densi                                                              | ly, Mg/m | (pc          | 138.8                |                                                                     |              |                | the nuclea                 | ar density       | gauge.   |
| * Not Applicable to                                       | elative CC                                                             | mpaction |              | 94                   |                                                                     |              |                | Used test                  | # 1, 2, 3, 4     | and 5 to |
| Not Applicable to                                         | o Farilar I                                                            |          |              |                      | 25                                                                  |              |                |                            | rection fa       | nes ioi  |
| II Joint Test Specific:                                   | ation                                                                  | M        | lin <b>q</b> | n                    |                                                                     |              |                | and contra                 | actor notif      | ied of   |
| J.J. Single Test Speci                                    | fication                                                               | N        | 1in 9        | 0                    | Max                                                                 | 97           |                | results.                   |                  |          |
| KK. Mean Test Section                                     | on Specifi                                                             | cation   | Mir 9        | 2                    | Max.                                                                | 96           |                |                            |                  |          |
| NN. Resident Engine                                       | er Signatu                                                             | re       | James        | Fret                 |                                                                     |              | <b>MM</b> .(   | Accepted<br>(Circle one of | Rejecte          | ed       |
|                                                           |                                                                        |          |              |                      |                                                                     |              |                |                            |                  |          |

| <b>A.</b> Material Type<br><b>B.</b> Lift, Lane & Direction | TYPE II PBS<br>ion LIFT 1, LANE 1 and 2, NB |                          |             | NB                   | E. Contract Number<br>F. Date |                 |                 | <u>3925</u><br>7/12/2010 |              |             |
|-------------------------------------------------------------|---------------------------------------------|--------------------------|-------------|----------------------|-------------------------------|-----------------|-----------------|--------------------------|--------------|-------------|
| <b>C.</b> Width and Depth                                   |                                             | 22.0'                    | 2.5"        |                      | G.                            | Gauge S         | et Numbe        | r                        | 142          |             |
| D. Lot/Sublot                                               |                                             |                          |             |                      | н.                            | l ested B       | <sub>b</sub> y  |                          | Jane Doe     | 9           |
| I. Sta                                                      |                                             | Sta                      |             | TEST S<br>Sta        | ECTION                        | ç               | Sta             |                          | Sta          |             |
|                                                             |                                             |                          |             |                      |                               |                 | Jiu.            |                          |              |             |
| 126 + 50                                                    |                                             | 124 + 00                 |             | 121 + 50             |                               | 119 + 00        |                 | 116 + 50                 |              | 114 + 00    |
| J. Random Number B                                          | lock:                                       | 1                        |             | <b>K.</b> B<br>L. Ei | eginning S<br>nding Stat      | Station<br>tion | "Z" 12<br>"Z" 1 | 26+50<br>14+00           |              |             |
| (A x length = longitudinal , E<br>M $\Delta$                | 3 x width =                                 | transverse)              | 0           |                      | Р                             | B               |                 | 0                        |              | P           |
|                                                             | IN.                                         | _ =                      | 0.          |                      |                               |                 | х               | <u>u</u> .               | =            |             |
| х                                                           |                                             | =                        |             |                      |                               |                 | х               |                          | =            |             |
| х                                                           |                                             | =                        |             |                      |                               |                 | х               |                          | =            |             |
| X                                                           |                                             | _ =                      |             |                      |                               |                 | X               |                          | =            |             |
| X                                                           |                                             | =                        |             |                      |                               |                 | X               |                          | =            |             |
| S. TARGET DENSITY                                           | ′ Mg/m <sup>3</sup>                         | (pcf) <b>1</b> 4         | 47.6        |                      | T. From (                     | RICE) te        | st number       | <u> </u>                 |              |             |
| U. TEST #                                                   | 1 -F                                        | PM- 6                    | <b>1</b> -P | M- <b>7</b>          | -P                            | M-              | F               | PM-                      | -PM          | -           |
| V. STATION                                                  | 115                                         | i + 75                   | 123 +       | 00                   |                               |                 |                 |                          |              |             |
| W Distance from edge                                        | 5                                           | * Joint                  | 3           | * loint              |                               | * Joint         |                 | * Joint                  |              | * loint     |
| X. Left or Right                                            | Left                                        | John                     | Left        | Cont                 |                               | 00111           |                 |                          |              | 30111       |
| NUCLEAR Y. 1                                                | 135.2                                       |                          | 134.2       |                      |                               |                 |                 |                          |              |             |
| DENSITY Z. 2                                                | 135.5                                       |                          | 134.4       |                      |                               |                 |                 |                          |              |             |
| READINGS AA. 3                                              | 135.3                                       |                          | 134.9       |                      |                               |                 |                 |                          |              |             |
| <b>BB.</b> 4                                                | 136.3                                       |                          | 134.3       | 6                    |                               |                 |                 |                          |              |             |
| CC. Average Density                                         | 135.6                                       |                          | 134.5       |                      |                               |                 |                 |                          |              |             |
| <b>DD.</b> Corrected Density                                | 137.0                                       |                          | 135.8       | 5<br>                |                               |                 |                 |                          |              |             |
|                                                             | 93                                          |                          | 92          |                      |                               |                 |                 |                          |              |             |
| FF. Correction Factor                                       |                                             |                          |             | 1.01                 |                               |                 |                 |                          |              |             |
|                                                             |                                             |                          | J           | -                    |                               | LL. F           | Remarks:        | Page 2 of                | 2, test se   | ction ran   |
| GG.* Mean Test Secti                                        | on Dens                                     | ity, Mg/m <sup>3</sup> ( | (pc         |                      |                               |                 |                 | to correla               | te the nuc   | lear        |
| HH. * Mean Percent R                                        | elative C                                   | Compaction               | )=          |                      |                               |                 |                 | density ga               | auge. Use    | d test      |
| * Not Applicable to                                         | Partial                                     | <b>Fest Sectio</b>       | ons or Joi  | int Densitie         | es                            |                 |                 | # 1, 2, 3, 4             | , and 5 to   | match       |
|                                                             |                                             |                          |             |                      |                               |                 |                 | drilled co               | res for ga   | uge         |
| II. Joint Test Specifica                                    | tion                                        | Mi                       | in. 9       | 0                    | —                             |                 |                 | correctior               | n factor. R  | .E. and     |
| JJ. Single Test Specif                                      | ication                                     | Mi<br>Mi                 | in. 9       | 0                    | Max.                          | 97              |                 | contracto                | r notified   | of results. |
| nn. Iviean Test Sectio                                      | in Specifi                                  | ication I                | viir 93     | 2                    | wax.                          | 90              |                 |                          |              |             |
|                                                             |                                             |                          |             |                      |                               |                 | мм (            | Accepted                 |              | ed          |
| NN. Resident Enginee                                        | er Signati                                  | ure                      | James       | Fret                 |                               |                 |                 | (Circle one o            | f the above) |             |

NDOT 040-017 Rev. 5/05

| <ul> <li>A. Material Type</li> <li>B. Lift, Lane &amp; Directi</li> <li>C. Width and Depth</li> <li>D. Lot/Sublot</li> </ul> | on <u>LIF</u><br>V                                                                                                 | TYPE II I<br><u>T 1, Approa</u><br>/aries 12.0' | PBS<br>ach, N/A<br>2.5" |               | E. (<br>F.  <br>G.<br>H. | Contract N<br>Date<br>Gauge Se<br>Tested By | Number<br>et Number |              | 3925<br>7/12/2010<br>142<br>Jane Doe | )                  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|---------------|--------------------------|---------------------------------------------|---------------------|--------------|--------------------------------------|--------------------|
|                                                                                                                              |                                                                                                                    |                                                 |                         | TEST S        | FCTION                   |                                             |                     |              |                                      |                    |
| I. Sta. 11                                                                                                                   | 3 + 75                                                                                                             | Sta.                                            |                         | Sta.          | 2011011                  | S                                           | ta.                 |              | Sta.                                 |                    |
|                                                                                                                              |                                                                                                                    |                                                 |                         |               |                          |                                             |                     |              | 0.01                                 |                    |
| 114 + 00                                                                                                                     |                                                                                                                    | 113 + 25                                        |                         |               |                          |                                             |                     |              |                                      |                    |
| J. Random Number B                                                                                                           | J. Random Number Block:       K. Beginning Station       "Z" 114 + 00         L. Ending Station       "Z" 113 + 25 |                                                 |                         |               |                          |                                             |                     |              |                                      |                    |
| <b>M.</b> A                                                                                                                  | Ν.                                                                                                                 |                                                 | Ο.                      |               | Ρ.                       | В                                           |                     | Q.           |                                      | R.                 |
| Х                                                                                                                            |                                                                                                                    | =                                               | -                       |               |                          |                                             | х Г                 |              | =                                    |                    |
| x                                                                                                                            |                                                                                                                    | =                                               |                         |               |                          |                                             | х                   |              | =                                    |                    |
| х                                                                                                                            |                                                                                                                    | =                                               |                         |               |                          |                                             | х                   |              | =                                    |                    |
| х                                                                                                                            |                                                                                                                    | =                                               |                         |               |                          |                                             | х                   |              | =                                    |                    |
| х                                                                                                                            |                                                                                                                    |                                                 |                         |               |                          |                                             | х                   |              | =                                    |                    |
|                                                                                                                              |                                                                                                                    |                                                 |                         | <del>.</del>  | B                        |                                             |                     |              |                                      |                    |
| S. TARGET DENSITY                                                                                                            | ′ Mg/m <sup>3</sup>                                                                                                | (pcf)14                                         | 7.6                     |               | <b>T.</b> From (         | RICE) tes                                   | t number            | <u>T-1-1</u> |                                      |                    |
| U. TEST #                                                                                                                    | 2 -                                                                                                                | PM- 1                                           | -PN                     | Л-            | -P                       | M-                                          | -P                  | M-           | -PN                                  |                    |
| V. STATION                                                                                                                   | 111                                                                                                                | 2 + 75                                          |                         |               |                          |                                             |                     |              |                                      |                    |
| nearest 10m (25 ft.)                                                                                                         |                                                                                                                    | 5 7 7 5                                         |                         |               |                          | _                                           |                     |              |                                      |                    |
| W. Distance from edge                                                                                                        | 5                                                                                                                  | * Joint                                         |                         | * Joint       |                          | * Joint                                     |                     | * Joint      |                                      | * Joint            |
| X. Left or Right                                                                                                             | Left                                                                                                               |                                                 |                         |               |                          |                                             |                     |              |                                      |                    |
| NUCLEAR Y. 1                                                                                                                 | 135.2                                                                                                              |                                                 |                         |               |                          |                                             |                     |              |                                      |                    |
| DENSITY Z. 2                                                                                                                 | 135.5                                                                                                              |                                                 |                         |               |                          |                                             |                     |              |                                      |                    |
| READINGS AA. 3                                                                                                               | 135.3                                                                                                              |                                                 |                         |               |                          |                                             |                     |              |                                      |                    |
| <b>BB.</b> 4                                                                                                                 | 136.3                                                                                                              |                                                 |                         |               |                          |                                             |                     |              |                                      |                    |
| CC. Average Density                                                                                                          | 135.6                                                                                                              |                                                 |                         |               |                          |                                             |                     |              |                                      |                    |
| DD. Corrected Density                                                                                                        | 137.0                                                                                                              |                                                 |                         |               |                          |                                             |                     |              |                                      |                    |
| EE. % Relative Comp.                                                                                                         | 93                                                                                                                 |                                                 |                         |               |                          |                                             |                     |              |                                      |                    |
| FF. Correction Factor                                                                                                        |                                                                                                                    |                                                 |                         | 1.01          |                          | LL. R                                       | emarks <sup>.</sup> | Small area   | under 1                              | )00vd <sup>3</sup> |
| GG * Maan Test Sect                                                                                                          | ion Done                                                                                                           | ity Ma/m <sup>3</sup>                           | nd                      |               |                          |                                             | officianto.         | naving an    | annroach                             | at                 |
| HH * Mean Percent                                                                                                            | Rolativo                                                                                                           | Compaction                                      | рс<br>Э—                |               |                          |                                             |                     | Topsy Lan    | approact                             | ιαι                |
| * Not Applicable t                                                                                                           |                                                                                                                    |                                                 |                         | int Donaiti   |                          |                                             | -                   | Topsy Lan    | e                                    |                    |
| NOT APPlicable to                                                                                                            | Jranal                                                                                                             | 1 621 26010                                     | 115 UL JUI              |               | 53                       |                                             | -                   |              |                                      |                    |
| II Joint Test Specific                                                                                                       | ation                                                                                                              | N /:                                            | n 🕅                     | —             |                          |                                             | ŀ                   |              |                                      |                    |
| IL Single Test Specification Min 00 May 07                                                                                   |                                                                                                                    |                                                 |                         |               |                          |                                             |                     |              |                                      |                    |
| KK Mean Test Speci                                                                                                           | noalion                                                                                                            | ivii<br>Ivii                                    | 11. 90<br>Air           | <u>,</u>      | Max.                     | 51                                          | L                   |              |                                      |                    |
| nn. mean rest Section                                                                                                        | m specif                                                                                                           |                                                 | VIII                    |               | widx.                    |                                             |                     |              |                                      |                    |
|                                                                                                                              |                                                                                                                    |                                                 |                         |               |                          |                                             |                     | Accortad     | Doioo                                | od                 |
| NN Resident Engine                                                                                                           | ar Signat                                                                                                          | uro                                             | <i>a</i>                | Treat         |                          |                                             |                     | Circle       |                                      | .eu                |
| ININ. RESIDENT ENGINE                                                                                                        | si Signat                                                                                                          |                                                 | James                   | rtet          |                          |                                             |                     | Urcie one of | trie above)                          |                    |
| NDOT                                                                                                                         |                                                                                                                    |                                                 |                         |               |                          |                                             |                     |              |                                      |                    |
|                                                                                                                              | District                                                                                                           |                                                 |                         |               |                          | B                                           |                     |              |                                      |                    |
| 040-017                                                                                                                      | Distributio                                                                                                        | n: Headquarte                                   | rs Constru              | ction, Reside | ent Engineer             | , District Eng                              | gineer, Cont        | ractor       |                                      |                    |

Distribution: Headquarters Construction, Resident Engineer, District Engineer, Contractor

Rev. 5/05

# NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                               |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A -  | Material Type, found in the Contract Plans or Special Provisions (EX. Type II PBS)                                                                                                              |
| В -  | Lift, Lane & Direction, Lift of material that is being tested (EX. LIFT 1)<br>Lane that is being paved and tested (EX. LANE 1 and 2)<br>Direction of the paving operation (EX. NB - northbound) |
| C -  | Width and Depth, Width of the plantmix that is currently being placed (EX. 22.0') Depth of the plantmix that is being placed (EX. 2.5")                                                         |
| D -  | Used exclusively for END RESULT contracts                                                                                                                                                       |
| E -  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                     |
| F-   | Date the compactions were taken (EX. 7/12/2010)                                                                                                                                                 |
| G -  | Gauge Set Number, number assigned to the gauge that is being used to test the material (EX. 142) <b>NOTE:</b> Consultants shall use the gauge serial number found on the back of the gauge      |
| Н-   | Tested By, print first and last name of the tester or testers who completed the test (EX. Jane Doe)                                                                                             |

## NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

#### LINE EXPLANATION OF NEEDED INFORMATION

#### I - TEST SECTION STATIONING

Ending Station - Beginning Station = length of test section (EX. "Z" 126+50 - "Z" 114+00 = 1250')

Length x Width / 9 = square yards for the test section (EX. 1250' x 22.0' = 27500.0ft<sup>2</sup> / 9 = 3055.6 = 3056yds<sup>2</sup>)

Total length (station to station) / 5 (total of subsections) = length of each subsection (EX. 1250' / 5 = 250')

Beginning Station - the length of one section = parameters for the first test for the nuclear gauge, repeat this five times

(EX. "Z" 126+50 - 250' = "Z" 124+00 "Z" 124+00 - 250' = "Z" 121+50 "Z" 121+50 - 250' = "Z" 119+00 "Z" 119+00 - 250' = "Z" 116+50

"Z" 116+50 - 250' = "Z" 114+00)

NOTE: If you are paving ahead on line add the length of one section. If you are paving back on line subtract the length of one section

Beginning Station for each section - result from Column O = the station where the test should be taken to the nearest 25 ft. for English

(EX. "Z" 126+50 - 144 = "Z" 125+06 = "Z" 125+00 "Z" 124+00 - 223 = "Z" 121+77 = "Z" 121+75 "Z" 121+50 - 166 = "Z" 119+84 = "Z" 119+75 "Z" 119+00 - 152 = "Z" 117+48 = "Z" 117+50 "Z" 116+50 - 243 = "Z" 114+07 = "Z" 114+00)

NOTE: This station is where the actual test for each subsection will be ran

## NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

#### LINE EXPLANATION OF NEEDED INFORMATION

J - Pick a Random Numbers Block from Test Method Nev. T335 (EX. 1) **NOTE:** The same random number block shall not be used more than once per shift

| А      | В    | А      | В                         | А            | В            | А    | В    | А    | В            |
|--------|------|--------|---------------------------|--------------|--------------|------|------|------|--------------|
| 1      |      | 2      |                           | 3            |              | 4    |      | 5    |              |
| .576   | .730 | .430   | .754                      | .271         | .870         | .732 | .721 | .998 | .239         |
| .892   | .948 | .858   | .025                      | .935         | .114         | .153 | .508 | .749 | .291         |
| .669   | .726 | .501   | .402                      | .231         | .305         | .009 | .420 | .517 | .858         |
| .609   | .482 | .809   | .140                      | .396         | .025         | .937 | .310 | .253 | .761         |
| .971   | .824 | .902   | .470                      | .997         | .392         | .892 | .957 | .640 | .463         |
| 6      |      | 7      |                           | 8            |              | 9    |      | 10   |              |
| .053   | .899 | .554   | .627                      | .427         | .760         | .470 | .040 | .904 | .993         |
| .810   | .159 | .225   | .163                      | .549         | .405         | .285 | .542 | .231 | .919         |
| .081   | .277 | .035   | .039                      | .860         | .507         | .081 | .538 | .986 | .501         |
| .982   | .468 | .334   | .921                      | .690         | .806         | .879 | .414 | .106 | .031         |
| .095   | .801 | .576   | .417                      | .251         | .884         | .522 | .235 | .398 | .222         |
| 11 500 | 005  | 12     | 050                       | 13           | 0.07         | 14   | 000  | 15   | 000          |
| .509   | .025 | .794   | .850                      | .917         | .887         | .751 | .608 | .698 | .683         |
| .371   | .059 | .164   | .838                      | .289         | .169         | .569 | .977 | .796 | .996         |
| .165   | .996 | .356   | .375                      | .654         | .939         | .815 | .592 | .348 | .743         |
| .4//   | .535 | .337   | .155                      | ./6/         | .187         | .579 | .787 | .358 | .595         |
| .788   | .101 | .434   | .638                      | .021         | .894         | .324 | .871 | .698 | .539         |
| 16     | 045  | 17     | <b>F 40</b>               | 18           | 400          | 19   | 470  | 20   | 400          |
| .566   | .815 | .622   | .548                      | .947         | .169         | .317 | .472 | .864 | .466         |
| .901   | .342 | .873   | .964                      | .942         | .985         | .123 | .086 | .335 | .212         |
| .470   | .682 | .412   | .064                      | .150         | .962         | .925 | .355 | .909 | .019         |
| .068   | .242 | .667   | .356                      | .195         | .313         | .396 | .460 | .740 | .247         |
| .874   | .420 | .127   | .284                      | .448         | .215         | .833 | .652 | .601 | .326         |
| 21     | 077  | 22     | 000                       | 23           | 447          | 24   | 050  | 25   | 20.4         |
| .897   | .877 | .209   | .862                      | .428         | .117         | .100 | .259 | .425 | .284         |
| .875   | .969 | .109   | .843                      | .759         | .239         | .890 | .317 | .428 | .802         |
| .190   | .696 | ./5/   | .283                      | .000         | .491         | .523 | .005 | .919 | .146         |
| .341   | .688 | .587   | .908                      | .865         | .333         | .928 | .404 | .892 | .696         |
| .640   | .300 | .031   | .218                      | .940         | .304         | .073 | .305 | .195 | .007         |
| 20     | 207  | 21     | 077                       | 20           | 721          | 29   | 265  | 30   | 075          |
| .002   | .221 | .552   | .077                      | .454         | .731         | .710 | .205 | .038 | .075         |
| .404   | .030 | .029   | .209                      | .009         | .990         | .917 | .217 | .220 | .009         |
| .123   | 120  | .503   | .447                      | .009         | .403         | .994 | .307 | .031 | .422         |
| .110   | .120 | .721   | .137                      | .203         | 200          | .790 | .079 | .432 | .391         |
| .030   | .200 | 22     | .574                      | .070         | .390         | .104 | .755 | .002 | .939         |
| 636    | 105  | 52 614 | 486                       | 55           | 663          | 610  | 007  | 206  | 456          |
| .030   | 673  | 665    | -00 <del>-</del> .<br>888 | 3029         | 592          | .013 | 649  | .230 | .+30         |
| 804    | 112  | 331    | -000.<br>                 | .555         | 028          | 830  | 841  | 602  | 183          |
| 360    | 103  | 181    | 200                       | 564          | .520         | 890  | 062  | 010  | 875          |
| 183    | 651  | 157    | 150                       | 800          | 875          | 205  | 446  | 648  | 685          |
| .360   | .193 | .181   | .399<br>.150              | .564<br>.800 | .772<br>.875 | .890 | .062 | .648 | .675<br>.685 |

#### TABLE OF RANDOM NUMBERS

# NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

| <u>LINE</u> | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                                                                                                                                                                |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| к-          | Beginning Station for this specific test section (EX. "Z" 126 + 50)                                                                                                                                                                                                                                                                                              |
| L-          | Ending Station for this specific test section (EX. "Z" 114 + 00)                                                                                                                                                                                                                                                                                                 |
| Μ-          | Column <b>A</b> from the random numbers block from Test Method Nev. T335<br>(EX. 0.576<br>0.892<br>0.669<br>0.609<br>0.971)                                                                                                                                                                                                                                      |
| N -         | Length of one individual section figured in Letter I (EX. 250)                                                                                                                                                                                                                                                                                                   |
| 0 -         | Take Letter M (Random numbers from Column A, Test Method Nev. T335) x Letter N<br>(length of one subsection) = Letter O (distance into that one subsection to the<br>nearest 25 ft.)<br>(EX576 x 250 = 144<br>.892 x 250 = 223<br>.669 x 250 = 166<br>.609 x 250 = 152<br>.971 x 250 = 243)                                                                      |
| Ρ-          | Column <b>B</b> from the random numbers block from Test Method Nev. T335<br>(EX. 0.730<br>0.948<br>0.726<br>0.482<br>0.824)                                                                                                                                                                                                                                      |
| Q -         | Width of the lane being paved from Line C (EX. 22.0')                                                                                                                                                                                                                                                                                                            |
| R -         | Letter P (Random numbers from Column B, Test Method Nev. T335) x Letter Q<br>(width of subsections) = Letter R (distance of one subsection rounded to the<br>nearest 1 ft)<br>(EX. $0.730 \times 22 = 16.06 = 16$<br>$0.948 \times 22 = 20.86 = 21$<br>$0.726 \times 22 = 15.97 = 16$<br>$0.482 \times 22 = 10.60 = 11$<br>$0.824 \times 22 = 18.13 = 18$ )<br>7 |

## NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

#### LINE EXPLANATION OF NEEDED INFORMATION

- S Target Density (pcf), Theoretical maximum specific gravity (RICE) performed from that day per Test Method Nev. T324, one in the A.M. and one in the P.M. (EX. 147.6)
   NOTE: Tester who is running the plantmix sample at the field lab will give you the RICE results. The RICE results from the previous days P.M. test can be used until the A.M. results are completed. One test section will have one RICE, DO NOT use two RICES on one test section.
- T -RICE test number that correlates to the test number for the ignition oven sample, per<br/>Test Method Nev. T761 (EX. T-1-1)
- U Test number for this particular test section (EX. 1-PM-1, 1-PM-2, 1-PM-3, 1-PM-4, 1-PM-5, 1-PM-6 AND 1-PM-7) 7 tests are used only for the gauge correlation. The next test section would be numbered 2-PM-1 through 2-PM-5 NOTE: TEST NUMBERS RUN IN CHRONILOGICAL ORDER STARTING WITH 1-PM-1 THROUGH 1-PM-7 ANYTHING UNDER 1000 YD<sup>2</sup> SHOULD BE CONSIDERED A SMALL TEST SECTION. If it's a small test section each test needs its own test number, 1-PM-1, 2-PM-1 etc. and on its own sheet (If the contractor is moving to various locations throughout the day and it will equal a full test section, make it a full test section instead of a bunch of small sections)
- V Station where the four test shots, at each location, are taken for the compactions, rounded to the nearest 25 ft. These stations were figured on Letter I (EX. "Z" 125+00, "Z" 121+75, "Z" 119+75, "Z" 117+50, "Z" 114+00)
- Distance from edge of the mat where the shots will be taken with the gauge. These numbers were figured in Letter R (EX. 16, 21, 16, 11, 18) NOTE: Do not take tests within 1 foot from the edge of the mat
- X Left or Right, the side of the mat in which the distance is pulled from (EX. Left) NOTE: DON'T CHANGE SIDES THROUGHOUT THE DAY. PICK LEFT OR RIGHT AND STAY WITH IT SO YOU DON'T CONFUSE YOURSELF
- Y Nuclear Density Reading, one minute test taken with the nuclear density gauge at "Z" 125+00, 16' left, gauge will read Dens: X.X (EX. 141.0) mark around the gauge with keil NOTE: If you are paving a joint, do not forget to take the shot as close to the joint as possible. Place the gauge parallel to the joint, be sure the gauge sits flat on the mat and does not rock.

## NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

#### LINE EXPLANATION OF NEEDED INFORMATION

- Z Second one minute test taken with the nuclear density gauge rotated 90° at "Z" 125+00, 16' left, gauge will read Dens: X.X (EX. 140.7) mark around gauge with keil NOTE: If you are paving a joint, do not forget to take the shot as close to the joint as possible. Place close to the joint as possible, be sure the gauge sits flat on the mat and does not rock.
- AA Third one minute test taken with the nuclear density gauge rotated another 90° at "Z" 125+00, 16' left, gauge will read Dens: X.X (EX. 140.8)
- BB Fourth one minute test taken with the nuclear density gauge rotated another 90° at "Z" 125+00, 16' left, gauge will read Dens: X.X (EX. 140.2) NOTE: Repeat letters Y, Z, AA, BB four more times at the next four stations that are written in Letter V for a complete test section
- **CC** Average Density, add lines (Y + Z + AA + BB) / 4 = average density of the four shots taken (EX. 141.0 + 140.7 + 140.8 + 140.2 = 562.7 / 4 = 140.7) **NOTE:** (Line Y + Line Z) / 2 = the average of the joint shots (EX. 133.9 + 134.3 = 268.2 / 2 = 134.1)
- **DD** Corrected Density, Line CC (Average Density) x Line FF (Correction Factor) = Line DD (Corrected Density) (EX. 140.7 x .99 = 139.3)
- Relative Comp., Line DD (Corrected Density) / Line S (TARGET DENSITY) x 100 = Line EE (% Relative Comp.) (EX. (139.3 / 147.6) x 100 = 94.4% = 94%) NOTE: Round to the nearest whole percent NOTE: If this section fails, notify the contractor of the failing results, they may have the finish roller to re-roll this section. If section is re-rolled discard the failing results and start over from Letter Y
- **FF** Correction Factor is established on the first day of paving using NDOT forms 040-017, 040-017A and 040-017B (EX. 0.99) **NOTE:** The correction factor will be used throughout the duration of the project unless the gauge is recorrelated
- **GG** Mean Test Section Density, Add all five of Line DD (average corrected densities) / 5 = Line GG (Mean Test Section Density) (EX. 139.3 + 139.4 + 139.4 + 136.7 + 139.2 = 694.0 694.0 / 5 = 138.8) **NOTE:** The joint corrected densities are not used when calculating the Mean Test Section Density

## NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

#### LINE EXPLANATION OF NEEDED INFORMATION

| HH -   | Mean Percent Relative Compaction, Line GG (Mean Test Section Density) / Line S (TARGET DENSITY) x 100 = Line HH (Mean Percent Relative Compaction) round to the nearest whole percent (EX. 138.8 / 147.6 = $0.940 \times 100 = 94.0\% = 94\%$ )                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II -   | Joint Test Specification, refer to the special Provisions or Standard Specifications for the joint test specification (EX. 90)                                                                                                                                  |
| J] -   | Single Test Specification, refer to the Special Provisions or Standard Specifications for the single test specification (EX. 90 to 97)                                                                                                                          |
| KK -   | Mean Test Section Specification, refer to the Special Provisions or Standard Specifications for the mean test section specifications (EX. 92 to 96)                                                                                                             |
| LL -   | Remarks, anything that needs to be documented in this test section (EX. Test section ran to correlate the nuclear density gauge. Used test # 1, 2, 3, 4 and 5 to match the drilled cores for gauge correction factor. R. E. and contractor notified of results) |
| MM -   | Accepted Rejected, make sure you circle Accepted or Rejected for the test section <b>NOTE:</b> If an R.E. accepts a failing section on substantial compliance, they must write a note on the report and sign it                                                 |
| NN -   | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. James Fret)                                                                                                                                                               |
| NOTES: |                                                                                                                                                                                                                                                                 |
| 1.     | Circle all failures in red and explain under remarks what transpired with failing test section (EX. Contractor ripped out, R.E. accepted on substantial compliance, etc.)                                                                                       |
| 2      | During the gauge correlation, two extra locations shall be tested within the test section                                                                                                                                                                       |

2. During the gauge correlation, two extra locations shall be tested within the test section. These two locations shall be labeled 1-PM-6 and 1-PM-7. These two extra test areas are randomly chosen and will be cored during gauge correlation. These two extra tests need to be submitted with the gauge correlation.

# NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

#### LINE EXPLANATION OF NEEDED INFORMATION

#### NOTES:

| 3. | When figuring a test section that has a break in the stationing or an equation, figure the test section as follows: "Z" $126 + 50$ to "Z" $124 + 00$ break in stationing due to bridge "Z" $120 + 00$ to "Z" $110 + 00$<br>(EX. $12650 - 12400 = 250'$ , $12000 - 11000 = 1000'$ , $1000 + 250 = 1250'$ for this test section.)      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. | Small sized area is $1000 \text{ yd}^2$ or less, it has its own test number 5-PM-1 and is on its own sheet. If there is over $1000 \text{ yd}^2$ it shall be made into a full test section. The only way multiple small sections will be accepted is if they are approaches.                                                         |
| 5. | There should not be any informational test sections for plantmix compactions unless the gauge is being correlated on another contract, or a road that is not on this specific contract. If this is the case then the test section numbering will be I-1-PM-1 through I-1-PM-7 and what transpired shall be documented under remarks. |
| 6. | There are no re-tests on plantmix compactions, refer to the Construction Manual under Section 5, Sampling and Testing.                                                                                                                                                                                                               |
| 7. | Correlate the gauge for each surface that is being paved (EX. paving on top of base - correlate gauge, paving on coldmilling - correlate gauge, paving second lift of plantmix - correlate gauge etc.).                                                                                                                              |

# NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                            |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α-   | Material Type as specified, found in the Contract Plans or Special Provisions (EX. TYPE II PBS)                                                                                              |
| В -  | Lift, Lane & Direction, of material that is being tested (EX. LIFT 1)<br>Lane that is being paved and tested (EX. Approach)<br>Direction of the paving operation (EX. N/A)                   |
| C -  | Width and Depth, Width of the plantmix that is currently being placed (EX. Varies 12') Depth of the plantmix that is being placed (EX. 2.5")                                                 |
| D -  | Used exclusively for END RESULT contracts                                                                                                                                                    |
| Ε-   | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                  |
| F-   | Date the compactions were taken (EX. 7/12/2010)                                                                                                                                              |
| G -  | Gauge Set Number, number assigned to the gauge that is being used to test the material (EX. 142) <b>NOTE:</b> Consultants shall use the gauge serial number found on the back of their gauge |
| Н-   | Tested By, print first and last name of the tester or testers who completed the test (EX. Jane Doe)                                                                                          |
| 1-   | TEST SECTION STATIONING, ending station minus beginning station equals length of test section (EX. 114+00 - 113+25 = 75')                                                                    |
| J -  | A Random Numbers Block is not required for a small area, pick a miscellaneous location within the small area                                                                                 |
| К-   | Beginning Station for this specific small area (EX. "Z" 114+00)                                                                                                                              |
| L-   | Ending Station for this specific small area (EX. "Z" 113+25)                                                                                                                                 |
| M -  | Random numbers are not required for small areas                                                                                                                                              |
| N -  | Length not required for small areas                                                                                                                                                          |
| 0 -  | Random lengths are not required for small areas                                                                                                                                              |

# NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

| LINE       | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ρ-         | Random numbers are not required for small areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Q -        | Width not required for small areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| R -        | Random widths not required for small areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S -        | TARGET DENSTIY (pcf), theoretical maximum specific gravity (RICE) performed from that day per Test Method Nev. T324, one in the A.M. and one in the P.M. (EX. 147.6) <b>NOTE:</b> The tester who is running the plantmix sample at the field lab will give you the RICE results. The RICE results from the previous days P.M. test can be used until the A.M. results are completed. One test section will have one RICE, DO NOT use two RICES on one test section                                                                                                                  |
| т.         | RICE, test number that correlates to the test number for the ignition oven sample, per Test Method Nev. T761 (EX. T-1-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| U -        | Test number for this particular small area (EX. 2-PM-1)<br><b>NOTE:</b> Test numbers run in chronilogical order starting with 1-PM-1 through 1-PM-7<br>anything under 1000 yd <sup>2</sup> can be considered a small test section. If it's a small test<br>section each test needs its own test number, 1-PM-1, 2-PM-1 etc. and on its own sheet<br>and an explanation of why it's a small area (If the contractor is moving to various<br>locations throughout the day and it will equal a full test section, make it a full test<br>section instead of a bunch of small sections) |
| V -        | Station where the four test shots are taken for the compaction (EX. 113 + 75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>W</b> - | Distance from edge of the mat where the shots will be taken with the gauge that day (EX. 5) <b>NOTE:</b> Do not take tests within 1 foot from the edge of the mat                                                                                                                                                                                                                                                                                                                                                                                                                   |
| X -        | Left or Right, the side of the mat in which the distance is pulled from (EX. Left)<br><b>NOTE:</b> Do Not change sides throughout the day. Pick left or right and stay with it so you don't confuse yourself                                                                                                                                                                                                                                                                                                                                                                        |
| Υ -        | NUCLEAR DENSITY READINGS, one minute test taken with the nuclear density gauge at "Z" 113 + 75, 5' left, gauge will read Dens: X.X (EX. 135.2) mark around the gauge with keil <b>NOTE:</b> If you are paving a joint, do not forget to take the shot as close to the joint as possible place the gauge parallel to the joint. Be sure the gauge sits flat on the mat and does not rock                                                                                                                                                                                             |
## 040-017 Rev. 5/05

# NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

#### LINE EXPLANATION OF NEEDED INFORMATION

| Ζ-   | Second one minute test taken with the nuclear density gauge rotated 90° at "Z" 113+75, 5' left, gauge will read Dens: X.X (EX. 135.5) mark around the gauge with keil <b>NOTE:</b> If you are paving a joint, do not forget to take the shot as close to the joint as possible. Place the gauge parallel to the joint. Be sure the gauge sits flat on the mat and does not rock                                                               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AA - | Third one minute test taken with the nuclear density gauge rotated another 90° at "Z" 113+75, 5' left, gauge will read Dens: X.X (EX. 135.3)                                                                                                                                                                                                                                                                                                  |
| BB - | Fourth one minute test taken with the nuclear density gauge rotated another 90° at "Z" 113+75, 5' left, gauge will read Dens: X.X (EX. 136.3)                                                                                                                                                                                                                                                                                                 |
| CC - | Average Density, add lines $Y + Z + AA + BB / 4 =$ average density of the four shots taken (EX. 135.2 + 135.5 + 135.3 + 136.3 = 542.3 / 4 = 135.6)                                                                                                                                                                                                                                                                                            |
| DD - | Corrected Density, Line CC (Average Density) x Line FF (Correction Factor) = Line DD (Corrected Density) (EX. 135.6 x 1.01 = 137.0)                                                                                                                                                                                                                                                                                                           |
| EE - | % Relative Compaction, Line DD (Corrected Density) / Line S (TARGET DENSITY) x $100 =$ Line EE (% Relative Compaction) (EX. (137.0 / 147.6) x $100 = 92.8\% = 93\%$ )<br><b>NOTE:</b> Round to the nearest whole percent NOTE: If this section fails, notify the contractor of the failing results, they may have the finish roller to re-roll this section. If section is re-rolled discard the failing results and start over from Letter Y |
| FF - | Correction Factor is established on the first day of paving using NDOT forms 040-017, 040-017A and 040-017B (EX. 1.01) <b>NOTE:</b> The correction factor will be used throughout the duration of the project unless the gauge is recorrelated                                                                                                                                                                                                |
| GG - | Mean Test Section Density is not required for a small area                                                                                                                                                                                                                                                                                                                                                                                    |
| нн - | Mean Percent Relative Compaction is not required for a small area                                                                                                                                                                                                                                                                                                                                                                             |
| II - | Joint Test Specification, refer to the Special Provisions or Standard Specifications for the joint test specification (EX. 90)                                                                                                                                                                                                                                                                                                                |
| JJ - | Single Test Specification, refer to the Special Provisions or Standard Specifications for the single test specifications (EX. 90 to 97)                                                                                                                                                                                                                                                                                                       |
| КК - | Mean Test Section Specifications are not required for a small area                                                                                                                                                                                                                                                                                                                                                                            |

# 040-017 Rev. 5/05

# NUCLEAR THIN LAYER COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LL - | Remarks, anything that needs to be documented for this small area Test Section (EX. Small area under 1000yd <sup>3</sup> paving an approach at Topsey Lane)                                                           |
| MM - | Accepted Rejected, make sure you circle Accepted or Rejected for this small area <b>NOTE:</b> If an R.E. accepts a failing ssmall area on substantial compliance, they must write a note on the report and initial it |
| NN - | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. James Fret)                                                                                                                     |

# NOTES:

| 1. | Circle all failures in red and explain under remarks what transpired with failing test section.                                                                                                                                                                           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Small sized area is $1000 \text{ yd}^2$ or less, it has its own test number 5-PM-1 and is on its own sheet. If there is over $1000 \text{ yd}^2$ it shall be made into a full test section. The only way multiple small areas will be accepted is if they are approaches. |
| 3. | There are no re-tests on plantmix compactions, refer to the Construction Manual unde Section 5, Sampling and Testing.                                                                                                                                                     |

## NUCLEAR THIN LIFT CORRECTION FACTOR WORKSHEET

| Date<br>Material Type<br>Calculated By | -          |               |                                    |                                   | Contract<br>Nuclear S<br>Mix Desig | No.<br>Set No.<br>gn No. |                              |         | -                          |
|----------------------------------------|------------|---------------|------------------------------------|-----------------------------------|------------------------------------|--------------------------|------------------------------|---------|----------------------------|
| (Mg/m <sup>3</sup> ) will b            | e carrie   | d to the 0    | .001                               | (pcf) will be                     | carried t                          | to the 0.1               |                              |         |                            |
| NU                                     | CLEAR      | DENSITI       | ES                                 |                                   |                                    |                          | CORE DE                      | NSITIES | ]                          |
| #                                      | = Г        |               | Mg/m <sup>3</sup> or (p            | ocf)                              |                                    | #                        | =                            |         | Mg/m <sup>3</sup> or (pcf) |
| #                                      | =          |               | Ma/m <sup>3</sup> or (n            | ocf)                              |                                    | #                        |                              |         | Ma/m <sup>3</sup> or (pcf) |
| #                                      | _          |               | Ma/m <sup>3</sup> or (r            | ocf)                              |                                    | #                        |                              |         | Ma/m <sup>3</sup> or (pcf) |
| #                                      | _          |               | $Mg/m^3 $ or (r                    | vof)                              |                                    | #                        |                              |         | Mg/m <sup>3</sup> or (pcf) |
| #                                      | -          |               | Mg/m <sup>3</sup> ar (p            | of)                               |                                    | #<br>#                   |                              |         | $Mg/m^3 rr(pcf)$           |
| #                                      | = L        |               | ivig/iii or (p                     | JCI)                              |                                    | #                        | - =                          |         |                            |
| Average                                | = [        |               | Mg/m <sup>3</sup> or (p            | ocf)                              |                                    | Average                  | =                            |         | Mg/m <sup>3</sup> or (pcf) |
| (Nuc                                   | clear Dens | sity Number   | s and Core Der                     | sity Numbers                      | Must Corres                        | spond)                   |                              |         |                            |
|                                        |            |               | FOTION                             | I                                 |                                    |                          |                              |         |                            |
|                                        | OR A 1.    |               |                                    | log is not groat                  | orthop 1/1                         | % of the avera           | ao ooro donoit               |         |                            |
| (II U)<br>the l                        | nuclear as | uce pelween   | uie iwo averay<br>na shall ha usar | es is not great<br>without correc | $e_i$ (i.a. $i + - i$              | orrection facto          | ge core density<br>r – 1 00) | γ,      |                            |
|                                        | nuoloui gu | lugo rouuling |                                    |                                   | 50011) (1.0. 0                     |                          | = 1.00).                     |         |                            |
|                                        |            | Х             | 0.01                               |                                   | =                                  |                          |                              |         |                            |
| Core Density Aver                      | rage       |               |                                    |                                   |                                    | +/-1% of Co              | ore Density Avo              | -<br>]. |                            |
|                                        | -          |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        |            | -             |                                    |                                   | =                                  |                          |                              | _       |                            |
| Core Density Aver                      | rage       |               | Nuclear Dens                       | sity Average                      |                                    |                          |                              |         |                            |
|                                        |            |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        |            |               |                                    |                                   |                                    |                          |                              | •       |                            |
|                                        |            |               | If 1.00 Correct                    | tion Factor use                   | e box                              |                          |                              |         |                            |
| CORRECTION                             |            | OR            | 7                                  |                                   |                                    |                          |                              |         |                            |
| OORREOTIO                              |            |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        |            | 1             |                                    |                                   | =                                  |                          |                              | 1       |                            |
| Core Density Aver                      | rage       |               | Nuclear Dens                       | sitv Average                      |                                    | Correction fa            | actor                        | 1       |                            |
| ,                                      | 5          |               |                                    | , 0                               |                                    |                          |                              |         |                            |
| REMARKS:                               |            |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        | -          |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        | -          |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        | -          |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        | -          |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        |            |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        |            |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        |            |               |                                    |                                   |                                    |                          |                              |         |                            |
| Resident Engi                          | neer:      |               |                                    |                                   |                                    |                          | _                            |         |                            |
|                                        |            |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        |            |               |                                    |                                   |                                    |                          |                              |         |                            |
|                                        |            | D' · · "      |                                    |                                   |                                    | Deality of E             |                              |         |                            |
| 040-017A<br>Rev. 11/08                 |            | Distribu      | uuon: Headquai                     | ters Construct                    | ion, District,<br>1                | , resident Eng           | meer, Contract               | LOT     |                            |

#### NUCLEAR THIN LIFT CORRECTION FACTOR WORKSHEET

| A. Date          | 7/12/2010   | D. Contract No.    | 3925     |
|------------------|-------------|--------------------|----------|
| B. Material Type | Type II PBS | E. Nuclear Set No. | 142      |
| C. Calculated By | Jane Doe    | F. Mix Design No.  | BF07-137 |

(Mg/m<sup>3</sup>) will be carried to the 0.001

(pcf) will be carried to the 0.1

|            | NUCLEA |       | S                          |           | CORE D | ENSITIES | ]                           |
|------------|--------|-------|----------------------------|-----------|--------|----------|-----------------------------|
| G.         |        | . Н.  |                            | I.        |        | J.       | -                           |
| # 1-PM-1   | =      | 140.7 | Mg/m <sup>3</sup> or (pcf) | # 1-PM-1  | _ =    | 143.0    | Mg/m <sup>3</sup> or (pcf)) |
| # 1-PM-2   | =      | 140.8 | Mg/m <sup>3</sup> or (pcf) | # 1-PM-2  | =      | 138.7    | Mg/m <sup>3</sup> or (ocf)  |
| # 1-PM-3   | =      | 140.8 | Mg/m <sup>3</sup> or (pcf) | # 1-PM-3  | =      | 140.8    | Mg/m <sup>3</sup> or (pcf)  |
| # 1-PM-4   | =      | 138.1 | Mg/m <sup>3</sup> or (pcf) | # 1-PM-4  | =      | 134.2    | Mg/m <sup>3</sup> or (ocf)  |
| # 1-PM-5   | =      | 140.6 | Mg/m <sup>3</sup> or (pcf) | # 1-PM-5  | =      | 135.5    | Mg/m <sup>3</sup> or (ocf)  |
|            |        |       |                            |           |        |          |                             |
| K. Average | ) =    | 140.2 | Mg/m <sup>3</sup> or (pcf) | L. Averag | ε =    | 138.4    | Mg/m <sup>3</sup> or (ocf)  |

(Nuclear Density Numbers and Core Density Numbers Must Correspond)

#### 1% CHECK FOR A 1.00 CORRECTION

(If the difference between the two averages is not greater than +/-1% of the average core density, the nuclear gauge readings shall be used without correction) (i.e. correction factor = 1.00).

| М.          | 138.4           | Х                                 | Ν.                         | 0.01                                                | _ =                                     | О.                          | 1.4                                              |                               |                                 |        |
|-------------|-----------------|-----------------------------------|----------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------|--------------------------------------------------|-------------------------------|---------------------------------|--------|
| Core I      | Density Average | _                                 |                            |                                                     | _                                       | +/-1%                       | 6 of Core Density                                | Avg.                          |                                 |        |
| P.          | 138.4           |                                   | Q.                         | 140.2                                               | =                                       | R.                          | -1.8                                             |                               |                                 |        |
| Core I      | Density Average | _                                 | Nucle                      | ear Density Average                                 |                                         |                             |                                                  |                               |                                 |        |
|             |                 |                                   | S. If                      | 1.00 Correction Fa                                  | ctor use box                            |                             | N/A                                              |                               |                                 |        |
| COR         | RECTION FAC     | TOR                               |                            |                                                     |                                         |                             |                                                  |                               |                                 |        |
| т.          | 138.4           | /                                 | <u>U</u> .                 | 140.2                                               | =                                       | V.                          | 0.99                                             |                               |                                 |        |
| Core I      | Density Average | _                                 | Nucle                      | ear Density Average                                 | _                                       | Correc                      | ction factor                                     |                               |                                 |        |
| <b>W.</b> R | EMARKS:         | The diffe<br>0.99. Use<br>Did not | erence<br>ed 1-P<br>use co | between the tv<br>M-1, 1-PM-2, 1-<br>res 1-PM-6 and | wo was gre<br>PM-3, 1-PM<br>I 1-PM-7 in | ater th<br>I-4 AN<br>the ga | aan +/- 1%, th<br>D 1-PM-5 for<br>auge correlati | e correct<br>the gaug<br>ion. | tion factor is<br>je correlatio | ;<br>n |
|             |                 |                                   |                            |                                                     |                                         |                             |                                                  |                               |                                 |        |
| <b>X.</b> R | esident Enginee | r:                                |                            | Jamos Fro                                           | t                                       |                             |                                                  |                               |                                 |        |

#### 040-017A Rev. 11/08

# NUCLEAR THIN LIFT CORRECTION FACTOR WORKSHEET

#### LINE EXPLANATION OF NEEDED INFORMATION

- A Date the cores were taken (EX. 7/12/2010)
- B Material Type, as specified, found in the Contract Plans or Special Provisions (EX. Type II PBS)
- C Calculated By, print first and last name of the tester or testers who completed the test (EX. Jane Doe)
- D Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)
- E Nuclear Set Number assigned to the gauge that is being used to test the plantmix (EX. 142) NOTE: Consultants shall use the gauge serial number found on the back of the gauge
- F Mix Design No. approved by the Materials Division that the sample represents (EX. BF07-137) NOTE: Approved copies on file in the construction field office
- G Nuclear Densities, actual test number for this particular test given to a specific nuclear gauge shot and core while paving, use the same test number used on NDOT form 040-017 to fill in Line G (Nuclear Densities) on form 040-017A (EX. 1-PM-1, 1-PM-2, 1-PM-3, 1-PM-4 and 1-PM-5) NOTE: If correlating multiple gauges, number all test reports 1-PM-1 through 1-PM-7 since all tests are taken at the same location. Only use 1-PM-6 and 1-PM-7 for a gauge correlation and only if one of the cores 1-PM-1 to 1-PM-5 breaks, is damaged or is a flyer.
- H Nuclear Densities, Average density from the four one minute shots taken from NDOT form 040-017 Line CC (Average Densities) (EX. 140.7, 140.8, 140.8, 138.1, 140.6), make sure to use the average densities that are correlated to the cores being used NOTE: These numbers are NOT from Line DD (Corrected Density) on Form 040-017
- Actual test number for this particular test given to that specific nuclear gauge shot and core while paving, use the same test number used on NDOT form 040-017 and 040-017B (EX. 1-PM-1, 1-PM-2, 1-PM-3, 1-PM-4 AND 1-PM-5) NOTE: If correlating multiple gauges, number all cores 1-PM-1 through 1-PM-7 since the same set of cores will be used for all gauges being correlated

040-017A Rev. 11/08

# NUCLEAR THIN LIFT CORRECTION FACTOR WORKSHEET

#### LINE EXPLANATION OF NEEDED INFORMATION

- J Core Densities, density of the actual core after completing Test Method Nev. T336 and reported on Form 040-017B. (EX. 143.0, 138.7, 140.8, 134.2, and 135.5) NOTE: Be sure that the core used is the one drilled from the same nuclear test shot
- **K** Average, Line H (Nuclear Average Density numbers from NDOT form 040-017) / 5 = Line K (Nuclear Density Average) (EX. 140.7 + 140.8 + 140.8 + 138.1 + 140.6 = 701.0 / 5 = 140.2)
- L Average, Line J (core densities from NDOT form 040-017B) / 5 = Line L (Core Density Average) (EX. 143.0 + 138.7 + 140.8 + 134.2 + 135.5 = 692.2 / 5 = 138.4)
- M Core Density Average from Line L (EX. 138.4)
- **N** Constant number, it is the decimal equivalent of 1% (EX. 0.01)
- **O** Line M (Core Density Average) x Line N (constant 1%) = Line O (± 1% of Core Density Average) (EX. 138.4 x 0.01 = 1.4)
- P Core Density Average from Line L (EX. 138.4)
- **Q** Nuclear Density Average from Line K (EX. 140.2)
- **R** (Core Density Average) (Nuclear Density Average) = difference of the two NOTE: If the absolute value of Line R is more than Line O you will have a Correction Factor. Absolute value of -1.8 = 1.8 1.8 > 1.4 therefore this gauge has a Correction Factor EX.

|      |    |   |    |      | •    |
|------|----|---|----|------|------|
| -1.4 | -1 | 0 | +1 | +1.4 | +2.0 |

- **S** If the absolute value of Line R is less than Line O then there will **NOT** be a correction factor for this gauge, use 1.0. (EX. 1.2 < 1.4 no correction factor)
- **T** Core Density Average from Line L (EX. 138.4)
- U Nuclear Density Average from Line K (EX. 140.2)

040-017A Rev. 11/08

# NUCLEAR THIN LIFT CORRECTION FACTOR WORKSHEET

#### LINE EXPLANATION OF NEEDED INFORMATION

- V Line T (Core Density Average) / Line U (Nuclear Density Average) = Line V (Correction Factor (EX. 138.4 / 140.2 = 0.99) NOTE: This correction factor will be used for the Type II PBS for the duration of the job unless a new correction factor is established due to a new mix design, a change in material or the paving surface is different than that of the original surface that was cored
- Anything that needs to be documented (EX. The difference between the two was greater than ±1%, the correction factor is 0.99. Used 1-PM-1, 1-PM-2, 1-PM-3, 1-PM-4 AND 1-PM-5 for the gauge correlation. Did not use cores 1-PM-6 and 1-PM-7 in the gauge correlation)
- X Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. James Fret)

## NOTE:

- Gauge shall be correlated for every different surface of material being paved on top of (EX. gauge correlated - milled surface, gauge correlated - base surface, gauge correlated - second lift of plantmix, gauge correlated - cold recycle surface etc.).
- **2.** Use the first 5 cores for the gauge correlation unless one of the first five cores is damaged (EX. broken core, diesel spilled on the core etc.).

#### BULK SPECIFIC GRAVITY AND DENSITY OF COMPACTED BITUMINOUS MIXTURES

| Contract No.:                                         | Material Type:                                                                                                                  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Date:                                                 | Gauge Set Number:                                                                                                               |
| Bulk Specific Gravity = $A$<br>to nearest 0.001 B - C | Core Density = Bulk Specific Gravity x 62.4 lbs/ft <sup>3</sup><br>to nearest 0.001 Mg/m <sup>3</sup> (0.1 lb/ft <sup>3</sup> ) |
|                                                       | Nuclear Density to nearest 0.001 Mg/m <sup>3</sup> (0.1 lb/ft <sup>3</sup> )                                                    |
| "A" = Weight in grams in air (oven-dry condition)     | Difference to nearest 0.001 Mg/m <sup>3</sup> (0.1 lb/ft <sup>3</sup> )                                                         |
| "B" = Weight in grams (saturated surface-dry)         |                                                                                                                                 |

"C" = Weight in grams (immersed in water)

 

 Core No.
 Station
 "A"
 "B"
 "C"
 Bulk Specific Gravity
 Core Density
 Nuclear Density
 Density
 Difference

 Image: Core No.
 Station
 "A"
 "B"
 "C"
 Gravity
 Density
 Density
 Difference

 Image: Core No.
 Station
 "A"
 "B"
 "C"
 Gravity
 Density
 Density
 Difference

 Image: Core No.
 Image: Core No.

Remarks:

Tested By:

Resident Engineer:

NDOT 040-017B Rev. 09/13

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

#### BULK SPECIFIC GRAVITY AND DENSITY OF COMPACTED BITUMINOUS MIXTURES

A. Contract No.: 3925

8/27/2013 B. Date:

"A" = Weight in grams in air (oven-dry condition)

"B" = Weight in grams (saturated surface-dry)

"C" = Weight in grams (immersed in water)

Bulk Specific Gravity = Ato popped 0.001 B - C

C. Material Type: PBS Type 2

D. Gauge Set Number: \_\_\_\_\_ 121

Core Density = Bulk Specific Gravity x 62.4 lbs/ft<sup>3</sup> to nearest 0.001 Mg/m<sup>3</sup> (0.1 lb/ft<sup>3</sup>)

Nuclear Density to nearest 0.001 Mg/m<sup>3</sup> (0.1 lb/ft<sup>3</sup>)

Μ.

-0.1

2.2

1.1

-0.5

0.1

1.4

-0.8

Difference to nearest 0.001 Mg/m<sup>3</sup> (0.1 lb/ft<sup>3</sup>)

K. L. J. Ε. F. G. Η. I. **Bulk Specific** Core Nuclear "C" Core No. Station "A" "B" Density Gravity Density Difference 1-PM-1 "Z" 125 + 00 1243.1 1248.0 705.4 2.291 143.0 143.1 -1-PM-2-<del>"Z" 121 + 75</del> 1245.4 1249.2 709.1 2.306 143.9 146.1 1-PM-3 "Z" 119 + 75 780.5 783.7 437.9 2.257 140.8 139.7 1-PM-4 "Z" 117 + 50 972.0 987.1 535.3 2.151 134.2 134.7 1-PM-5 "Z" 114 + 00 973.6 987.5 539.3 2.172 135.5 135.4 -1-PM-6-<del>"Z" 124 + 75</del> 1100.5 1110.0 613.7 2.217 138.3 136.9 1-PM-7 "Z" 123 + 00 1235.1 1242.4 686.5 2.222 138.7 139.5 2.219 138.4 138.5 N. AVERAGE OF FIVE (5) CORES

**O.** Remarks: Correlation was completed on a milled surface

P. Tested By: Leonard Cooper

**Q.** Resident Engineer: Howard Koothrappali

NDOT 040-017B Rev. 09/13

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

#### 040-017B Rev. 09/13

# BULK SPECIFIC GRAVITY AND DENSITY OF COMPACTED BITUMINOUS MIXTURES

#### LINE EXPLANATION OF NEEDED INFORMATION

| Α-  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (ex. 3925)                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Date the cores were taken (ex. 8/27/2013)                                                                                                                                                    |
| C - | Material Type, as specified, in the Contract Plans or Special Provisions (ex. PBS Type 2)                                                                                                    |
| D - | Gauge Set Number, assigned to the gauge that is being used to test the plantmix (ex. 121)<br><b>NOTE:</b> Consultants shall use the gauge serial number found on the back of the gauge       |
| Ε-  | Core No., number assigned to each core taken from the roadway (ex. 1-PM-1 etc.)                                                                                                              |
| F-  | Station, corresponding sample location found on NDOT form 040-017 (station) (ex. "Z" 125 + 00)                                                                                               |
| G - | Column "A", weight of the oven-dry core in grams in air, per Test<br>Method Nev. T336 (ex. 1243.1)                                                                                           |
| Η-  | Column "B", weight of the saturated surface-dry core in grams, per Test<br>Method Nev. T336 (ex. 1248.0)                                                                                     |
| 1-  | Column "C", weight of the immersed in water core in grams, per Test<br>Method Nev. T336 (ex. 705.4)                                                                                          |
| J - | Bulk Specific Gravity, Line G (Oven-Dry Condition) / Line H ((Saturated Surface-Dry) - Line I (Immersed in Water)) = Line J ( Bulk Specific Gravity) (ex. 1243.1 / (1248.0 - 705.4) = 2.291) |
| К-  | Core Density, Line J (Bulk Specific Gravity) x 62.4 lbs/ft <sup>3</sup> = Line K (Core Density)<br>(ex. 2.291 x 62.4 = 143.0)                                                                |
| L-  | Nuclear Density, Thin-Layer Average Density value obtained at the corresponding test location found on Form 040-017 (ex. 143.1)                                                              |
| M - | Difference, Line K (Core Density) - Line L (Nuclear Density) = M (Difference)<br>(ex. 143.0 - 143.1 = -0.1)                                                                                  |

# 040-017B Rev. 09/13

# BULK SPECIFIC GRAVITY AND DENSITY OF COMPACTED BITUMINOUS MIXTURES

#### LINE EXPLANATION OF NEEDED INFORMATION

| N -   | Average, sum of the five cores divided by 5 to get the average of the Bulk Specific Gravity (ex. $2.291 + 2.257 + 2.151 + 2.172 + 2.222 = 11.093 / 5 = 2.219$ )<br>Average, sum of the five cores divided by 5 to get the average of the Core Density (ex. $143.0 + 140.8 + 134.2 + 135.5 + 138.7 = 692.2 / 5 = 138.4$ )<br>Average, sum of the five cores divided by 5 to get the average of the Nuclear Density (ex. $143.1 + 139.7 + 134.7 + 135.4 + 139.5 = 692.4 / 5 = 138.5$ )<br><b>Note:</b> From the initial seven cores taken, discard the two cores with the biggest difference between the Core Density and the Nuclear Density. Use five cores that are the most uniform to obtain the "Average of Five (5) Cores" |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 -   | Remarks, anything that needs to be documented (ex. Correlation was completed on a milled surface.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ρ-    | Tested By, printed first and last name of the tester or testers who completed the test (ex. Leonard Cooper)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Q -   | Resident Engineer or Assistant Resident Engineer signature on that specific crew verifying the accuracy of the reported results. (ex. Howard Koothrappali)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NOTE: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.    | Unless a core is broken or damaged, five cores shall be used to correlate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Thin-Layer density gauge. If a core is broken or damaged, one of the other cores will be used in its place.

## COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

(Drilled Core Data)

| Material Type               |                                                                                                         |        | Contract Number |          |  |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------|--------|-----------------|----------|--|--|--|
| Lift, Lane & Description    |                                                                                                         |        | _ Date          |          |  |  |  |
| Width and Depth             |                                                                                                         |        | Tested By       |          |  |  |  |
|                             |                                                                                                         |        |                 |          |  |  |  |
|                             |                                                                                                         |        |                 |          |  |  |  |
| CONTROL DENSITY:            |                                                                                                         |        | Р               |          |  |  |  |
|                             |                                                                                                         |        | Г               | IVI      |  |  |  |
| Station                     |                                                                                                         |        |                 |          |  |  |  |
| Target Density (Pice)       |                                                                                                         |        |                 |          |  |  |  |
| Talget Density (Rice)       |                                                                                                         |        |                 |          |  |  |  |
| TEST SECTION DENSITY:       |                                                                                                         |        |                 |          |  |  |  |
| Location of Test Section    | Station                                                                                                 |        | to Station      |          |  |  |  |
| Random Block Number         |                                                                                                         |        |                 |          |  |  |  |
|                             |                                                                                                         | CORE D | ΑΤΑ             |          |  |  |  |
| Test Number                 |                                                                                                         |        |                 |          |  |  |  |
| Station                     |                                                                                                         |        |                 |          |  |  |  |
| Distance from Edge          |                                                                                                         |        |                 |          |  |  |  |
| Left or Right               |                                                                                                         |        |                 |          |  |  |  |
| Dry Weight                  |                                                                                                         |        |                 |          |  |  |  |
| Weight in Water             |                                                                                                         |        |                 |          |  |  |  |
| SSD Weight                  |                                                                                                         |        |                 |          |  |  |  |
| Bulk Specific Gravity       |                                                                                                         |        |                 |          |  |  |  |
| Core Density                |                                                                                                         |        |                 |          |  |  |  |
| Percent Relative Compaction |                                                                                                         |        |                 |          |  |  |  |
| Mean Test Section Density = |                                                                                                         |        |                 | _        |  |  |  |
| Mean Percent Relative Compa | ction =                                                                                                 |        |                 | _        |  |  |  |
| Test Section:               | Accepted                                                                                                |        |                 | Rejected |  |  |  |
| Pomarka:                    |                                                                                                         |        |                 |          |  |  |  |
|                             |                                                                                                         |        |                 |          |  |  |  |
|                             |                                                                                                         |        |                 |          |  |  |  |
|                             |                                                                                                         |        |                 |          |  |  |  |
|                             |                                                                                                         |        |                 |          |  |  |  |
| Tested By:                  |                                                                                                         |        | Resident Engin  | eer:     |  |  |  |
|                             |                                                                                                         |        |                 |          |  |  |  |
| 040-018<br>Rev. 8/06        | OT<br>D-018 Distribution: Headquarters Construction, District, Resident Engineer, Contractor<br>v. 8/06 |        |                 |          |  |  |  |

#### COMPACTION REPORT FOR PLANTMIX BITUMINOUS PAVEMENTS

(Drilled Core Data)

| A. Material Type            | PBS Type II        | B. Contract Number | 3925      |
|-----------------------------|--------------------|--------------------|-----------|
| C. Lift, Lane & Description | Lift 1, Lane 1, NB | D. Date            | 7/12/2010 |
| E. Width and Depth          | 20.0' 2"           | F. Tested By       | J. Moren  |
|                             |                    |                    |           |
|                             |                    |                    |           |

#### CONTROL DENSITY:

| Theoretical Maximum Density | AM            | PM |
|-----------------------------|---------------|----|
| G. Test Number              | T-1-1         |    |
| H. Station                  | "PW" 541 + 90 |    |
| I. Target Density (Rice)    | 149.8         |    |

#### **TEST SECTION DENSITY:**

J. Location of Test Section Station \_\_\_\_\_\_ to Station \_\_\_\_\_\_ to Station \_\_\_\_\_\_

3

K. Random Block Number

|                                                   |               | CORE                | DATA                                |                        |                  |
|---------------------------------------------------|---------------|---------------------|-------------------------------------|------------------------|------------------|
| L. Test Number                                    | 1-PM-1        | 1-PM-2              | 1-PM-3                              | 1-PM-4                 | 1-PM-5           |
| M. Station                                        | "PW" 543+75   | "PW"541+50          | "PW"541+00                          | "PW"539+50             | "PW"537+25       |
| N. Distance from Edge                             | 17'           | 2'                  | 10'                                 | 19'                    | 8'               |
| <b>O.</b> Left or Right                           | LT.           | LT.                 | LT.                                 | LT.                    | LT.              |
| P. Dry Weight                                     | 1247          | 1160                | 1143                                | 1266                   | 1088             |
| <b>Q.</b> Weight in Water                         | 691           | 648                 | 636                                 | 713                    | 602              |
| R. SSD Weight                                     | 1261          | 1168                | 1155                                | 1274                   | 1099             |
| S. Bulk Specific Gravity                          | 2.188         | 2.231               | 2.202                               | 2.257                  | 2.189            |
| T. Core Density                                   | 136.5         | 139.2               | 137.4                               | 140.8                  | 136.6            |
| U. Percent Relative Compaction                    | 91            | 93                  | 92                                  | 94                     | 91               |
| V. Mean Test Section Density =                    |               | 138.1               |                                     |                        |                  |
| W. Mean Percent Relative Comp                     | paction =     | 92                  |                                     |                        |                  |
| X. Test Section:                                  | Accepted      | X                   |                                     | Rejected               |                  |
| Y. Remarks: These cores were<br>Bridge Constructi | used to accep | t this test sective | on per the Stan<br>cification and t | idard Specifica        | tions for Road a |
| results.                                          |               |                     |                                     |                        | <u>.</u>         |
|                                                   |               |                     |                                     |                        |                  |
|                                                   |               |                     |                                     |                        |                  |
|                                                   |               |                     |                                     |                        |                  |
| Z. Tested By: J. Moren                            |               |                     | AA. Resident E                      | ngineer: <u>Samuel</u> | Ritz             |
|                                                   |               |                     |                                     |                        |                  |
| NDOT                                              |               |                     |                                     |                        |                  |
|                                                   |               |                     |                                     |                        |                  |

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

040-018 Rev. 8/06

# 040-018 REV. 08/06

# Compaction Report for Plantmix Bituminous Pavements (Drilled Core Data)

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A -  | Material type as specified, found in the Standard Specifications, Contract Plans or Special Provisions (EX. PBS Type II)                                     |
| В-   | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                  |
| C -  | Lift of plantmix that the cores represent, lane that the cores were taken from, direction of the lane the cores were taken from (EX. Lift 1, Lane 1, NB)     |
| D -  | Date the sample was taken (EX. 7/12/2010)                                                                                                                    |
| Ε-   | Width of the lane the cores were taken from, depth of the lane the cores were taken from (EX. Width - 20.0' Depth - 2")                                      |
| F -  | Tested by, print first and last name of the tester or testers who completed the test (EX. J. Moren)                                                          |
| G -  | Test number from the RICE that was taken at the cored location while initial paving was taking place (EX. T-1-1)                                             |
| Н-   | Location of sample from the RICE test that was taken while initial paving was taking place prior to compaction per Test Method Nev. T200 (EX. "PW" 541 + 90) |
| 1-   | Target density (RICE) from the test taken while initial paving was taking place per Test Method Nev. T335 (EX. 149.8)                                        |
| J -  | Beginning station and ending station of the test section that was determined per<br>Test Method Nev. T335 (EX. "PW" 544 + 00 to "PW" 537 + 40)               |
| К-   | Number of the random block that was used to determine the test section per Test Method Nev. T335 (EX. 3)                                                     |
| L -  | Test number that was given to the test section that is being cored, found on NDOT form 040-017 (EX. 1-PM-1 through 1-PM-5)                                   |
| M -  | Station where the core was taken from on the roadway, found on NDOT form 040-017 (EX. "PW" 543 + 75)                                                         |

# 040-018 REV. 08/06

# Compaction Report for Plantmix Bituminous Pavements (Drilled Core Data)

| LINE | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N -  | Distance from the edge of oil the core was drilled, found on NDOT form 040-017 (EX. 17') <b>NOTE:</b> Rounded to the nearest foot and at least 1 foot away from the edge of oil                                                                           |
| 0 -  | Side of the mat that the distance from the edge is pulled (EX. LT.)                                                                                                                                                                                       |
| Ρ-   | Dry weight of the core determined per Test Method Nev. T336 (EX. 1247)                                                                                                                                                                                    |
| Q -  | Weight of the core immersed in water per Test Method Nev. T336 (EX. 691)                                                                                                                                                                                  |
| R -  | Saturated surface dry weight of the core per Test Method Nev. T336 (EX. 1261)                                                                                                                                                                             |
| S -  | Bulk Specific Gravity per Test Method Nev. T335<br>Line P (Dry weight) / (Line R (SSD Weight) - Line Q (Weight in Water) = Line S<br>(Bulk Specific Gravity) (EX. 1247 / (1261 - 691) = 2.188)                                                            |
| т-   | Core density determined per Test Method Nev. T336 Line S (Bulk Specific Gravity) x 62.4 (weight of water in 1lb/ft <sup>3</sup> )= Line T (Core Density) (EX. 2.188 x 62.4 = 136.5)                                                                       |
| U -  | (Line T (Core Density) / Line I (Target Density (Rice)) x 100 = Line U (Percent Relative Compaction) (EX. (136.5 / 149.8) x 100 = 91.1% = 91%)                                                                                                            |
| V -  | Add all 5 core tests from Line T (Core Density) / 5 = Mean Test Section Density (EX. 136.5 + 139.2 + 137.4 + 140.8 + 136.6 = 690.5 / 5 = 138.1)                                                                                                           |
| W -  | (Line V (Mean Test Section Density) / Line I (Target Density (RICE)) x 100 = Line W (Mean Percent Relative Compaction) (EX. 138.1 / 149.8 = 0.922 x 100 = 92.2% = 92%)                                                                                    |
| X -  | If this test is within specification, it will be accepted. If this test is out of specification it will be rejected. Find the specification in the Standard Specifications.                                                                               |
| Υ-   | Any remarks that need to be documented(EX. These cores were used to accept this test section per the Standard Specifications for Road and Bridge Construction. This test section met specification and the Resident Engineer was notified of the results) |
| Ζ-   | Tested by, print first and last name of the tester or testers who completed the test (EX. J. Moren)                                                                                                                                                       |
| AA - | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Samuel Ritz)                                                                                                                                                        |

# STATE OF NEVADA DEPARTMENT OF TRANSPORTATION STRIPING PAINT THICKNESS REPORT

| Date of Test     |  |
|------------------|--|
| Contract Number  |  |
| Instrument Model |  |
| Serial Number    |  |

## Location of Test:

| Route               |  |
|---------------------|--|
| Direction of Travel |  |
| Position of Stripe  |  |

\_\_\_\_\_

Name of Operator

Sampled By

Name of Tester

| <b>Average Thickness Reading:</b> |  |
|-----------------------------------|--|
| Specification Requirement:        |  |
| Stripe Color:                     |  |

COMMENTS: \_\_\_\_\_

Resident Engineer

## STATE OF NEVADA DEPARTMENT OF TRANSPORTATION STRIPING PAINT THICKNESS REPORT

| A. Date of Test             | 7/12/2010      |
|-----------------------------|----------------|
| <b>B.</b> Contract Number _ | 3925           |
| C. Instrument Model         | Mitutoyo 0-1"  |
| <b>D.</b> Serial Number     | No. 389-711-30 |

#### **Location of Test:**

| E. Route                      | US 50                             |
|-------------------------------|-----------------------------------|
| <b>F.</b> Direction of Travel | East Bound                        |
| <b>G.</b> Position of Stripe  | <b>Double Yellow (Centerline)</b> |

| H. Name of Operator      | Jammie Rittle |  |
|--------------------------|---------------|--|
| I. Sampled By            | Sonia Gittel  |  |
| <b>J.</b> Name of Tester | Sonia Gittel  |  |

| K. Average Thickness Re   | eading: <u>635um</u> |  |
|---------------------------|----------------------|--|
| L. Specification Requirer | ment: <b>500um</b>   |  |
| M. Stripe Color:          | Yellow               |  |

**N.** COMMENTS: This test met specifications. Resident Engineer notified of results.

0.

Jackson L. Robertson

Resident Engineer

NDOT 040-021 Distribution: Headquarters Construction, District, Resident Engineer, Contractor Rev. 1/05

# 040-021 Rev. 1/05

# STRIPING PAINT THICKNESS REPORT

| A - | Date the sample was taken (EX. 7/12/2010)                                                                                    |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| В-  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                  |
| C - | Model number of the micrometer that is used to measure the thickness of the plate (EX. Mitutoyo $0 - 1$ ")                   |
| D - | Serial number found on the micrometer that is used to measure the thickness of the plate (EX. No. 389-711-30)                |
| E-  | Route that is getting painted and will be tested (EX. US 50)                                                                 |
| F-  | Direction of travel (EX. East Bound)                                                                                         |
| G - | Type and location of the stripe in regards to the roadway (EX. Double Yellow, Centerline)                                    |
| Н-  | First and last name of the operator, who is operating the striping truck (EX. Jammie Rittle)                                 |
| 1-  | Print first and last name of the inspector who sampled the material as it was being placed on the roadway (EX. Sonia Gittel) |
| J - | Print first and last name of the tester or testers who completed the test per Test Method Nev. T510 (EX. Sonia Gittel)       |
| К-  | Average thickness of the striping determined by Test Method Nev. T510 (EX. 635um)                                            |
| L - | Specification requirement found in the Standard Specifications or Special Provisions (EX. Minimum 500um)                     |
| M - | Color of the stripe that is being placed on the roadway (EX. Yellow)                                                         |
| N - | Any remarks that need to be documented (EX. This test met specifications. Resident Engineer notified of results.)            |
| 0 - | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Jackson L. Robertson)                  |

#### ABSORPTION AND SPECIFIC GRAVITY FOR COARSE AND FINE AGGREGATES

| Contract No.                                                                                        | Mix Design No.                          |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------|
| Bulk Specific Gravity<br>(oven-dry basis)<br>Bulk Specific Gravity<br>(saturated surface-dry basis) | $= \frac{A}{B - C}$ $= \frac{B}{B - C}$ |
| Apparent Specific Gravity                                                                           | = <u>A</u><br>A - C                     |
| Percent Absorption                                                                                  | $= \frac{B - A}{A} \times 100$          |
| Remarks:                                                                                            |                                         |
|                                                                                                     |                                         |

Resident Engineer:

NDOT 040-023 Rev. 11/08

#### ABSORPTION AND SPECIFIC GRAVITY FOR COARSE AND FINE AGGREGATES

| A. Contract No 3925                                            | B. Mix Design No.            | BF09-2                 |
|----------------------------------------------------------------|------------------------------|------------------------|
| C. Date 7/12/2010                                              | D. Source                    | Hunewill Pit Stockpile |
| E. Material <u>1" Rock</u>                                     | F. Tested By                 | Stewart Simon          |
|                                                                |                              |                        |
| <b>G.</b> AR = Weight of Sample in air (as received condition) |                              | 5106                   |
| <b>H.</b> A = Weight of sample in oven-dry condition           |                              | 5053                   |
| I. B = Weight of sample in saturated surface-dry condition     | n                            | 5098                   |
| J. C = Weight of saturated sample immersed in water            |                              | 3157                   |
| K. Bulk Specific Gravity<br>(oven-dry basis)                   | $= \frac{A}{B - C}$          | 2.60                   |
| L. Bulk Specific Gravity<br>(saturated surface-dry basis)      | = <u>B</u><br>B - C          | 2.63                   |
| M. Apparent Specific Gravity                                   | $= \frac{A}{A - C}$          | 2.67                   |
| N. Percent Absorption                                          | $= \frac{B-A}{A} \times 100$ | 0.9                    |
| O. Remarks: Plantmix aggregate for mix design and              | d weekly check of mater      | ials. Test met specs.  |
|                                                                |                              |                        |
|                                                                |                              |                        |
|                                                                |                              |                        |
|                                                                |                              |                        |
|                                                                |                              |                        |
|                                                                |                              |                        |

P. Resident Engineer: <u>A. John</u>

NDOT 040-023 Rev. 11/08

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

040-023 Rev. 11/08

# ABSORPTION AND SPECIFIC GRAVITY FOR COARSE AND FINE AGGREGATES

#### LINE EXPLANATION OF NEEDED MATERIAL

Α-Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925) В-Mix design number assigned by the Materials Division for this specific material (EX. BF09-2) NOTE: If this is for mix design submittal, there will not be a mix design number assigned to this material at first **C** -Date the sample was taken (EX. 7/12/2010) D -Name of the location where the material was produced (EX. Hunewill Pit Stockpile) E -Material type as specified, found in the Standard Specifications, Contract Plans or Special Provisions (EX. 1" Rock) F -Print first and last name of the tester or testers who completed the test (EX. Stewart Simon) G -Weight of Sample in air (as received condition) after it has been split to the appropriate sample size determined per Test Method Nev. T200 (EX. 5106) Н-Weight of sample in oven-dry condition determined per Test Method Nev. T111 (EX. 5053) 1 -Weight of sample in saturated surface-dry condition after sample soaked per Test Method Nev. T111 (EX. 5098) J -Weight of saturated sample immersed in water determined per Test Method Nev. T111 (EX. 3157) K -Line H (Weight of Sample in Oven-Dry Condition) / ((Line I (Weight of Sample in Saturated Surface-Dry Condition) - Line J (Weight of Saturated Sample Immersed in Water)) = Line K (Bulk Specific Gravity Oven-Dry Basis) (EX. 5053 / (5098 - 3157) = 2.60 to the nearest 0.01) L -Line I (Weight of Sample in Saturated Surface-Dry Condition) / ((Line I (Weight of Sample in Saturated Surface-Dry Condition) - Line J (Weight of Saturated Sample Immersed in Water)) = Line L (Bulk Specific Gravity Saturated Surface-Dry Basis) (EX. 5098 / (5098 - 3157) = 2.63 to the nearest 0.01)

040-023 Rev. 11/08

# ABSORPTION AND SPECIFIC GRAVITY FOR COARSE AND FINE AGGREGATES

| LINE | EXPLANATION OF NEEDED MATERIAL                                                                                                                                                                                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M -  | Line H (Weight of Sample in Oven-Dry Condition) / ((Line H (Weight of Sample in Oven-Dry Condition) - Line J (Weight of Saturated Sample Immersed in Water)) = Line M (Apparent Specific Gravity) (EX. 5053 / (5053 - 3157) = 2.67 to the nearest 0.01)                       |
| N -  | (Line I (Weight of Sample in Saturated Surface-Dry Condition) - Line H (Weight of Sample in Oven-Dry Condition)) / Line H (Weight of Sample in Oven-Dry Condition) x $100 = \text{Line N}$ (Percent Absorption) (EX. ((5098 - 5053) / 5053) x $100 = 0.9$ to the nearest 0.1) |
| 0 -  | Any remarks that need to be documented (EX. Plantmix aggregate for mix design and weekly check of materials. Test met specs.)                                                                                                                                                 |
| Ρ-   | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. R. John)                                                                                                                                                                                |

#### ABSORPTION AND SPECIFIC GRAVITY FOR FINE AGGREGATE

| Contract No<br>Date<br>Material                                                                                                                                                                                                                                  | Mix Design No<br>Source<br>Tested By             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| <ul> <li>A = Weight of dry sample</li> <li>B = Weight of pycnometer filled with water to calibration leve</li> <li>C = Weight of pycnometer with fine aggregate and water fille calibration level</li> <li>S = Weight of saturated surface-dry sample</li> </ul> | I                                                |
| Bulk Specific Gravity<br>(Saturated Surface-Dry Basis)<br>Percent Absorption                                                                                                                                                                                     | $= \frac{S}{B+S-C}$ $= \frac{S-A}{A} \times 100$ |
| Remarks:                                                                                                                                                                                                                                                         |                                                  |

Resident Engineer:

#### ABSORPTION AND SPECIFIC GRAVITY FOR FINE AGGREGATE

| A. Contract No.                         | 3925                                             | <b>B.</b> Mix Design No        | STN370DAR              |
|-----------------------------------------|--------------------------------------------------|--------------------------------|------------------------|
| C. Date                                 | 07/12/2010                                       | D. Source                      | Hunewill Pit Stockpile |
| E. Material                             | Concrete Sand                                    | F. Tested By                   | James Bones            |
|                                         |                                                  |                                |                        |
| <b>G.</b> A = Weight                    | t of dry sample                                  |                                | 476.1                  |
| H.B = Weight                            | t of pycnometer filled with water to calibration | n level                        | 1468.1                 |
| I. C = Weight<br>calibra                | t of pycnometer with fine aggregate and wate     | er filled to                   | 1773.0                 |
| J.S = Weight                            | t of saturated surface-dry sample                |                                | 500.0                  |
|                                         |                                                  |                                |                        |
| K. Bulk Specific Gr<br>(Saturated Surfa | avity<br>ce-Dry Basis)                           | = <u>S</u><br>B+S-C            | 2.56                   |
|                                         |                                                  |                                |                        |
| L. Percent Absorpt                      | ion                                              | $= \frac{S - A}{A} \times 100$ | 5.0                    |
|                                         |                                                  |                                |                        |
| <b>M</b> . Remarks:                     | Test met specs.                                  |                                |                        |
|                                         |                                                  |                                |                        |
|                                         |                                                  |                                |                        |
|                                         |                                                  |                                |                        |
|                                         |                                                  |                                |                        |
|                                         |                                                  |                                |                        |
|                                         |                                                  |                                |                        |
|                                         |                                                  |                                |                        |
|                                         |                                                  |                                |                        |

N. Resident Engineer: <u>J. Read</u>

# 040-023A Rev. 11/08

# ABSORPTION AND SPECIFIC GRAVITY FOR FINE AGGREGATE

| <u>Line</u> | Explanation of Needed Information                                                                                                                                                                                                                                                                                                                                                             |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A -         | Actual contract number for the material being tested, found on the Contract Plans, Special Provisions etc. (EX. 3925)                                                                                                                                                                                                                                                                         |
| В-          | Mix design number assigned by the Materials Division for this specific material (EX. STN370DAR) Note: If this is for mix design submittal there will not be a mix design number assigned to this material yet                                                                                                                                                                                 |
| C -         | Actual date the sample was taken (EX. 7/12/2010)                                                                                                                                                                                                                                                                                                                                              |
| D -         | Name of the location where the material was produced (EX. Hunewill Pit Stockpile)                                                                                                                                                                                                                                                                                                             |
| Ε-          | Type of material as specified, found on the Contract Plans, Special Provisions etc. (EX. Concrete Sand)                                                                                                                                                                                                                                                                                       |
| F-          | Printed name of the tester or testers who completed the test (EX. J. Bones)                                                                                                                                                                                                                                                                                                                   |
| G -         | Weight of dry sample after drying per Test Method Nev. T112 (EX. 476.1)                                                                                                                                                                                                                                                                                                                       |
| н-          | Weight of pycnometer filled with water to the calibration level per Test Method Nev. T493 (EX. 1468.1)                                                                                                                                                                                                                                                                                        |
| 1-          | Weight of pycnometer with fine aggregate and water filled to the calibration level per Test Method Nev. T493 (EX. 1773.0)                                                                                                                                                                                                                                                                     |
| J -         | Weight of saturated surface-dry sample per Test Method Nev. T493 (EX. 500.0)                                                                                                                                                                                                                                                                                                                  |
| К-          | Line J (Weight of Saturated Surface-Dry Sample) / ((Line H (Weight of Pycnometer<br>Filled with Water to Calibration Level) + Line J (Weight of Saturated Surface-Dry<br>Sample) - Line I (Weight of Pycnometer with Fine Aggregate and Water Filled to<br>Calibration Level)) = Line K (Bulk Specific Gravity Saturated Surface-Dry Basis)<br>(EX. 500.0 / (1468.1 + 500.0 - 1773.0) = 2.56) |
| L-          | (Line J (Weight of Saturated Surface-Dry Sample) - Line G (Weight of Dry Sample)) /<br>Line G (Weight of Dry Sample) x 100 = Line L (Percent Absorption)<br>(EX. ((500.0 - 476.1) / 476.1) x 100 = 5.0)                                                                                                                                                                                       |

# 040-023A Rev. 11/08

# ABSORPTION AND SPECIFIC GRAVITY FOR FINE AGGREGATE

| Line | <b>Explanation of Needed Information</b> |
|------|------------------------------------------|
|      |                                          |

- M Anything that should be documented. (EX. Test met specs.)
- N Actual signature of the Resident Engineer or Assistant Engineer on that specific crew (EX. J. Read)

#### ABSORPTION AND SPECIFIC GRAVITY FOR COARSE AGGREGATES

| Contract No<br>Date<br>Material                                                                                                                                                                                                                         | Mix Design No<br>Source<br>Tested By |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| <ul> <li>AR = Weight of Sample in air (as received condition)</li> <li>A = Weight of sample in oven-dry condition</li> <li>B = Weight of sample in saturated surface-dry condition</li> <li>C = Weight of saturated sample immersed in water</li> </ul> |                                      |
| Bulk Specific Gravity<br>(oven-dry basis)                                                                                                                                                                                                               | = <u>A</u><br>B - C                  |
| Bulk Specific Gravity<br>(saturated surface-dry basis)                                                                                                                                                                                                  | = <u>B</u><br>B - C                  |
| Apparent Specific Gravity                                                                                                                                                                                                                               | = <u>A</u><br><u>A - C</u>           |
| Percent Absorption                                                                                                                                                                                                                                      | $= \frac{B-A}{A} \times 100$         |
| Remarks:                                                                                                                                                                                                                                                |                                      |
|                                                                                                                                                                                                                                                         |                                      |
| Resident Engineer:                                                                                                                                                                                                                                      |                                      |

NDOT 040-023B Rev. 02/09

#### ABSORPTION AND SPECIFIC GRAVITY FOR COARSE AGGREGATES

| A. Contract No 3925                                                                                                                                                                                                                                                 | <b>B.</b> Mix Design No      | STN370DAR                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------|
| <b>C.</b> Date 7/12/2010                                                                                                                                                                                                                                            | D. Source                    | Hunewill Pit                                      |
| E. Material #67 Rock                                                                                                                                                                                                                                                | F. Tested By                 | James Bones                                       |
| <ul> <li>G. AR = Weight of Sample in air (as received condition)</li> <li>H. A = Weight of sample in oven-dry condition</li> <li>I. B = Weight of sample in saturated surface-dry condition</li> <li>J. C = Weight of saturated sample immersed in water</li> </ul> | ١                            | <u>4405</u><br><u>4169</u><br><u>4403</u><br>2451 |
| <b>K.</b> Bulk Specific Gravity<br>(oven-dry basis)                                                                                                                                                                                                                 | = <u>A</u><br>B - C          | 2.14                                              |
| L. Bulk Specific Gravity<br>(saturated surface-dry basis)                                                                                                                                                                                                           | $= \frac{B}{B - C}$          | 2.26                                              |
| M. Apparent Specific Gravity                                                                                                                                                                                                                                        | $= \frac{A}{A - C}$          | 2.43                                              |
| N. Percent Absorption                                                                                                                                                                                                                                               | $= \frac{B-A}{A} \times 100$ | 5.6                                               |
| O. Remarks: <u>Test met specs.</u>                                                                                                                                                                                                                                  |                              |                                                   |
|                                                                                                                                                                                                                                                                     |                              |                                                   |
|                                                                                                                                                                                                                                                                     |                              |                                                   |
| <b>P.</b> Resident Engineer: <u>J. Read</u>                                                                                                                                                                                                                         |                              |                                                   |

#### 040-023B Rev. 2/09

# ABSORPTION AND SPECIFIC GRAVITY FOR COARSE AGGREGATES

#### LINE EXPLANATION OF NEEDED MATERIAL

- A -Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925) В-Mix design number assigned by the Materials Division for this specific material (EX. STN370DAR) NOTE: If this is for mix design submittal, there will not be a mix design number assigned to this material at first **C** -Date the sample was taken (EX. 7/12/2010) D -Name of the location where the material was produced (EX. Hunewill Pit Stockpile) E -Type of material as specified, found in the Contract Plans or Special Provisions (EX. #67 Rock) F -Print first and last name of the tester or testers who completed the test (EX. James Bones) G -Weight of sample in air (as received condition) after it has been split to the appropriate sample size per Test Method Nev. T200 (EX. 4405) Н-Weight of sample in oven-dry condition per Test Method Nev. T111 (EX. 4169) 1 -Weight of sample in saturated surface-dry condition after sample soaked per Test Method Nev. T111 (EX. 4403) J -Weight of saturated sample immersed in water per Test Method Nev. T111 (EX. 2451) Κ-Line H (Weight of Sample in Oven-Dry Condition) / ((Line I (Weight of Sample in Saturated Surface-Dry Condition) - Line J (Weight of Saturated Sample Immersed in Water)) = Line K (Bulk Specific Gravity Oven-Dry Basis) (EX. 4169 / (4403 - 2451) =
- L Line I (Weight of Sample in Saturated Surface-Dry Condition) / (Line I (Weight of Sample in Saturated Surface-Dry Condition) - Line J (Weight of Saturated Sample Immersed in Water)) = Line L (Bulk Specific Gravity Saturated Surface-Dry Basis) (EX. 4403 / (4403 -2451) = 2.26 rounded to the nearest 0.01)

2.14 rounded to the nearest 0.01)

# 040-023B Rev. 2/09

# ABSORPTION AND SPECIFIC GRAVITY FOR COARSE AGGREGATES

| LINE | EXPLANATION OF NEEDED MATERIAL                                                                                                                                                                                                                                                       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M -  | Line H (Weight of Sample in Oven-Dry Condition) / (Line H (Weight of Sample in Oven-Dry Condition) - Line J (Weight of Saturated Sample Immersed in Water)) = Line M (Apparent Specific Gravity) (EX. 4169 / (4169 - 2451) = 2.43 rounded to the nearest 0.01)                       |
| N -  | (Line I (Weight of Sample in Saturated Surface-Dry Condition) - Line H (Weight of<br>Sample in Oven-Dry Condition)) / Line H (Weight of Sample in Oven-Dry Condition)) x<br>100 = Line N (Percent Absorption) (EX. ((4403 - 4169) / 4169) x 100 = 5.6 rounded to<br>the nearest 0.1) |
| 0 -  | Any remarks that need to be documented (EX. Test met spec.)                                                                                                                                                                                                                          |
| Ρ-   | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. J. Read)                                                                                                                                                                                       |

## NUCLEAR GAUGE / SAND CONE CORRELATION FORM

| Date<br>Materi<br>Materi | ial Type                                         |                               |                           | Contract No.                     |                          |
|--------------------------|--------------------------------------------------|-------------------------------|---------------------------|----------------------------------|--------------------------|
| IN PL                    | ACE WET DENSITY                                  | CORRELATION                   | (With Offsets             | s Disabled)                      |                          |
|                          | Teet No                                          | Sand Cone                     |                           | ige                              |                          |
| 4                        | T EST INO.                                       | vvet Density                  | vvet Densi                | ty                               |                          |
| 1                        |                                                  |                               |                           |                                  |                          |
| 2                        |                                                  |                               |                           |                                  |                          |
| 3                        |                                                  |                               |                           | Difference (±)                   | 1                        |
|                          | Average:                                         |                               |                           |                                  | J                        |
|                          |                                                  | Sand Cone                     | - Nuclear Gau             | ge = Wet Density Offset          |                          |
|                          | Test No.                                         | % Moisture Ove                | en Dry                    | % Moisture Gauge                 |                          |
| 1                        |                                                  |                               |                           |                                  |                          |
| 2                        |                                                  |                               |                           |                                  |                          |
| 3                        |                                                  |                               |                           |                                  |                          |
|                          | Average:                                         |                               |                           |                                  |                          |
|                          |                                                  |                               |                           |                                  |                          |
| Moist                    | ure Correction Fact                              | tor Equation                  |                           |                                  |                          |
| A                        | Malatura Oran David                              | N Maiatana Oanaa              |                           |                                  |                          |
| Avg. %                   | 100 L Avg. % Moio                                | . % Moisture Gauge            | $x 1000 = \frac{1}{1000}$ | -                                | x 1000 = Moisture Offset |
|                          | 100 + Avg. 70 1005                               | lule Gauge                    | · · ·                     | 00 +                             | (MCF)                    |
|                          |                                                  |                               |                           |                                  |                          |
| HARV                     | ARD MINIATURE C                                  | OMPACTION TEST                | RESULTS                   |                                  |                          |
| 1                        | Test No.                                         |                               |                           |                                  |                          |
|                          | H.M.C.T. Drv = d M                               | a/m <sup>3</sup> (pcf)        |                           |                                  |                          |
|                          | Total Sample Appr                                | ox Opt Moisture               |                           |                                  |                          |
|                          | Appar Spec Grav                                  | + 4 75 mm (+ No. 4)           | )                         |                                  |                          |
|                          | Dec Equiv Of % +                                 | $\frac{1}{4}$ 75 mm (+ No. 4) | /                         |                                  |                          |
|                          | Calculated Max, De                               | nsity $Ma/m^3$ (ncf)          |                           |                                  |                          |
|                          | Calculated Max. De                               |                               |                           |                                  |                          |
| CHEC                     | K TESTS (With C                                  | ffsets Enabled)               |                           |                                  |                          |
|                          |                                                  | Sand Cone                     | Nuclear Gau               | lae                              |                          |
|                          | Test No                                          | Wet Density                   | Wet Densi                 | ty Difference (+)                |                          |
| 4                        |                                                  |                               |                           |                                  | ]                        |
| 5                        |                                                  |                               |                           |                                  |                          |
|                          |                                                  |                               | <u> </u>                  |                                  | 1                        |
| Maxim                    | num Deviation:                                   |                               |                           |                                  |                          |
| (+ 0.0)                  | $32 \text{ Ma/m}^3 \text{ or } + 2.0 \text{ pc}$ | f Allowable)                  |                           |                                  |                          |
| (± 0.0                   | 52 Mg/11 01 ± 2.0 pc<br>rks:                     |                               |                           |                                  | -                        |
| Rema                     |                                                  |                               |                           |                                  |                          |
|                          |                                                  |                               |                           |                                  |                          |
| Teste                    | d By:                                            |                               | Resi                      | ident Engineer:                  |                          |
| NDOT                     | ·                                                |                               |                           | ·                                |                          |
| 040-026                  | 6                                                |                               |                           |                                  |                          |
| Rev. 03                  | 8/09                                             | Distribution: Headquart       | ers Construction, E       | District, Resident Engineer, Con | tractor                  |
|                          |                                                  |                               | 1                         |                                  |                          |
|                          |                                                  |                               |                           |                                  |                          |

## NUCLEAR GAUGE / SAND CONE CORRELATION FORM

A. Date7/12/2010B. Material TypeType I Class B Base/Gran. Back.C. Material SourceSloan Pit, Bardon Materials

D. Contract No. 3925

E. Nuclear Set No. 43

IN PLACE WET DENSITY CORRELATION

ORRELATION(With Offsets Disabled)G. Sand ConeH. Nuclear Gauge

| F. Test No. | Wet Density                                                       | Wet Density                                                                                                                                                               |                                                                                                                 |
|-------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| I-1-1B-95   | 120.4                                                             | 119.1                                                                                                                                                                     |                                                                                                                 |
| I-2-1B-95   | 126.5                                                             | 122.0                                                                                                                                                                     |                                                                                                                 |
| I-3-1B-95   | 117.5                                                             | 115.8                                                                                                                                                                     | J. Difference (±                                                                                                |
| I. Average: | 121.5                                                             | 119.0                                                                                                                                                                     | + 2.5                                                                                                           |
|             | F. Test No.<br>I-1-1B-95<br>I-2-1B-95<br>I-3-1B-95<br>I. Average: | F. Test No.         Wet Density           I-1-1B-95         120.4           I-2-1B-95         126.5           I-3-1B-95         117.5           I. Average:         121.5 | F. Test No.Wet DensityWet DensityI-1-1B-95120.4119.1I-2-1B-95126.5122.0I-3-1B-95117.5115.8I. Average:121.5119.0 |

Sand Cone - Nuclear Gauge = Wet Density Offset

|   | K. Test No. | L. % Moisture Oven Dry | M. % Moisture Gauge |
|---|-------------|------------------------|---------------------|
| 1 | I-1-1B-95   | 11.2                   | 8.8                 |
| 2 | I-2-1B-95   | 11.0                   | 11.8                |
| 3 | I-3-1B-95   | 6.0                    | 5.7                 |
|   | N. Average: | 9.4                    | 8.8                 |

| Moisture Correction Factor Equation              |          |       |     |     |          |                 |
|--------------------------------------------------|----------|-------|-----|-----|----------|-----------------|
|                                                  |          | Ο.    |     | Ρ.  |          | R.              |
| Avg. % Moisture Oven Dry - Avg. % Moisture Gauge | x 1000 - | 9.4   | _   | 8.8 | × 1000 - | + 5.51          |
| 100 + Avg. % Moisture Gauge                      | x 1000 = | 100 + | 8.8 |     | X 1000 = | Moisture Offset |
|                                                  |          |       | Q.  |     |          | (MCF)           |

#### HARVARD MINIATURE COMPACTION TEST RESULTS

| 1 | S. Test No.                                              | I-1-1B-95 |
|---|----------------------------------------------------------|-----------|
|   | <b>T.</b> H.M.C.T, Dry = $d \text{ Mg/m}^3 (\text{pcf})$ | 111.2     |
|   | U. Total Sample, Approx. Opt. Moisture                   | 14.4      |
|   | V. Appar. Spec. Grav. + 4.75 mm (€ No. 4)                | 2.24      |
|   | <b>W.</b> Dec. Equiv. Of % + 4.75 mm (€ No. 4)           | 0.016     |
|   | X. Calculated Max. Density Mg/m <sup>3</sup> (pcf)       | 114.7     |

#### CHECK TESTS (With Offsets Enabled)

|   |             | Z. Sand Cone | AA. Nuclear Gauge |                           |
|---|-------------|--------------|-------------------|---------------------------|
|   | Y. Test No. | Wet Density  | Wet Density       | <b>BB.</b> Difference (±) |
| 4 | I-4-1B-95   | 117.2        | 117.7             | - 0.5                     |
| 5 | I-5-1B-95   | 118.0        | 119.0             | - 1.0                     |

CC. Maximum Deviation:

| $(\pm 0.032 \text{ Mg/m}^3)$ | or ± 2.0 pcf Allowable)          | - 1.0                                      |                         |
|------------------------------|----------------------------------|--------------------------------------------|-------------------------|
| DD. Remarks:                 | Gauge met correlation specs for  | Type I Class B Base and Gran               | ular Backfill. Resident |
|                              | Engineer and Contractor notified | d of results.                              |                         |
| EE. Tested By:               | Sierra Dinn                      | <b>FF.</b> Resident Engineer:              | Боб Black               |
| NDOT                         |                                  |                                            |                         |
| 040-026                      |                                  |                                            |                         |
| Rev. 03/09                   | Distribution: Headquarters Cor   | nstruction, District, Resident Engineer, C | Contractor              |

# 040-026 Rev. 3/09

# NUCLEAR GAUGE / SAND CONE CORRELATION FORM

| A - | Date the sample was taken (EX. 7/12/2010)                                                                                                                                                                                                                                                                                         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Material as specified, found in the Standard Specifications, Contract Plans or Special Provisions (EX. Type I Class B Base/Gran. Back.) <b>NOTE:</b> Multiple material types can use the same correlation as long as it is written on NDOT form 040-026                                                                           |
| C - | Name of the location where the material was produced (EX. Sloan Pit, Bardon Materials)                                                                                                                                                                                                                                            |
| D - | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                                                                                                                       |
| Ε-  | Set number assigned to the moisture density gauge that is used for testing the material (EX. 43) <b>NOTE:</b> If there is not a set number, use the serial number on the back of the gauge                                                                                                                                        |
| F - | Acceptance test number for this particular test (EX. I-1-1B-95 I = Informational pad; 1 = first test of the day; $1B = coding$ found in the Construction Manual; $95 = minimum$ required percent compaction)                                                                                                                      |
| G - | Sand cone wet density obtained from NDOT form 040-004 (EX. 120.4)                                                                                                                                                                                                                                                                 |
| н-  | Nuclear gauge wet density obtained from NDOT form 040-007 (EX. 119.1)                                                                                                                                                                                                                                                             |
| 1-  | Add up all three Line G's (Sand Cone Wet Densities) / $3 =$ Line I (Average)<br>(EX. 120.4 + 126.5 + 117.5 = 364.4 / $3 =$ 121.5 rounded to the nearest 0.1)<br>Add up all three Line H's (Nuclear Gauge Wet Density) / $3 =$ Line I (Average)<br>(EX. 119.1 + 122.0 + 115.8 = 356.9 / $3 =$ 119.0 rounded to the nearest<br>0.1) |
| J - | Line I (Sand Cone Wet Density Average) - Line I (Nuclear Gauge Wet Density Average)<br>= Line J (Difference or Wet Density Offset) (EX. 121.5 - 119.0 = + 2.5) <b>NOTE:</b> Pay<br>attention to the algebraic sign (+ or -)                                                                                                       |
| К-  | Acceptance test number for this particular test (EX. I-1-1B-95 I = Informational pad; 1 = first test of the day; $1B = coding$ found in the Construction Manual; $95 = minimum$ required percent compaction)                                                                                                                      |
| L-  | % moisture oven dry obtained from NDOT form 040-004 (EX. 11.2)                                                                                                                                                                                                                                                                    |
| M - | % moisture gauge obtained from NDOT form 040-007 (EX. 8.8)                                                                                                                                                                                                                                                                        |

# 040-026 Rev. 3/09

# NUCLEAR GAUGE / SAND CONE CORRELATION FORM

| N - | Add up all three Line L's (% Moisture Oven Dry) / $3 = Line N$ (Average)<br>(EX. 11.2 + 11.0 + 6.0 = 28.2 / $3 = 9.4$ rounded to the nearest 0.1)<br>Add up all three Line M's (% Moisture Gauge) / $3 = Line N$ (Average)<br>(EX. 8.8 + 11.8 + 5.7 = 26.3 / $3 = 8.8$ rounded to the nearest 0.1) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - | Line N (Average % Moisture Oven Dry) (EX. 9.4)                                                                                                                                                                                                                                                     |
| Ρ-  | Line N (Average % Moisture Gauge) (EX. 8.8)                                                                                                                                                                                                                                                        |
| Q - | Line N (Average % Moisture Gauge) (EX. 8.8)                                                                                                                                                                                                                                                        |
| R - | ((Line O (Average % Moisture Oven Dry) - Line P (Average % Moisture Gauge)) / (100 + Line Q (Average % Moisture Gauge)) x 1000 = Line R (Moisture Offset)<br>(EX. ((9.4 - 8.8) / (100 + 8.8)) x 1000 = + 5.51) <b>NOTE:</b> Pay attention to the algebraic sign (+ or -)                           |
| S - | Test number from NDOT form 040-004 that the full rathole, Harvard Miniature and pycnometer were ran on that will be used for the next 20 compaction tests (EX. I-1-1B-95)                                                                                                                          |
| т-  | H.M.C.T., Dry, Harvard Miniature Compaction Test Dry, from NDOT form 040-004 that will be used on the next 10 compaction tests (EX. 111.2)                                                                                                                                                         |
| U - | Total Sample, Approx. Opt. Moisture from NDOT form 040-004 that will be used on the next 10 compaction tests (EX. 14.4)                                                                                                                                                                            |
| V - | Apparent Specific Gravity + 4.75 mm (+ No. 4) from NDOT form 040-004 that will be used on the next 10 compaction tests (EX. 2.24)                                                                                                                                                                  |
| W - | Decimal Equivalent of % + 4.75 mm (+ No. 4) from NDOT form 040-004 that will be used on the next 10 compaction tests (EX. 0.016)                                                                                                                                                                   |
| X - | Calculated Maximum Density from NDOT form 040-004 that will be used on the next 10 compaction tests (EX. 114.7)                                                                                                                                                                                    |
| Υ - | Acceptance test number for this particular test (EX. I-1-1B-95 I = Informational pad; 1 = first test of the day; $1B = coding$ found in the Construction Manual; $95 = minimum$ required percent compaction)                                                                                       |

#### 040-026 Rev. 3/09

## NUCLEAR GAUGE / SAND CONE CORRELATION FORM

| Z -    | Sand Cone Wet Density obtained from NDOT form 040-004 during the two check tests with the offsets enabled (EX. 117.2)                                                          |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AA -   | Nuclear Gauge Wet Density obtained from NDOT form 040-007 during the two check tests with the offsets enabled (EX. 117.7)                                                      |
| BB -   | Line Z (Sand Cone Wet Density) - Line AA (Nuclear Gauge Wet Density) = Line BB (Difference) (EX. 117.2 - 117.7 = - 0.5) NOTE: Pay attention to the algebraic sign (+ or -)     |
| CC -   | Maximum Deviation is the largest difference between the sand cone and the nuke shot at the same location obtained during the two check tests for the gauge correlation (EX1.0) |
| DD -   | Any remarks that need to be documented (EX. Gauge met correlation specs for Type I Class B Base and Granular Backfill. Resident Engineer and Contractor notified of results)   |
| EE -   | Tested by, print first and last name of the tester or testers who completed the test (EX. Sierra Dinn)                                                                         |
| FF -   | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Bob Black)                                                                               |
| NOTES: |                                                                                                                                                                                |

- **1.** Gauge correlation can be run on acceptance tests or on an informational pad
- **2.** Gauge rod depth and the rathole depth need to be the same depth for the gauge correlation, then whatever rod depth is needed after that can be used

# NUCLEAR GAUGE / SAND CONE CORRELATION FORM

| Date<br>Mater<br>Mater | ial Type<br>ial Source                              |                                    |                 | Cor<br>Nuc  | ntract No.                   |            |                 |
|------------------------|-----------------------------------------------------|------------------------------------|-----------------|-------------|------------------------------|------------|-----------------|
|                        |                                                     |                                    | (               |             | 1- D                         |            |                 |
| IN-PL                  | ACE WEI DENSITY                                     | Sond Cono                          | (with Offs      | ets Disab   | led)                         |            |                 |
|                        | Test No                                             | Wot Doncity                        | Wot Dor         | auge        |                              |            |                 |
| 1                      | TEST NO.                                            | Wet Density                        | Wel Dei         | ISILY       |                              |            |                 |
| 2                      |                                                     |                                    |                 |             |                              |            |                 |
| 2                      |                                                     |                                    |                 |             | Difforance (+)               |            |                 |
| 5                      | Average:                                            |                                    |                 |             |                              |            |                 |
|                        | Average.                                            | Sand Cone -                        | Nuclear Gauge   | e = Wet De  | ensitv Offset                |            |                 |
|                        |                                                     |                                    |                 |             |                              |            |                 |
|                        | Test No.                                            | % Moisture Ove                     | en Dry          | % M         | oisture Gauge                |            |                 |
| 1                      |                                                     |                                    |                 |             |                              |            |                 |
| 2                      |                                                     |                                    |                 |             |                              |            |                 |
| 3                      |                                                     |                                    |                 |             |                              |            |                 |
|                        | Average:                                            |                                    |                 |             |                              |            |                 |
| [                      | Moisture Correct                                    | ion Factor Equatio                 | n               |             |                              |            |                 |
|                        |                                                     |                                    | <u></u>         |             |                              |            |                 |
| Avg.                   | % Moisture Oven Dry - Av                            | vg. % Moisture Gauge               | x 1000 -        |             | -                            | × 1000 -   |                 |
|                        | 100 + Avg. % Moist                                  | ure Gauge                          | X 1000 -        |             | 100 +                        | x 1000 =   | Moisture Offset |
|                        |                                                     |                                    |                 |             |                              |            | (MCF)           |
|                        |                                                     |                                    |                 |             |                              |            |                 |
|                        |                                                     | MIFACTION TEST                     | RESULIS         |             |                              |            |                 |
| 1                      | Test No.                                            |                                    |                 |             |                              |            |                 |
|                        | Maximum Drv Dens                                    | itv = (d) Ma/m <sup>3</sup> (lb/ft | 3)              |             |                              |            |                 |
|                        | Optimum Moisture                                    | %                                  | /               |             |                              |            |                 |
|                        |                                                     | (if a                              | applicable)     |             |                              |            |                 |
|                        | Corr Max Dry Den                                    | sity = (D) Ma/m <sup>3</sup> (lb/  | ft3)            |             |                              |            |                 |
|                        | Corr. Optimum Mois                                  | sture %                            |                 |             |                              |            |                 |
|                        | oon. optimum mole                                   |                                    |                 |             |                              |            |                 |
| CHEC                   | CK TESTS (with O                                    | ffsets Enabled)                    |                 |             |                              |            |                 |
|                        |                                                     | Sand Cone                          | Nuclear G       | auge        |                              |            |                 |
|                        | Test No.                                            | Wet Density                        | Wet Der         | nsity       | Difference (±)               |            |                 |
| 4                      |                                                     |                                    |                 |             |                              |            |                 |
| 5                      |                                                     |                                    |                 |             |                              |            |                 |
|                        |                                                     |                                    |                 |             |                              |            |                 |
| Maxin                  | num Deviation:                                      |                                    |                 |             |                              |            |                 |
| (± 0.0                 | $32 \text{ IVIG/m} \text{ or } \pm 2.0 \text{ ID/}$ | m <sup>3</sup> Allowable)          |                 | -           |                              |            |                 |
| Rema                   | ırks:                                               |                                    |                 |             |                              |            |                 |
|                        |                                                     |                                    |                 |             |                              |            |                 |
| Taata                  | d Duu                                               |                                    | Р               | aaidaati    | Engineer                     |            |                 |
|                        | и Бу.                                               |                                    | K               | esidenti    |                              |            |                 |
| 040-02                 | 6                                                   |                                    |                 |             |                              |            |                 |
| Rev. 07                | 7/14                                                | Distribution: Head                 | quarters Constr | uction, Dis | strict, Resident Engineer, C | Contractor |                 |
|                        |                                                     |                                    |                 |             | -                            |            |                 |
#### NUCLEAR GAUGE / SAND CONE CORRELATION FORM

| А.<br>В.<br>С.                                                       | Date<br>Materi<br>Materi                                                        | vate7/12/2010Iaterial TypeType 1 Class B Base / Gran. BkgIaterial SourceSlona Pit, Bardon Materials |                                                 |                                      | an. Bkfl.<br>erials                                            | D. Contract No.<br><b>cfl.</b> E. Nuclear Set No. |               |                                      | <u>3925</u><br>43 | 5      |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|----------------------------------------------------------------|---------------------------------------------------|---------------|--------------------------------------|-------------------|--------|
|                                                                      | IN-PL                                                                           | IN-PLACE WET DENSITY CORRELATION<br>G. Sand Cone<br>F. Test No. Wet Density                         |                                                 | <i>(with O</i><br>H. Nuclea<br>Wet D | <i>(with Offsets Disabled)</i><br>Nuclear Gauge<br>Wet Density |                                                   |               |                                      |                   |        |
|                                                                      | 1                                                                               |                                                                                                     | I-1-1B-95                                       | 120.4                                | 11                                                             | 9.1                                               |               |                                      |                   |        |
|                                                                      | 2                                                                               |                                                                                                     | I-2-1B-95                                       | 126.5                                | 12                                                             | 2.0                                               |               |                                      |                   |        |
|                                                                      | 3                                                                               |                                                                                                     | I-3-1B-95                                       | 117.5                                | 11                                                             | 5.8                                               | J. Difference | (±)                                  |                   |        |
|                                                                      |                                                                                 |                                                                                                     | I. Average:                                     | 121.5                                | 11                                                             | 9.0                                               | + 2.5         |                                      |                   |        |
|                                                                      |                                                                                 |                                                                                                     |                                                 | Sand Cone - I                        | Nuclear Ga                                                     | uge = Wet D                                       | ensity Offset |                                      |                   |        |
|                                                                      |                                                                                 | Κ.                                                                                                  | Test No.                                        | L. % Moisture Ove                    | n Dry                                                          | <b>M.</b> % Mc                                    | oisture Gauge |                                      |                   |        |
|                                                                      | 1                                                                               |                                                                                                     | I-1-1B-95                                       | 11.2                                 |                                                                |                                                   | 8.8           |                                      |                   |        |
|                                                                      | 2                                                                               |                                                                                                     | I-2-1B-95                                       | 11.0                                 |                                                                |                                                   | 11.8          |                                      |                   |        |
|                                                                      | 3                                                                               |                                                                                                     | I-3-1B-95                                       | 6.0                                  |                                                                |                                                   | 5.7           |                                      |                   |        |
|                                                                      |                                                                                 |                                                                                                     | N. Average:                                     | 9.4                                  |                                                                |                                                   | 8.8           |                                      |                   |        |
|                                                                      |                                                                                 | Mo                                                                                                  | isture Correct                                  | ion Factor Equation                  | <u>n</u>                                                       | c                                                 | ).            | Р.                                   |                   | R.     |
|                                                                      | Avg. % Moisture Oven Dry - Avg. % Moisture Gauge<br>100 + Avg. % Moisture Gauge |                                                                                                     |                                                 | x 1000 =                             | 1000 = 9.4 - 8.8<br>100 + 8.8<br>Q.                            |                                                   |               | - x 1000 = + 5.51<br>Moisture Offset |                   |        |
|                                                                      |                                                                                 |                                                                                                     |                                                 |                                      |                                                                |                                                   |               |                                      | (MCF)             |        |
| -                                                                    | MODI                                                                            | FIED                                                                                                |                                                 | MPACTION TEST F                      |                                                                |                                                   |               |                                      | 7                 |        |
| S.<br>-                                                              | 1                                                                               | lest                                                                                                | NO.                                             |                                      | <u> </u>                                                       |                                                   | I-1-1B-95     |                                      |                   |        |
| 1.                                                                   | Maximum Dry Density = (d) Mg/m <sup>3</sup> (b/ft <sup>3</sup> )                |                                                                                                     |                                                 | シー                                   |                                                                | 111.2                                             |               |                                      |                   |        |
| υ.                                                                   |                                                                                 | Optin                                                                                               | num Moisture 9                                  | /0                                   |                                                                |                                                   | 14.4          |                                      |                   |        |
|                                                                      |                                                                                 |                                                                                                     |                                                 | (if a                                | applicable)                                                    |                                                   |               |                                      | -                 |        |
| V.                                                                   |                                                                                 | Corr.                                                                                               | Max. Dry Dens                                   | sity = (D) Mg/r $n^3$ (lb/f          | <b>ĵ</b> ₿)                                                    |                                                   | 114.7         |                                      | _                 |        |
| w.                                                                   | . Corr. Optimum Moisture %                                                      |                                                                                                     |                                                 |                                      |                                                                | 12.9                                              |               |                                      |                   |        |
|                                                                      | CHECK TESTS (with Offsets Enabled)<br>Y. Sand Cone Z.                           |                                                                                                     |                                                 | Z. Nuclea                            | r Gauge                                                        |                                                   |               |                                      |                   |        |
|                                                                      |                                                                                 | Х.                                                                                                  | Test No.                                        | Wet Density                          | Wet Density AA. Difference (±)                                 |                                                   | e (±)         |                                      |                   |        |
|                                                                      | 4                                                                               |                                                                                                     | I-4-10-95                                       | 117.2                                | 11                                                             |                                                   |               |                                      |                   |        |
|                                                                      | 5                                                                               |                                                                                                     | -3-18-33                                        | 110.0                                |                                                                | 5.0                                               | - 1.0         |                                      |                   |        |
|                                                                      | Maxim<br>(± 0.03                                                                | num D<br>32 Mg                                                                                      | Deviation:<br>$p/m^3$ or $\pm (2.0 \text{ lb}/$ | ft <sup>3</sup> Allowable)           |                                                                | BB.                                               | - 1.0         |                                      |                   |        |
| CC.                                                                  | Rema                                                                            | rks:                                                                                                | Gauge met on RE and Cont                        | correlation toleranc                 | es for Ty<br>esults                                            | pe 1 Class                                        | s B and Granu | ılar Backfil                         | I                 |        |
| DD.                                                                  | Tester                                                                          | d Bv:                                                                                               | Leo                                             | nard Cooper                          | EF.                                                            | Resident                                          | Engineer:     | How                                  | ard Koothr        | appali |
| 1                                                                    | NDOT<br>040-026                                                                 |                                                                                                     |                                                 |                                      |                                                                |                                                   |               |                                      |                   |        |
| Rev. 0//14 Distribution: Headquarters Construction, District, Reside |                                                                                 |                                                                                                     |                                                 | strict, Resident En                  | gineer, Contra                                                 | actor                                             |               |                                      |                   |        |

## 040-026 Rev. 07/14

# NUCLEAR GAUGE / SAND CONE CORRELATION FORM

# LINE EXPLANATION OF NEEDED MATERIAL

| A - | Date the sample was taken (ex. 7/12/2010)                                                                                                                                                                                                                                                                                                        |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Β-  | Material Type, as specified in the Contract Plans or Special Provisions<br>(ex. Type 1 Class B Base / Gran. Bkfl.)<br><b>NOTE:</b> Multiple material types can use the same correlation as long as it's been<br>indicated on NDOT form 040-026                                                                                                   |
| C - | Material Source, where the material was produced (ex. Sloan Pit, Bardon Materials)                                                                                                                                                                                                                                                               |
| D - | Contract number for the material being tested, found in the Contract Plans or Special Provisions (ex. 3925)                                                                                                                                                                                                                                      |
| Ε-  | Nuclear Set No., assigned to the moisture density gauge that is used for testing the material (ex. 43)<br><b>NOTE:</b> Consultants shall use the serial number found on the back of the gauge                                                                                                                                                    |
| F-  | Test No., I indicates informational test number(s) for this particular test. 1 is the number of tests performed on that material, 1B represents the material being tested (refer to the Construction Manual for coding) and 95 is the minimum percent compaction required (Standard Specifications or Special Provisions) (ex. I-1-1B-95)        |
| G - | Sand Cone Wet Density, determined per Test Method Nev. T102 from NDOT form 040-069 (ex. 120.4)                                                                                                                                                                                                                                                   |
| Н-  | Nuclear Gauge Wet Density, determined per Test Method Nev. T103 from NDOT form 040-007 (ex. 119.1)                                                                                                                                                                                                                                               |
| 1-  | Average, the sum of all three Line G's (Sand Cone Wet Density) / $3 =$ Line I (Average) (ex. 120.4 + 126.5 + 117.5 = 364.4 / $3 =$ 121.5 rounded to the nearest 0.1)<br>Average, the sum of all three Line H's (Nuclear Gauge Wet Density) / $3 =$ Line I (Average) (ex. 119.1 + 122.0 + 115.8 = 356.9 / $3 =$ 119.0 rounded to the nearest 0.1) |
| J - | Difference (±), Line I (Sand Cone Wet Density Average) -<br>Line I (Nuclear Gauge Wet Density Average) = Line J (ex. $121.5 - 119.0 = + 2.5$ )<br><b>NOTE:</b> Pay attention to the algebraic sign (+ or -)                                                                                                                                      |
| Κ-  | Test No., I indicates informational test number(s) for this particular test. 1 is the number of tests performed on that material, 1B represents the material being tested (refer to the Construction Manual for coding) and 95 is the minimum percent compaction required (Standard Specifications or Special Provisions) (ex. I-1-1B-95)        |

# 040-026 Rev. 07/14

# NUCLEAR GAUGE / SAND CONE CORRELATION FORM

# LINE EXPLANATION OF NEEDED MATERIAL

| L-         | % Moisture Oven Dry, obtained from NDOT form 040-004 (ex. 11.2)                                                                                                                                                                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M -        | % Moisture Gauge, obtained from NDOT form 040-007 (ex. 8.8)                                                                                                                                                                                                                                                                                |
| N -        | Average, the sum of all three Line L's (% Moisture Oven Dry) / $3 = \text{Line N}$ (Average)<br>(ex. 11.2 + 11.0 + 6.0 = 28.2 / $3 = 9.4$ rounded to the nearest 0.1)<br>Average, the sum of all three Line M's (% Moisture Gauge) / $3 = \text{Line N}$ (Average)<br>(ex. 8.8 + 11.8 + 5.7 = 26.3 / $3 = 8.8$ rounded to the nearest 0.1) |
| 0 -        | Average % Moisture Oven Dry, Line N (ex. 9.4)                                                                                                                                                                                                                                                                                              |
| Ρ-         | Average % Moisture Gauge, Line N (ex. 8.8)                                                                                                                                                                                                                                                                                                 |
| Q -        | Average % Moisture Gauge, Line N (ex. 8.8)                                                                                                                                                                                                                                                                                                 |
| R -        | Moisture Offset (MCF), ((Line O (Average % Moisture Oven Dry) -<br>Line P (Average % Moisture Gauge)) / (100 + Line Q (Average % Moisture Gauge))<br>x 1000 = Line R (ex. ((9.4 - 8.8) / (100 + 8.8)) x 1000 = + 5.51)<br><b>NOTE:</b> Pay attention to the algebraic sign (+ or -)                                                        |
| S -        | Test No., I indicates informational test number(s) for this particular test. 1 is the number of tests performed on that material, 1B represents the material being tested (refer to the Construction Manual for coding) and 95 is the minimum percent compaction required (Standard Specifications or Special Provisions) (ex. I-1-1B-95)  |
| т-         | Maximum Dry Density = (d) Mg/m <sup>3</sup> (lb/ft <sup>3</sup> ), the highest dry density as established per Test Method Nev. T108 from NDOT form 040-069 (ex. 111.2)                                                                                                                                                                     |
| U -        | Optimum Moisture %, as established per Test Method Nev. T108 from NDOT form 040-069 (ex. 14.4)                                                                                                                                                                                                                                             |
| V -        | Corr. Max. Dry Density = (D) Mg/m <sup>3</sup> (lb/ft <sup>3</sup> ), as established per test Method Nev. T108 from NDOT form 040-069 (ex. 114.7)                                                                                                                                                                                          |
| <b>W</b> - | Corr. Optimum Moisture %, as established per Test Method Nev. T108 from NDOT form 040-069 (ex. 12.9)                                                                                                                                                                                                                                       |
| X -        | Test No., I indicates informational test number(s) for this particular test. 4 is the number of tests performed on that material, 1B represents the material being tested (refer to the Construction Manual for coding) and 95 is the minimum percent compaction required (Standard Specifications or Special Provisions) (ex. I-4-1B-95)  |

## 040-026 Rev. 07/14

# NUCLEAR GAUGE / SAND CONE CORRELATION FORM

#### LINE EXPLANATION OF NEEDED MATERIAL

| Y -    | Sand Cone Wet Density, determined per Test Method Nev. T102 from NDOT form 040-069 (ex. 117.2)                                                                                                                                                                                                                         |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z -    | Nuclear Gauge Wet Density, determined per Test Method Nev. T103 from NDOT form 040-007 (ex. 117.7)                                                                                                                                                                                                                     |
| AA -   | Difference (±), Line Y (Sand Cone Wet Density) - Line Z (Nuclear Gauge Wet Density)<br>= Line AA (Difference ±) (ex. $117.2 - 117.7 = -0.5$ )<br><b>NOTE:</b> Pay attention to the algebraic sign (+ or -)                                                                                                             |
| BB -   | Maximum Deviation, is the largest difference between the sand cones and gauge shots obtained at the same locations. If the number is within $\pm 0.032$ Mg/m3 ( $\pm 2.0$ pcf), a successful moisture density gauge correlation has been performed. If tolerances exceed re-correlation shall be required (ex 1.0 pcf) |
| CC -   | Remarks, anything that needs to be documented (ex. Gauge met correlation tolerances for Type 1 Class B Base and Granular Backfill. RE and Contractor notified of results)                                                                                                                                              |
| DD -   | Tested By, printed first and last name of the tester or testers who completed the test (ex. Leonard Cooper)                                                                                                                                                                                                            |
| EE -   | Resident Engineer, or Assistant Resident Engineer signature on that specific crew verifying the accuracy of the reported results. (ex. Howard Koothrappali)                                                                                                                                                            |
| NOTES: |                                                                                                                                                                                                                                                                                                                        |
| 1.     | Gauge correlation can be performed on acceptance tests or on informational pads                                                                                                                                                                                                                                        |
| 2.     | Gauge rod depth and the in-place sand cone depth shall be the same depth for the                                                                                                                                                                                                                                       |

Gauge rod depth and the in-place sand cone depth shall be the same depth for the gauge correlation. After a successful correlation, a desired rod depth of choice may be used.

## THEORETICAL MAXIMUM SPECIFIC GRAVITY OF BITUMINOUS PAVING MIXTURES (FIELD METHOD)

| Material Type:                          | Date:                           |
|-----------------------------------------|---------------------------------|
| Tested By:                              | Contract Number:                |
| Sampled By:                             | Test Number (same as burn-off): |
| Sampled From Station:                   | Time of Day:                    |
| Lot / Sublot:                           |                                 |
|                                         |                                 |
| FIELD                                   | RICE RESULTS                    |
|                                         |                                 |
| "A" = Mass of sample in air             |                                 |
| "B" = Mass of pycnometer and water      |                                 |
| "C" = Mass of evacuated sample, pycnome | eter and water                  |
|                                         |                                 |
| APPARENT SPECIFIC GRAVITY               |                                 |
| A / [( A + B                            | ) - C] =                        |
|                                         |                                 |
| DENSITY                                 |                                 |
| S.G. x 1 Mg/m <sup>3</sup> =            | Mg/m <sup>3</sup>               |
| S.G. x 62.4 lbs/ft <sup>3</sup> =       | lbs/ft <sup>3</sup>             |
|                                         |                                 |
|                                         |                                 |

Resident Engineer:

## THEORETICAL MAXIMUM SPECIFIC GRAVITY OF BITUMINOUS PAVING MIXTURES (FIELD METHOD)

| A. Material Type:   | PBS Type II                          | B. Date:                   | 7/12/2010                     |
|---------------------|--------------------------------------|----------------------------|-------------------------------|
| C. Tested By:       | Jacob Willis                         | D. Contract Number:        | 3925                          |
| E. Sampled By:      | Jacob Willis                         | <b>F.</b> Test Number (sam | ne as burn-off): <b>T-1-1</b> |
| G. Sampled From Sta | ation: " <mark>X" 79 + 80 Rt.</mark> | <b>H.</b> Time of Day:     | 7:08 A.M.                     |
| I. Lot / Sublot:    | N/A                                  |                            |                               |
|                     |                                      |                            |                               |

## FIELD RICE RESULTS

| J. "A" = Mass of sample in air                   | 1231.1         |  |  |
|--------------------------------------------------|----------------|--|--|
| K. "B" = Mass of pycnometer and water            | 2575.2         |  |  |
| L. "C" = Mass of evacuated sample, pycnometer an | d water 3305.2 |  |  |

#### **APPARENT SPECIFIC GRAVITY**

**M.** A / [(A + B) - C] = 2.457

#### DENSITY

| <b>N.</b> S.G. x 1 Mg/m <sup>3</sup> =      | 2.457 | Mg/m <sup>3</sup>   |
|---------------------------------------------|-------|---------------------|
| <b>O.</b> S.G. x 62.4 lbs/ft <sup>3</sup> = | 153.3 | lbs/ft <sup>3</sup> |

P. Resident Engineer: Jeffry Bedgers

# 040-030 Rev. 8/10

## THEORETICAL MAXIMUM DENSITY WORKSHEET

| Α-  | Material type as specified, found in the Standard Specifications, Contract Plans or Special Provisions (EX. PBS Type II)                                                                                                                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Date the sample was taken (EX. 7/12/2010)                                                                                                                                                                                                                                                   |
| C - | Print first and last name of tester or testers who completed the test (EX. Jacob Willis)                                                                                                                                                                                                    |
| D - | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                                                                                 |
| E-  | Print first and last name of tester or testers who sampled the material to be tested (EX. Jacob Willis)                                                                                                                                                                                     |
| F-  | Test number of the RICE that correlates to the test number for the ignition oven sample per Test Method Nev. T761 (EX. T-1-1)                                                                                                                                                               |
| G - | Approximate sample location, found in the Contract Plans or jobsite survey stakes (EX. "X" 79 + 80 Rt.)                                                                                                                                                                                     |
| H-  | Time of day the sample was taken (EX. 7:08 a.m.) <b>NOTE:</b> One for each half day of paving (one in a.m. and one in p.m.)                                                                                                                                                                 |
| 1-  | Only applies to End Result projects                                                                                                                                                                                                                                                         |
| J - | Mass of sample in the air determined per Test Method Nev. T324 (EX. 1231.1)                                                                                                                                                                                                                 |
| К-  | Mass of pycnometer, with lid, and water with a meniscus at the top determined per Test Method Nev. T324 (EX. 2575.2)                                                                                                                                                                        |
| L-  | Total mass of evacuated sample, pycnometer with the lid, water with the meniscus and the material determined per Test Method Nev. T324 (EX. 3305.2)                                                                                                                                         |
| Μ - | Line J (Mass of Sample in Air) / [(Line J (Mass of Sample in Air) + Line K (Mass of Pycnometer and Water)) - Line L (Mass of Evacuated Sample, Pycnometer and Water)] = Line M (Apparent Specific Gravity) (EX. 1231.1 / [(1231.1 + 2575.2) - 3305.2] = 2.457) Rounded to the nearest 0.001 |
| N - | Line M (Apparent Specific Gravity) x 1 = Metric Specific Gravity (EX. 2.457 x 1 = $2.457 \text{ Mg/m}^3$ ) Rounded to the nearest 0.001                                                                                                                                                     |

## 040-030 Rev. 8/10

## THEORETICAL MAXIMUM DENSITY WORKSHEET

- **O** Line M (Apparent Specific Gravity) x 62.4 = English specific gravity (EX. 2.457 x 62.4 = 153.3 lbs/ft<sup>3</sup>)
- P Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Jeffry Rodgers)

# **EMULSION VISCOSITY WORKSHEET**

Contract No. \_\_\_\_\_ Specification Requirement \_\_\_\_\_

Material Type \_\_\_\_\_

| SAMPLE # | TRK/TRI # | TIME<br>(SECONDS) | CALIBRATION<br>FACTOR | VISCOSITY | TOTAL<br>TONS | TESTED<br>BY | DATE<br>TESTED |
|----------|-----------|-------------------|-----------------------|-----------|---------------|--------------|----------------|
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |
|          |           |                   |                       |           |               |              |                |

Distribution: Construction Division, District, Resident Engineer, Contractor

# **EMULSION VISCOSITY WORKSHEET**

A. Contract No. 3925

| B. Specification Requirement |           | 703.03.02 |             |           | C. Material Type | CMS-2S      |           |
|------------------------------|-----------|-----------|-------------|-----------|------------------|-------------|-----------|
| D.                           | Ε.        | F.        | G.          | H.        | I.               | J.          | К.        |
|                              |           | TIME      | CALIBRATION |           | TOTAL            | TESTED      | DATE      |
| SAMPLE #                     | TRK/TRL # | (SECONDS) | FACTOR      | VISCOSITY | TONS             | BY          | TESTED    |
| 1                            | 14 / 001B | 201.6     | 1.006       | 203       | 14.04            | Jesse Smoen | 6/22/2010 |
| 2                            | 14 / 001B | 211.8     | 1.006       | 213       | 22.62            | Jesse Smoen | 6/22/2010 |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |
|                              |           |           |             |           |                  |             |           |

NDOT 040-032 Rev. 7/07

Distribution: Construction Division, District, Resident Engineer, Contractor

## 040-032 Rev. 7/07

# **EMULSION VISCOSITY WORKSHEET**

### LINE EXPLANATION OF NEEDED INFORMATION

| A -    | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                               |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-     | All the specifications that apply to the material being tested see the Standard Specifications and Special Provisions etc. (EX. 703.03.02)                                                                |
| C -    | Type of material as specified, found in the Contract Plans or Special Provisions (EX. CMS-2S)                                                                                                             |
| D -    | Sample number for this particular sample in chronological order (EX. 1)                                                                                                                                   |
| E -    | Number given to the truck and trailer by its company, found on the truck and trailer, on the bill of lading or Certificate of Compliance (EX. Truck # 14, Trailer # 001B)                                 |
| F -    | Time it takes for the emulsion to come out of the viscometer per Test Method Nev.<br>T759 (EX. Stop watch shows 3 minutes and 21.6 seconds = 201.6 seconds<br>Take 3 x 60 = 180; Take 180 + 21.6 = 201.6) |
| G -    | Calibration factor is on the viscometer tube (EX. 1.006)                                                                                                                                                  |
| Н-     | Line F (Time in Seconds) x Line G (Calibration Factor) = Line H (Viscosity) rounded to the nearest whole number (EX. $201.6 \times 1.006 = 202.8 = 203$ )                                                 |
| 1-     | Total tons of what this specific test represents, it will be the total tons of the truck or total tons of the trailer, not both truck and trailer combined (EX. 14.04 tons)                               |
| J -    | Print first and last name of the tester or testers who completed the test (EX. Jesse Some)                                                                                                                |
| К-     | Date the sample was tested (EX. 6/22/2010)                                                                                                                                                                |
| NOTES: |                                                                                                                                                                                                           |

1.Once this sheet is full, turn into the office so they can submit to the Construction Office.<br/>Continue the numbering from the previous sheet. DO NOT start over.

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION REPORT OF FIELD TESTS OF COARSE AND FINE AGGREGATE FOR CONCRETE

| Test Number                     |             |              |              |               | Contract N     | lumber       |              |            |              |
|---------------------------------|-------------|--------------|--------------|---------------|----------------|--------------|--------------|------------|--------------|
| Date sampled                    |             |              |              | Contractor    |                |              |              |            |              |
| Sampled by                      |             |              |              |               | Mix Desiar     | n Number     |              |            |              |
| Tested by                       | ested by    |              |              |               |                |              |              |            |              |
| Specifications referen          | се          |              |              |               |                |              |              |            |              |
| Quantity represented            | hy sample   |              |              |               |                |              |              |            |              |
| Source of No. 4 coars           |             | to           |              |               |                |              |              |            |              |
| Source of No. 57 or 6           | 7 coarse a  | areaste      |              |               |                |              |              |            |              |
| Source of No. 467 co            | r coarse a  | ggregate     |              |               |                |              |              |            |              |
| Source of fine aggreg           | ate (sand)  | yaie         |              |               |                |              |              |            |              |
| Source of fille aggreg          |             |              |              |               |                |              |              |            |              |
|                                 |             | -            | CO           | ARSE AGO      | GREGATE        |              |              | -          |              |
|                                 |             |              | No. 57       |               |                |              |              | Total      | Comb Specs   |
| TOTAL %                         | No. 4       | Specs.       | No. 67       | Specs.        | No. 467        | Specs.       | Fines        | Combined   | oomb. opees. |
| Passing                         | 0/          |              | 0/           |               | 0/             |              | 0/           |            |              |
| 75 mm (2")                      | /0          |              | /0           |               | /0             |              | /0           |            |              |
| 73  mm(3)                       |             |              |              |               |                |              |              |            |              |
| $50 \text{ mm} (2^{\prime})$    |             |              |              |               |                |              |              |            |              |
| 30  mm(2)                       |             |              |              |               |                |              |              |            |              |
| 37.3 [[[[] (1/2])               |             |              |              |               |                |              |              |            |              |
| 25 mm (1)                       |             |              |              |               |                |              |              |            |              |
| 19 mm (%)                       |             |              |              |               |                |              |              |            |              |
| $12.5 \text{ mm} (\frac{1}{2})$ |             |              |              |               |                |              |              |            |              |
| 9.5 mm (%)                      |             |              |              |               |                |              |              |            |              |
| 4.75 mm (No. 4)                 |             |              |              |               |                |              |              |            |              |
| 2.36 mm (No. 8)                 |             |              |              |               |                |              |              |            |              |
| 1.18 mm (No. 16)                |             |              |              |               |                |              |              |            |              |
| 600 µm (No. 30)                 |             |              |              |               |                |              |              |            |              |
| 300 µm (No. 50)                 |             |              |              |               |                |              |              |            |              |
| 150 µm (No.100)                 |             |              |              |               |                |              |              |            |              |
| 75 μm (No. 200)                 |             |              |              |               |                |              |              |            |              |
| Y. Cleanness Value              |             |              |              |               |                |              |              |            |              |
|                                 |             | FINE AG      | GREGATE      | E (SAND)      |                |              | 2            |            |              |
|                                 | A           | 4            | E            | 3             | 0              | Total %      | Retained     | Derrordina |              |
| Soroon oizo                     | 0/ Dot      | tainad       | 0/ Do        | oning         | Specs.         | Fin. Mod     | . Sieves     | Remarks:   |              |
| Screen size                     | 70 Ke       | lameu        | 70 F d       | Issing        |                | (100         | - "B")       |            |              |
| 9.5 mm (℁")                     |             |              |              |               |                |              |              |            |              |
| 4.75 mm (No. 4)                 |             |              |              |               |                |              |              |            |              |
| 2.36 mm (No. 8)                 |             |              |              |               |                |              |              |            |              |
| 1.18 mm (No. 16)                |             |              |              |               |                |              |              |            |              |
| 600 µm (No. 30)                 |             |              |              |               |                |              |              |            |              |
| 300 µm (No. 50)                 |             |              |              |               |                |              |              |            |              |
| 150 µm (No.100)                 |             |              |              |               |                |              |              |            |              |
| 75 µm (No. 200)                 |             |              |              |               |                |              |              |            |              |
|                                 |             |              |              |               |                |              |              |            |              |
| Sand equivalent                 |             | (Spe         | ecs.)        |               |                |              |              |            |              |
| Einenege Maskiker (*            |             |              | ·,           |               | 1/ 0.0 cf      |              | Dec - F      | N /        |              |
| Fineness Modulus (su            | Im of colun | nn ÷ C 100,  | )            | ·             | +/- 0.2 of _   |              | _ Base F.    | .IVI.      |              |
| Resident Engineer               |             |              |              |               |                |              |              |            |              |
|                                 |             |              |              |               |                |              |              |            |              |
| NDOT<br>040-035                 |             | Distribution | . Hoadquarte | rs Constructi | on District Re | sident Engin | er Contracto | or.        |              |

040-035 Rev. 10/09 Distribution: Headquarters Construction, District, Resident Engineer, Contractor

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION REPORT OF FIELD TESTS OF COARSE AND FINE AGGREGATE FOR CONCRETE

| A. Test Number         | T-1-1            |                |                     |                 | K. Contrac                             | t Number          | 39                 | 25                    |                 |  |
|------------------------|------------------|----------------|---------------------|-----------------|----------------------------------------|-------------------|--------------------|-----------------------|-----------------|--|
| B. Date sampled        | 7/12/2010        |                |                     |                 | L. Contractor Granite Construction Co. |                   |                    |                       |                 |  |
| C. Sampled by          | <b>Chris Tim</b> | е              |                     |                 | M. Mix De                              | sign Numb         | er                 | PSPT 375              |                 |  |
| D. Tested by           | <b>Chris Tim</b> | е              |                     |                 | N. Item to be Constructed Barrier Rail |                   |                    |                       |                 |  |
| E. Specifications refe | rence            | 706.03.01      | and 706.0           | 3.03            |                                        |                   |                    |                       |                 |  |
| F. Quantity represent  | ed by samp       | ole            | 300 yd <sup>3</sup> |                 |                                        |                   |                    |                       |                 |  |
| G. Source of No. 4 co  | arse aggre       | gate           | N/A                 |                 |                                        |                   |                    |                       |                 |  |
| H. Source of No. 57 c  | or 67 coars      | e aggregat     | е                   | Sierra Sto      | one Quarry                             |                   |                    |                       |                 |  |
| I. Source of No. 467   | coarse ago       | regate         | N/A                 |                 |                                        |                   |                    |                       |                 |  |
| J. Source of fine aggr | regate (san      | d)             | Tracy Pit           |                 |                                        |                   |                    |                       |                 |  |
|                        |                  |                | CO                  | ARSE AGO        | GREGATE                                |                   |                    |                       |                 |  |
| 0.                     | Ρ.               | Q.             | <b>R.</b> No. 57    | S.              | Т.                                     | U.                | V.                 | W. Total              | V Comb Space    |  |
| TOTAL %                | No. 4            | Specs.         | No.67               | Specs.          | No. 467                                | Specs.            | Fines              | Combined              | A. Comb. Specs. |  |
| Passing                | %                |                | %                   |                 | %                                      |                   | %                  |                       |                 |  |
| 75 mm (3")             |                  |                |                     |                 |                                        |                   |                    |                       |                 |  |
| 63 mm (2½")            |                  |                | 1                   |                 |                                        |                   |                    |                       |                 |  |
| 50 mm (2")             |                  |                |                     |                 |                                        |                   |                    |                       |                 |  |
| 37.5 mm (1½")          |                  |                |                     |                 |                                        |                   |                    |                       |                 |  |
| 25 mm (1")             |                  |                | 100                 | 100             |                                        |                   |                    |                       |                 |  |
| 19 mm (¾")             |                  |                | 95                  | 90 - 100        |                                        |                   |                    |                       |                 |  |
| 12.5 mm (½")           |                  |                |                     |                 |                                        |                   |                    |                       |                 |  |
| 9.5 mm (¾")            |                  |                | 23                  | 20 - 55         |                                        |                   |                    |                       |                 |  |
| 4.75 mm (No. 4)        |                  |                | 4                   | 0 - 10          |                                        |                   |                    |                       |                 |  |
| 2.36 mm (No. 8)        |                  |                | 2                   | 0 - 5           |                                        |                   |                    |                       |                 |  |
| 1.18 mm (No. 16)       |                  |                |                     |                 |                                        |                   |                    |                       |                 |  |
| 600 µm (No. 30)        |                  |                |                     |                 |                                        |                   |                    |                       |                 |  |
| 300 µm (No. 50)        |                  |                |                     |                 |                                        |                   |                    |                       |                 |  |
| 150 µm (No.100)        |                  |                |                     |                 |                                        |                   |                    |                       |                 |  |
| 75 µm (No. 200)        |                  |                | 1                   | 0 - 1           |                                        |                   |                    |                       |                 |  |
| Y. Cleanness Value     |                  |                | 91                  | 71 Min.         |                                        |                   |                    |                       | •               |  |
|                        |                  | FINE AG        | GREGATI             | E (SAND)        |                                        |                   |                    |                       |                 |  |
|                        |                  |                |                     |                 |                                        | (                 | C                  |                       |                 |  |
|                        | ŀ                | 4              |                     | В               | CC. Specs.                             | DD. Total         | % Retained         | EE. Remarks: Test met |                 |  |
| Z. Screen size         | <b>AA.</b> % F   | Retained       | <b>BB.</b> %        | Passing         | ·                                      | FIN. 1000<br>(100 | . Sieves<br>- "B") |                       |                 |  |
| 9.5 mm (℁")            | (                | )              | 1                   | 00              | 100                                    | (100              | 2,                 | specs. Re             | sident          |  |
| 4.75 mm (No. 4)        | 0                | .3             | 99                  | 9.7             | 95 - 100                               | 0                 | .3                 |                       |                 |  |
| 2.36 mm (No. 8)        | 7                | .0             | 92                  | 2.9             | 80 - 100                               | 7                 | .1                 | Engineer              | and             |  |
| 1.18 mm (No. 16)       | 23               | 9.1            | 62                  | 2.4             | 50 - 85                                | 37                | 7.6                |                       |                 |  |
| 600 µm (No. 30)        | 21               | .4             | <b>4</b> ′          | 1.0             | 25 - 60                                | 59                | 9.0                | Contracto             | or notified of  |  |
| 300 µm (No. 50)        | 7                | .8             | 24                  | 4.5             | 5 - 30                                 | 75                | 5.5                |                       |                 |  |
| 150 µm (No.100)        | 14               | .2             | 10                  | 0.3             | 0 - 10                                 | 89                | 9.7                | results.              |                 |  |
| 75 µm (No. 200)        | 7                | .3             | 3                   | 5.0             | 0 - 5                                  |                   |                    |                       |                 |  |
|                        |                  |                |                     |                 |                                        |                   |                    |                       |                 |  |
| FF. Sand equivalent    | 88               | GG.            | (Specs.)            | 71 Min.         |                                        |                   |                    |                       |                 |  |
| HH. Fineness Modulu    | is (sum of o     | column ÷ C     | ; 100)              | 2.7             | <b>II.</b> +/- 0.2 c                   | of <b>2.7</b>     | Base               | F.M.                  |                 |  |
|                        |                  |                |                     |                 |                                        |                   |                    |                       |                 |  |
| JJ. Resident Enginee   | er:              | ₩. Гм          | ,<br>y              |                 |                                        |                   |                    |                       |                 |  |
| NDOT                   |                  |                |                     |                 |                                        |                   |                    |                       |                 |  |
| 040-035                | Dis              | stribution: He | adquarters Co       | onstruction. Di | istrict. Resider                       | nt Engineer (     | Contractor         |                       |                 |  |

on, District, Resident ngi

#### 040-035 Rev. 10/09

# REPORT OF FIELD TESTS OF COURSE AND FINE AGGREGATE FOR CONCRETE

- A Test number for this particular test (EX. T-1-1 T = Acceptance; 1 = first acceptance test of the day; 1 = number of days the material has been tested) NOTE: Test numbering will start over for each source and each mix design, found in the Construction Manual
- **B** Date the sample was taken (EX. 7/12/2010)
- C Print first and last name of the tester or testers who sampled the material (EX. Chris Time)
- **D** Print first and last name of the tester or testers who completed the test (EX. Chris Time)
- **E** All of the specifications that apply to the material being tested; see the Standard Specifications and Special Provisions (EX. 706.03.01 and 706.03.03)
- **F** Total yards of concrete from the Construction Manual frequencies (EX. 300 yd<sup>3</sup>)
- **G** Where the number 4 material was produced, not where it was stockpiled
- H- Where the number 67 material was produced, not where it was stockpiled (EX. Sierra Stone Quarry)
- Where the number 467 material was produced, not where it was stockpiled
- J Where the fine material was produced, not where it was stockpiled (EX. Tracy Pit)
- K Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)
- L Name of the Prime contractor awarded the contract (EX. Granite Construction Co.)
- M Number of the Mix Design that the sample represents (Mix Design approved by the Materials Division) (EX. PSPT 375) NOTE: Mix Design shall be on file in the Field Office and copies handed out to the crew
- N Name of the item being constructed, where the concrete is being placed (EX. Barrier Rail)

#### 040-035 Rev. 10/09

# REPORT OF FIELD TESTS OF COURSE AND FINE AGGREGATE FOR CONCRETE

- **O** Sieves that could be used for particular materials, depending on the aggregate requirement
- P No. 4 material percent passing the required sieves from NDOT form 040-013 reported to the whole number
- **Q** Specifications for the No. 4 or larger material
- R No. 57 or No. 67 material percent passing the required sieves from NDOT form 040-013 reported to the whole number
- S Required specifications for the No. 57 or No. 67
- T No. 467 material percent passing the required sieves from NDOT form 040-013 reported to the whole number
- U Specifications for the No. 467 material
- Fine material percent passing the required sieves from NDOT form 040-013 NOTE: This column will only be used when combining aggregates for combined gradation requirements
- W Total combined if combining sieves for aggregates that require combined gradations
- X Combined specification for this particular mix design
- Y Value determined by Test Method Nev. T228 (EX. 91) NOTE: This test is only performed on coarse material
- Z Sieves that are used for fine concrete aggregates
- AA Percent retained on each sieve determined per Test Method Nev. T206 from NDOT form 040-013 reported to the nearest 0.1
- **BB -** Percent passing each sieve determined per Test Method Nev. T206 from NDOT form 040-013 reported to the nearest 0.1

## 040-035 Rev. 10/09

# REPORT OF FIELD TESTS OF COURSE AND FINE AGGREGATE FOR CONCRETE

#### LINE EXPLANATION OF NEEDED INFORMATION

| DD - | Fineness Modulus is determined for Fine Aggregates for materials between the No. 4 sieve to the No. 100 sieve. 100 - Line BB (% Passing) = Line DD (Total % Retained Fin. Mod. Sieves) (EX. use the No. 100 sieve 100 - 10.3 = 89.7)                                                                                                                                                                                                                                                 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EE - | Any remarks that needs to be documented (EX. Test met specs. Resident Engineer and Contractor notified of results)                                                                                                                                                                                                                                                                                                                                                                   |
| FF - | Value determined per Test Method Nev. T227 from NDOT form 040-006 reported to the whole number (EX. 88)                                                                                                                                                                                                                                                                                                                                                                              |
| GG - | Specifications per Test Method Nev. T227 found in the Standard Specifications or Special Provisions (EX. 71 min.)                                                                                                                                                                                                                                                                                                                                                                    |
| HH - | Fineness Modulus is the sum of Lines DD (Total % Retained Fin. Mod. Sieves) / 100<br>= Fineness Modulus reported to the 0.1<br>(EX. $0.3 + 7.1 + 37.6 + 59.0 + 75.5 + 89.7 = 269.2 / 100 = 2.7$ )                                                                                                                                                                                                                                                                                    |
| II - | Base Fineness Modulus is determined by taking the sum of the Fineness Modulus values and dividing by 10. A rolling average is kept of the Fineness Modulus values as the tests are performed. Anything over 10, average tests 2 - 11 or 3 - 12 etc. If there are less than 10 tests taken, all the tests that are completed to date are to be averaged. $\# 1 + \# 2 + \# 3 = \# / 3 = \text{Line II}$ (Base F.M.) NOTE: There will always be a number for the Base Fineness Modules |
| JJ - | Resident Engineer or Assistant Resident Engineer on that specific crew (EX. H. Polly) specific crew (EX. H. Polly)                                                                                                                                                                                                                                                                                                                                                                   |

# NOTE:

| 1. | NDOT forms 040-013 and 040-006 are to be submitted with this form                                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | If performing a combined gradation and assistance is needed, contact the Independence Assurance Lab or the Quality Assurance Section                             |
| 3. | PCCP is to be reported to the nearest 0.1 on this form. Since the PCCP is a combined gradation, all other concrete is to be reported to the nearest whole number |

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION RETROREFLECTIVITY MEASUREMENTS

Contract No.: \_\_\_\_\_

White

Yellow

\*Color:

\*One color per sheet

Specification Requirement:

Equipment Used: \_\_\_\_\_

Equipment Calibration / Service Date: \_\_\_\_\_

Material Description: \_\_\_\_\_

| DATE AND TIME<br>PLACED | STATION | DIRECTION<br>OF TRAFFIC | LINE<br>TYPE | DATE<br>TESTED | RETRO-<br>REFLECTIVITY<br>READING | RETESTS<br>IF REQUIRED |
|-------------------------|---------|-------------------------|--------------|----------------|-----------------------------------|------------------------|
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |
|                         |         |                         |              |                |                                   |                        |

Remarks: \_\_\_\_\_

Tested By: \_\_\_\_\_

Resident Engineer : \_\_\_\_\_

NDOT 040-041 Rev. 3/05

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

1

### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION RETROREFLECTIVITY MEASUREMENTS

| A. Contract No.: 3925   |                |                         |              | C. Specification Re | equirement: <u>375 Mini</u>       | mum                    |
|-------------------------|----------------|-------------------------|--------------|---------------------|-----------------------------------|------------------------|
|                         |                |                         |              | D. Equipment Use    | d: <b>LTL - X</b>                 |                        |
| B. *Color: Yellow       | White X        |                         |              | E. Equipment Calib  | pration / Service Date: 5/8       | 3/2010                 |
| *One color per sheet    |                |                         |              | F. Material Descrip | otion: Epoxy Pavement             | Striping               |
| G.                      | Н.             | l.                      | J.           | К.                  | L.                                | Μ.                     |
| DATE AND TIME<br>PLACED | STATION        | DIRECTION<br>OF TRAFFIC | LINE<br>TYPE | DATE<br>TESTED      | RETRO-<br>REFLECTIVITY<br>READING | RETESTS<br>IF REQUIRED |
| 6-16-10 / 7:00 a.m.     | "R2" 7 + 00 LT | South Bound             | 4" Solid     | 7/12/2010           | 395                               |                        |
| 6-16-10 / 7:30 a.m.     | "R1" 9 + 00 RT | North Bound             | 4" Solid     | 7/17/2010           | 426                               |                        |
| 6-16-10 / 8:00 a.m.     | "R1" 9 + 70 RT | North Bound             | 8" Solid     | 7/17/2010           | 445                               |                        |
|                         |                |                         |              |                     |                                   |                        |
|                         |                |                         |              |                     |                                   |                        |
|                         |                |                         |              |                     |                                   |                        |
|                         |                |                         |              |                     |                                   |                        |
|                         |                |                         |              |                     |                                   |                        |
|                         |                |                         |              |                     |                                   |                        |
|                         |                |                         |              |                     |                                   |                        |
|                         |                |                         |              |                     |                                   |                        |
|                         |                |                         |              |                     |                                   |                        |
|                         |                |                         |              |                     |                                   |                        |

N. Remarks: All tests meet specifications.

O. Tested By: Martin Hopeful

P. Resident Engineer : 36

Tony Hopner

NDOT 040-041 Rev. 3/05

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

# 040-041 Rev. 3/05

# **RETROREFLECTIVITY MEASUREMENTS**

| A - | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Indicate white or yellow as the color of striping that is being tested (EX. White)                                                                                                                                       |
| C - | Specification requirement found in the Contract Plans or Special provisions etc. (EX. 375 Minimum)                                                                                                                       |
| D - | Name of the equipment that is being utilized to test the material (EX. LTL-X) Check the current Qualified Product List (QPL) for this contract to determine if the contractor is using an appropriate and approved model |
| E-  | Date the equipment was last calibrated and serviced (EX. 5/8/2010)                                                                                                                                                       |
| F-  | Type of material that is being tested (EX. Epoxy Pavement Striping)                                                                                                                                                      |
| G - | Date and time the material was placed (EX. 6-16-10 / 7:00 a.m.)                                                                                                                                                          |
| Н-  | Approximate sample location, found in the Contract Plans or jobsite survey stakes (EX. "R2" 7 + 00 LT)                                                                                                                   |
| 1-  | Direction of traffic in which the striping is being placed (EX. South Bound)                                                                                                                                             |
| J - | Line type that is being applied (EX. 4" Solid)                                                                                                                                                                           |
| К-  | Date the material was tested for retroreflectivity determined per Test Method Nev. T511 (EX. 7/12/2010)                                                                                                                  |
| L-  | Reading indicated by the Retroreflectometer per Test Method Nev. T511 (EX. 395)                                                                                                                                          |
| M - | Three additional readings outside of the original five constitute a re-test per Test<br>Method Nev. T511                                                                                                                 |
| N - | Any remarks that need to be documented (EX. All tests meet specifications.)                                                                                                                                              |
| 0 - | Tested by, print first and last name of the tester or testers who completed the test (EX. Martin Hopeful)                                                                                                                |
| Ρ-  | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Tony Hepner)                                                                                                                       |

# 040-041 Rev. 3/05

## **RETROREFLECTIVITY MEASUREMENTS**

# LINE EXPLANATION OF NEEDED INFORMATION

**NOTE:** Only one color per sheet should be indicated as white and yellow striping have different specified requirements for reflectivity

#### **PAVEMENT MARKING FILM ADHESION TEST (SECTION 634)**

Contract No.:

Specification Requirement:

\*Color: Yellow White

Material Description:

\*One color per sheet

| DATE   |         | DIRECTION  | MARKING<br>FILM | DATE   | ADHESION<br>TEST RESULTS |         |
|--------|---------|------------|-----------------|--------|--------------------------|---------|
| PLACED | STATION | OF TRAFFIC | DESCRIPTION     | TESTED | N or Ib                  | RETESTS |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |
|        |         |            |                 |        |                          |         |

Remarks:

Tested By: \_\_\_\_\_

Resident Engineer:

NDOT 040-047 Rev. 7/07

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

#### **PAVEMENT MARKING FILM ADHESION TEST (SECTION 634)**

| A. Contract No.:                          | 3925          |                         |                                | C. Specification Req    | uirement: <u>8 lb Minimu</u>        | ım            |
|-------------------------------------------|---------------|-------------------------|--------------------------------|-------------------------|-------------------------------------|---------------|
| B. *Color: Yellow<br>*One color per sheet | White X       | G                       | н                              | D. Material Description | on: <u>Pavement Markin</u>          | <u>g Film</u> |
| DATE<br>PLACED                            | STATION       | DIRECTION<br>OF TRAFFIC | MARKING<br>FILM<br>DESCRIPTION | DATE<br>TESTED          | ADHESION<br>TEST RESULTS<br>N or(ⓑ) |               |
| 8/15/2010                                 | "LE" 125 + 00 | East Bound              | 4" marking film                | 8/16/2010               | 9.5 lb                              |               |
| 8/15/2010                                 | "LW" 229 + 25 | West Bound              | 4" marking film                | 8/16/2010               | 8.2 lb                              |               |
|                                           |               |                         |                                |                         |                                     |               |
|                                           |               |                         |                                |                         |                                     |               |
|                                           |               |                         |                                |                         |                                     |               |
|                                           |               |                         |                                |                         |                                     |               |
|                                           |               |                         |                                |                         |                                     |               |
|                                           |               |                         |                                |                         |                                     |               |
|                                           |               |                         |                                |                         |                                     |               |
|                                           |               |                         |                                |                         |                                     |               |
|                                           |               |                         |                                |                         |                                     |               |
| <u></u>                                   |               |                         |                                |                         |                                     |               |
|                                           |               |                         |                                |                         |                                     |               |
|                                           |               |                         |                                |                         |                                     |               |

L. Remarks: Tests met specs.

M. Tested By: Jane Mackenna

N. Resident Engineer: Kindra Kind

NDOT 040-047 Rev. 7/07

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

K.

RETESTS

# 040-047 Rev. 7/07

# PAVEMENT MARKING FILM ADHESION TEST (SECTION 634)

| Α-  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925) |
|-----|-------------------------------------------------------------------------------------------------------------|
| В-  | Choose white or yellow for the color of striping that is tested (EX. White)                                 |
| C - | Specification requirement found in the Contract Plans or Special Provisions (EX. 8 lb Minimum)              |
| D - | Type of material that is tested (EX. Pavement Marking Film)                                                 |
| E - | Date the material was placed (EX. 8/15/2010)                                                                |
| F-  | Approximate sample location, found in the Contract Plans or jobsite survey stakes (EX. "LE" 125 + 00)       |
| G - | Direction of traffic the striping is being placed (EX. East Bound)                                          |
| Н-  | Marking film description that was placed, description can be found in Contract Plans (EX. 4" Marking Film)  |
| 1-  | Date the material was tested for adhesion test results per Test Method Nev. T512 (EX. 8/16/2010)            |
| J - | Value indicated by the clamp scale determined per Test Method Nev. T512 (EX. 9.5 lb)                        |
| K - | Additional test determined per Test Method Nev. T512                                                        |
| L-  | Any remarks that need to be documented (EX. Tests met specs.)                                               |
| M - | Printed name of the tester or testers who completed the test (EX. Jane Mackenna)                            |
| N - | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Kindra Kind)          |

| Material Type     | Contract No.    |  |
|-------------------|-----------------|--|
| Lift & Pad Number | Date            |  |
| Width of Spread   | Station         |  |
| Control Strip No. | Nuclear Set No. |  |

# **TESTS DURING ROLLING**

| No. of Roller Passes               |   |   |   |   |   |   |   |   |   |
|------------------------------------|---|---|---|---|---|---|---|---|---|
| Site Number                        | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| Density, Mg/m <sup>3</sup> (pcf) 1 |   |   |   |   |   |   |   |   |   |
| Average Test Site Density          |   |   |   |   |   |   |   |   |   |
| Average Density                    |   |   |   |   |   |   |   |   |   |
|                                    |   |   |   |   |   |   |   |   |   |
| No. of Roller Passes               |   |   |   |   |   |   |   |   |   |
| Site Number                        | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| Density $Ma/m^3$ (perf) 1          |   |   |   |   |   |   |   |   |   |
| Density, Mg/III (pci) 2            |   |   |   |   |   |   |   |   |   |
| Average Test Site Density          |   |   |   |   |   |   |   |   |   |
| Average Density                    |   |   |   |   |   |   |   |   |   |
|                                    |   |   |   |   |   |   |   |   |   |
| No. of Roller Passes               |   |   |   |   |   |   |   |   |   |
| Site Number                        | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| Density $Ma/m^3$ (not) 1           |   |   |   |   |   |   |   |   |   |
| Density, Mg/m (pcr) 2              |   |   |   |   |   |   |   |   |   |
| Average Test Site Density          |   |   |   |   |   |   |   |   |   |
| Average Density                    |   |   |   |   |   |   |   |   |   |



Number of Roller Passes

| Material Type     | Contract No.    |
|-------------------|-----------------|
| Lift & Pad Number | Date            |
| Width of Spread   | Station         |
| Control Strip No. | Nuclear Set No. |

# DIAGRAM OF CONTROL STRIP

Show: centerline, stations at ends of control strip, stations at test sites, site number and offset from edge of oil or centerline.

## **TESTS AFTER ROLLING**

| Site Number                                           | 1                        | 2                             | 3                          | 4                | 5  |  |  |  |  |
|-------------------------------------------------------|--------------------------|-------------------------------|----------------------------|------------------|----|--|--|--|--|
| Density, Mg/m <sup>3</sup> (pcf) $\frac{1}{2}$        |                          |                               |                            |                  |    |  |  |  |  |
| Average Test Site Density                             |                          |                               |                            |                  |    |  |  |  |  |
|                                                       |                          |                               |                            |                  |    |  |  |  |  |
| Site Number                                           | 6                        | 7                             | 8                          | 9                | 10 |  |  |  |  |
| Density, Mg/m <sup>3</sup> (pcf)                      |                          |                               |                            |                  |    |  |  |  |  |
| Average Test Site Density                             |                          |                               |                            |                  |    |  |  |  |  |
| Mean Control Strip Density, Mg/m <sup>3</sup> (pcf) = |                          |                               |                            |                  |    |  |  |  |  |
|                                                       |                          |                               |                            |                  |    |  |  |  |  |
| Remarks (initial compaction                           | or recompaction):        |                               |                            |                  |    |  |  |  |  |
|                                                       |                          |                               |                            |                  |    |  |  |  |  |
| Tested by: Resident Engineer:                         |                          |                               |                            |                  |    |  |  |  |  |
| -                                                     |                          |                               | -                          |                  |    |  |  |  |  |
| NDOT 040-048<br>Rev 12/05                             | Distribution: Headquarte | er Construction, Residen<br>2 | t Engineer, District Engii | neer, Contractor |    |  |  |  |  |

| A. Material Type                                                  | Cold Recycle    | B. Contract No.                             | 3925                            |   |
|-------------------------------------------------------------------|-----------------|---------------------------------------------|---------------------------------|---|
| C. Lift & Pad Number                                              | 1 / NB Lane # 1 | D. Date                                     | 7/12/2010                       |   |
| E. Width of Spread                                                | 15.5'           | F. Station                                  | "X" 800+68 to "X" 803+00        |   |
| G. Control Strip No.                                              | 1               | H. Nuclear Set No.                          | 133                             |   |
| <ul><li>E. Width of Spread</li><li>G. Control Strip No.</li></ul> | 15.5'<br>1      | D. Date    F. Station    H. Nuclear Set No. | "X" 800+68 to "X" 803+00<br>133 | _ |

# **TESTS DURING ROLLING**

| I. No. of Roller Passes             |   | Pneumatic Tire Roller - 1 |       | Pneumatic Tire Roller - 2 |       |       | Steel Wheel Roller - 3 |       |       |       |
|-------------------------------------|---|---------------------------|-------|---------------------------|-------|-------|------------------------|-------|-------|-------|
| J. Site Number                      |   | 1                         | 2     | 3                         | 1     | 2     | 3                      | 1     | 2     | 3     |
| K. Density, Mg/m <sup>3</sup> (pcf) | 1 | 114.1                     | 115.0 | 125.2                     | 118.5 | 116.9 | 124.0                  | 118.9 | 118.6 | 120.9 |
|                                     | 2 | 115.6                     | 117.6 | 124.2                     | 119.3 | 116.9 | 123.8                  | 118.8 | 117.2 | 122.6 |
| L. Average Test Site Density        | ' | 114.9                     | 116.3 | 124.7                     | 118.9 | 116.9 | 123.9                  | 118.9 | 117.9 | 121.8 |
| M. Average Density                  |   |                           | 118.6 |                           |       | 119.9 |                        |       | 119.5 |       |

| No. of Roller Passes             |   | Steel V | Steel Wheel Roller - 4 |       |       | Steel Wheel Roller - 5 |       |       | Steel Wheel Roller - 6 |       |  |
|----------------------------------|---|---------|------------------------|-------|-------|------------------------|-------|-------|------------------------|-------|--|
| Site Number                      |   | 1       | 2                      | 3     | 1     | 2                      | 3     | 1     | 2                      | 3     |  |
| Density, Mg/m <sup>3</sup> (pcf) | 1 | 119.8   | 122.8                  | 124.8 | 121.5 | 123.4                  | 124.1 | 121.5 | 123.4                  | 124.0 |  |
|                                  | 2 | 121.2   | 123.7                  | 126.9 | 122.3 | 123.1                  | 127.3 | 122.3 | 123.1                  | 127.1 |  |
| Average Test Site Density        |   | 120.5   | 123.3                  | 125.9 | 121.9 | 123.3                  | 125.7 | 121.9 | 123.3                  | 125.6 |  |
| Average Density                  |   |         | 123.2                  |       |       | 123.6                  |       |       | 123.6                  |       |  |
|                                  |   |         |                        |       |       |                        |       |       |                        |       |  |

| No. of Roller Passes              |   |   |   |   |   |   |   |   |   |   |
|-----------------------------------|---|---|---|---|---|---|---|---|---|---|
| Site Number                       |   | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| Density Marken <sup>3</sup> (not) | 1 |   |   |   |   |   |   |   |   |   |
| Density, Mg/m <sup>3</sup> (pcf)  | 2 |   |   |   |   |   |   |   |   |   |
| Average Test Site Density         |   |   |   |   |   |   |   |   |   |   |
| Average Density                   |   |   |   |   |   |   |   |   |   |   |



Number of Roller Passes

| O. Material Type     | Cold Recycle   | P. Contract No.    | 3925                    |
|----------------------|----------------|--------------------|-------------------------|
| Q. Lift & Pad Number | 1 / NB Lane #1 | R. Date            | 7/12/2010               |
| S. Width of Spread   | 15.5'          | T. Station         | "X"800+68 to "X" 803+00 |
| U. Control Strip No. | 1              | V. Nuclear Set No. | 133                     |

# W. DIAGRAM OF CONTROL STRIP

Show: centerline, stations at ends of control strip, stations at test sites, site number and offset from edge of oil or centerline.



## **TESTS AFTER ROLLING**

| X. Site Number                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2               | 3                  | 4           | 5     |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|-------------|-------|
| 1                                     | 121.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123.4           | 124.0              | 125.2       | 125.3 |
| Y. Density, Mg/m <sup>*</sup> (pcr) 2 | Site Number    1    2      Y. Density, Mg/m <sup>3</sup> (ocf)    1    121.5    123.4    1      Average Test Site Density    121.9    123.3    1      Average Test Site Density    121.9    123.3    1      Site Number    6    7    7      B. Density, Mg/m <sup>3</sup> (ocf)    1    125.7    127.0    1      Average Test Site Density    1    125.5    126.0    1      Average Test Site Density    125.5    126.5    1      Average Test Site Density    125.5    126.5    1      Mean Control Strip Density, Mg/m <sup>3</sup> (ocf) (ocf)    124.1    1      Remarks (include compaction) or recompaction):    Initial Compaction | 127.1           | 125.3              | 123.6       |       |
| Z. Average Test Site Density          | 121.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123.3           | 125.6              | 125.3       | 124.5 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                    |             |       |
| AA. Site Number                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7               | 8                  | 9           | 10    |
|                                       | 125.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 127.0           | 119.2              | 123.4       | 126.9 |
| BB. Density, Mg/m (pcr) 2             | 125.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 126.0           | 117.0              | 123.6       | 126.4 |
| CC. Average Test Site Density         | 125.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 126.5           | 118.1              | 123.5       | 126.7 |
| EE. Rolling Pattern: Two re           | ubber passes and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | two steel passe | es for this contro | ol strip    |       |
| FF. Remarks (initial compaction or r  | ecompaction):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initial Compa   | ction              |             |       |
| GG. Tested by: Stew Simon             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>HH</b> . Re  | esident Engineer:  | Jenell Rice |       |

Rev 12/05

Distribution: Headquarter Construction, Resident Engineer, District Engineer, Contractor

### 040-048 Rev. 12/05

## NUCLEAR GAUGE OPERATOR'S WORKSHEET FOR CONTROL STRIP DENSITY - PART 1 AND 2

- A Type of material as specified, found in the Contract Plans or Special Provisions (EX. Cold Recycle)
- **B** Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)
- **C** Lift and pad that is currently being tested (EX. 1st lift, Northbound lane #1)
- **D** Date the compactions were taken (EX. 7/12/2010)
- **E** Total width of the pavement mat being tested (EX. 15.5')
- **F** Station to station for the control strip test section found in the Contract Plans, or jobsite survey stakes (EX. "X" 800 + 68 to "X" 803 + 00)
- **G** Control Strip number shall be numbered in chronological order starting with one. Numbering will start over for the re-roll or different material (EX. 1)
- H Set number assigned to the gauge that is being used to test the material (EX. 133)
  NOTE: Consultants are to use the gauge serial number found on the back of their gauge
- One pass of a roller is described as one complete pass, forward and back across the entire width of the mat (EX. 1 is the number of passes the pneumatic tire roller made)
- J Three random site numbers determined per Test method Nev. T750, continue to use the same roller until the curve levels off or drops off (EX. Site Number 1, 2 and 3)
- **K** Two one minute density shots performed at each of the three random site locations per Test Method Nev. T750 (EX. 114.1 and gauge rotated 180° is 115.6)
- L Average of the two densities from Line K (Density) (EX. 114.1 + 115.6 = 229.7 / 2 = 114.85 = 114.9 round to the nearest 0.1)
- Average of Line L (Three Average Test Site Densities) equals average density
  (EX. 114.9 + 116.3 + 124.7 = 355.9 / 3 = 118.63 = 118.6 round to the nearest)
- N Plot the Average Densities from Line M (Average Density) for Line I (No. of Roller Passes) (EX. 118.6, 119.9, 119.5, 123.2, 123.6, 123.6)

### 040-048 Rev. 12/05

## NUCLEAR GAUGE OPERATOR'S WORKSHEET FOR CONTROL STRIP DENSITY - PART 1 AND 2

- O Type of material as specified, found in the Contract Plans or Special Provisions (EX. Cold Recycle)
- P Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)
- **Q** Lift and pad that is currently being tested (EX. 1st lift, Northbound Lane #1)
- **R** Date the compactions were taken (EX. 7/12/2010)
- **S** Total width of the pavement being tested (EX. 15.5')
- T Station to station for the control strip test section found on the Contract Plans, or jobsite survey stakes (EX. "X" 800 + 68 to "X" 803 + 00)
- U Control Strip shall be numbered in chronological order starting with one. Numbering will start over for the re-roll or different material (EX. 1)
- V Set number assigned to the gauge that is being used to test the material (EX. 133)
  NOTE: Consultants are to use the gauge serial number found on the back of their gauge
- Diagram of control strip illustrates all 10 test locations. Indicate the site location labeled
  1 to 10 with each corresponding station, distance from edge, centerline location
  and the beginning and ending station of the control strip
- X Ten random site numbers per Test method Nev. T750
- Y Two one minute density shots performed at each of the ten random number site locations per Test Method Nev. T750 (EX. 121.5 and gauge rotated 180° is 122.3)
- **Z** Average of the two densities from Line Y (Density) (EX. 121.5 + 122.3 = 243.8/2 = 121.9 rounded to the nearest 0.1)
- AA Ten random site numbers determined per Test method Nev. T750
- **BB** Two one minute density shots performed at each of the ten random number site locations per Test Method Nev. T750 (EX. 125.7 and gauge rotated 180° is 125.3)

040-048 Rev. 12/05

# NUCLEAR GAUGE OPERATOR'S WORKSHEET FOR CONTROL STRIP DENSITY - PART 1 AND 2

| <u>LINE</u> | EXPLANATION OF NEEDED INFORMATION                                                                                                                                                                                                                                                                           |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC -        | Average of the two densities from Line BB (Density)<br>(EX. 125.7 + 125.3 = 251.0 / 125.5 rounded to the nearest 0.1)                                                                                                                                                                                       |
| DD -        | Average of Line Z (Average Test Site Densities) + Line CC (Average Test Site Densities)<br>/ 10 = Line DD (Mean Control Strip Density)<br>(EX. 121.9 + 123.3 + 125.6 + 125.3 + 124.5 + 125.5 + 126.5 + 118.1 + 123.5 + 126.7 =<br>1240.9 / 10 = 124.09 = 124.1)                                             |
| EE -        | Record and indicate the rolling pattern per Test Method Nev. T750 (EX. Two rubber passes and two steel passes for this control strip) this information comes from Part I of this form NOTE: If the density for one roller does not gain 1 pound or more do not use that pass as part of the rolling pattern |
| FF -        | Any remarks that needs to be documented (EX. Initial compaction)                                                                                                                                                                                                                                            |
| GG -        | Tested by, print first and last name of the tester or testers who performed the test (EX. Stew Simon)                                                                                                                                                                                                       |
| HH -        | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Jenell Rice)                                                                                                                                                                                                          |

# STATE OF NEVADA DEPARTMENT OF TRANSPORTATION FIELD MATERIAL SIEVE TEST / BITUMINOUS RATIO BY IGNITION METHOD

| Contract No.:<br>Type of Mixture:<br>Asphalt Grade:<br>Mix Design No.:                   | Contract No.:<br>Type of Mixture:<br>Asphalt Grade:<br>Mix Design No.:    |                                                                      |                                              | Tested By:<br>Location:<br>Date Sampled:<br>Date Tested: |               |  |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|---------------|--|
| SIEVE                                                                                    | WEIGHT RETAINED                                                           | % RETAINED                                                           | % PASSING                                    | JOB-MIX                                                  | SPEC          |  |
| 25 mm (1")                                                                               |                                                                           | /011217111122                                                        |                                              |                                                          |               |  |
| 19 mm (3/4")                                                                             |                                                                           |                                                                      |                                              |                                                          |               |  |
| 12.5 mm (1/2")                                                                           |                                                                           |                                                                      |                                              |                                                          |               |  |
| 9.5 mm (3/8")                                                                            |                                                                           |                                                                      |                                              |                                                          |               |  |
| 4.75 mm (No. 4)                                                                          |                                                                           |                                                                      |                                              |                                                          |               |  |
| 2.00 mm (No. 10)                                                                         |                                                                           |                                                                      |                                              |                                                          |               |  |
| 1.18 mm (No. 16)                                                                         |                                                                           |                                                                      |                                              |                                                          |               |  |
| 425 µm (No. 40)                                                                          |                                                                           |                                                                      |                                              |                                                          |               |  |
| 300 µm (No. 50)                                                                          |                                                                           |                                                                      |                                              |                                                          |               |  |
| 150 µm (No. 100)                                                                         |                                                                           |                                                                      |                                              |                                                          |               |  |
| 75 µm (No. 200)                                                                          |                                                                           |                                                                      |                                              |                                                          |               |  |
| Pan                                                                                      |                                                                           |                                                                      | (MF) Mass After                              |                                                          | Bitumen Ratio |  |
| Wash                                                                                     |                                                                           |                                                                      | Mass After Wash                              |                                                          | From Job-mix: |  |
| Mass After                                                                               |                                                                           |                                                                      | Mass - 200 Wash                              |                                                          |               |  |
| CALIBRATION<br>Factor<br>Date Performe<br>Furnace No.<br>*Calibration Fa<br>NDOT 040-053 | d                                                                         | MOISTURE CORRI<br>[(<br>(A)<br>Initial Mass Fina                     | ECTION:<br>) ÷<br>(B) (B)<br>al Mass Final M | ] × 100 =<br>/<br>/ass                                   | %<br>MC       |  |
| BITUMEN RA<br>( <i>MI</i> )<br>Dry Mass<br>**BITUMEN F                                   | ATIO FROM TAPE CALC<br>(B.R.)<br>S Printed Ta<br>RATIO FROM MANUAL<br>) ÷ | CULATION:<br>%%<br>%<br>%<br>ape<br>%<br>CALCULATION:<br>] × 100<br> | % = <u> </u>                                 | %                                                        | = <u> </u>    |  |

\* NOTE: add (-) correction factors and subtract (+) correction factors

\*\*NOTE: If the furnace can't automatically calculate a corrected bitumen ratio, calculations can be performed manually. Only fill in Tape Calculation or Manual Calculation, not both.

Resident Engineer:

NDOT 040-050 Rev. 11/10

## FIELD MATERIAL SIEVE TEST / BITUMINOUS RATIO BY IGNITION METHOD

| 3925               | B. JMF No.                                                                                                                                                 | .: 1                                                                                                                                                                                                                                                                                                                                                                         | C. Tested By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stew Simon                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| : PBS Type IIC     | E. Station:                                                                                                                                                | "X" 7 + 22 RT.                                                                                                                                                                                                                                                                                                                                                               | F. Location: NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 / #1 Lane / RT.                                                                                                                                                                                                                                                                                                                                                                                                  |
| PG64-28NV          | H. Test No.                                                                                                                                                | .: <b>T-1-1</b>                                                                                                                                                                                                                                                                                                                                                              | I. Date Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d: <b>7/12/2010</b>                                                                                                                                                                                                                                                                                                                                                                                                |
| BF10-31            | K. Furnace                                                                                                                                                 | Temp: <b>482°C</b>                                                                                                                                                                                                                                                                                                                                                           | L. Date Tested:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7/12/2010                                                                                                                                                                                                                                                                                                                                                                                                          |
| N. WEIGHT RETAINED | <b>O.</b> % RETAINED                                                                                                                                       | P. % PASSING                                                                                                                                                                                                                                                                                                                                                                 | Q. JOB-MIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R. SPEC                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                  | 0.0%                                                                                                                                                       | 100.0%                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                |
| 209                | 7.5%                                                                                                                                                       | 92.5%                                                                                                                                                                                                                                                                                                                                                                        | 88 - 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90 - 100                                                                                                                                                                                                                                                                                                                                                                                                           |
| 425                | <b>15.3%</b> <sup>15.2%</sup>                                                                                                                              | 77.3%                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 314                | 11.3%                                                                                                                                                      | 66.0%                                                                                                                                                                                                                                                                                                                                                                        | 60 - 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63 - 85                                                                                                                                                                                                                                                                                                                                                                                                            |
| 502                | 18.0%                                                                                                                                                      | 48.0%                                                                                                                                                                                                                                                                                                                                                                        | 43 - 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45 - 63                                                                                                                                                                                                                                                                                                                                                                                                            |
| 449                | 16.1%                                                                                                                                                      | 31.9%                                                                                                                                                                                                                                                                                                                                                                        | 30 - 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 - 44                                                                                                                                                                                                                                                                                                                                                                                                            |
| 200                | 7.2%                                                                                                                                                       | 24.7%                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 282                | 10.1%                                                                                                                                                      | 14.6%                                                                                                                                                                                                                                                                                                                                                                        | 12 - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 - 22                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 194                | 7.0%                                                                                                                                                       | 7.6%                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 59                 | 2.1%                                                                                                                                                       | 5.5%                                                                                                                                                                                                                                                                                                                                                                         | 4 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 - 8                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24                 | 0.9%                                                                                                                                                       | S. (MF) Mass After                                                                                                                                                                                                                                                                                                                                                           | 2786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V. Bitumen Ratio                                                                                                                                                                                                                                                                                                                                                                                                   |
| 128                | 4.6%                                                                                                                                                       | T. Mass After Wash                                                                                                                                                                                                                                                                                                                                                           | 2658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | From Job-mix:                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2786               |                                                                                                                                                            | U. Mass - 200 Wash                                                                                                                                                                                                                                                                                                                                                           | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 3925<br>PBS Type IIC<br>PG64-28NV<br>BF10-31<br>N. WEIGHT RETAINED<br>0<br>209<br>425<br>314<br>502<br>449<br>200<br>282<br>194<br>59<br>24<br>128<br>2786 | 3925    B. JMF No.      PBS Type IIC    E. Station:      PG64-28NV    H. Test No      BF10-31    K. Furnace      N. WEIGHT RETAINED    O. % RETAINED      0    0.0%      209    7.5%      425    15.3% <sup>15.2%</sup> 314    11.3%      502    18.0%      449    16.1%      200    7.2%      282    10.1%      194    7.0%      59    2.1%      128    4.6%      2786    1 | 3925    B. JMF No.: 1      PBS Type IIC    E. Station: "X" 7 + 22 RT.      PG64-28NV    H. Test No.: T-1-1      BF10-31    K. Furnace Temp: 482°C      N. WEIGHT RETAINED    O. % RETAINED    P. % PASSING      0    0.0%    100.0%      209    7.5%    92.5%      425    15-3% <sup>15.2%</sup> 77.3%      314    11.3%    66.0%      502    18.0%    48.0%      449    16.1%    31.9%      200    7.2%    24.7%      200    7.2%    24.7%      194    7.0%    7.6%      59    2.1%    5.5%      24    0.9%    S. (MF) Mass After      128    4.6%    T. Mass After Wash      2786    U. Mass - 200 Wash    14.6% | 3925    B. JMF No.: 1    C. Tested By: 5      PBS Type IIC    E. Station: "X" 7 + 22 RT.    F. Location: NE      PG64-28NV    H. Test No.: T-1-1    I. Date Samplea      BF10-31    K. Furnace Temp: 482°C    L. Date Tested:      N. WEIGHT RETAINED    O. % RETAINED    P. % PASSING    Q. JOB-MIX      0    0.0%    100.0%    100      209    7.5%    92.5%    88 - 95      425    15-3% <sup>15.2%</sup> 77.3% |

| CALIBRATION FACTOR:                        | MOISTURE     | CORRECTION:      |            |                |       |   |
|--------------------------------------------|--------------|------------------|------------|----------------|-------|---|
| W. Factor + 0.9                            | Z.           | AA.              | BB.        |                | CC.   |   |
| X. Date Performed 7/1/20                   | 0 [( 706.9   | <b>- 705.6</b> ) | ÷ 705.6 ]  | <b>×</b> 100 = | 0.18% | % |
| Y. Furnace No. 25040                       | (A)          | (B)              | (B)        |                | MC    |   |
| *Calibration Factor from form NDOT 040-053 | Initial Mass | s Final Mass     | Final Mass |                |       |   |

| BITUMEN RATIO F | ROM TAPE CALCULAT | TION:          |             |  |
|-----------------|-------------------|----------------|-------------|--|
| <u>2968.2</u>   | <u>5.65</u> %     | - 0.18 % = 5.4 | <u>47</u> % |  |
| Dry Mass        | Printed Tape      |                | <i>B.</i>   |  |
| **BITUMEN RATIO | FROM MANUAL CALC  |                |             |  |

ΗH

(MI)

× 100 \_ "± \_ (MF) (MF) Dry Mass Mass After Mass After

\* NOTE: add (-) correction factors and subtract (+) correction factors

\*\*NOTE: If the furnace can't automatically calculate a corrected bitumen ratio, calculations can be performed manually.

Only fill in Tape Calculation or Manual Calculation, not both.

II. Resident Engineer: 3. John NDOT 040-050 Rev. 11/10

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

(CF)

(MC)

%

B.R.

## 040-050 Rev. 11/10

# FIELD MATERIAL SIEVE TEST / BITUMINOUS RATIO BY IGNITION METHOD

| Α-  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Job Mix Formula number assigned by the Resident Engineer (EX. 1)                                                                                                             |
| C - | Print first and last name of the tester or testers who completed the test (EX. Stew Simon)                                                                                   |
| D - | Type of plantmix placed on the jobsite found on the Mix Design from the Materials Division (EX. PBS Type IIC)                                                                |
| Ε-  | Approximate sample location, found in the Contract Plans or jobsite survey stakes (EX. "X" 7 + 22 RT.)                                                                       |
| F - | Location from where the sample was taken, lanes travel direction, lane number and the side of center line the sample was taken (EX. NB / #1 lane / RT.)                      |
| G - | Grade of asphalt that is utilized in the plantmix, found on the approved Mix Design provided by the Materials Division (EX. PG64-28NV)                                       |
| Η-  | Acceptance Test number for this particular test (EX. T-1-1 T = Acceptance Test;<br>1 = First acceptance test of the day; 1 = Number of days the material has<br>been tested) |
| 1-  | Date the sample was taken (EX. 7/12/2010)                                                                                                                                    |
| J-  | Mix design number given to this material by the Materials Division (EX. BF10-31)                                                                                             |
| К-  | Temperature of the ignition furnace that the Correction Factor was established, will either be 482°C or 538°C per Test Method Nev. T61 (EX. 482°C)                           |
| L-  | Date the material was tested (EX. 7/12/2010)                                                                                                                                 |
| M - | List of sieves that could be used in the testing of specified material, found in the Special Provisions or Standard Specifications                                           |
| N - | Weight of the material retained on each specified sieve determined per Test Method Nev. T206 NOTE: This number is reported to the whole number                               |

## 040-050 Rev. 11/10

# FIELD MATERIAL SIEVE TEST / BITUMINOUS RATIO BY IGNITION METHOD

| 0 - | Take the weight retained from Line N (Weight Retained) / Line N (Mass After) x 100 = Line O (% Retained) NOTE: Reported to the nearest tenth (EX. # 200 sieve is 59 / 2786 x 100 = 2.1%) NOTE: All of Column O. shall add up to 100%. If it does not, the largest sieve shall be adjusted accordingly so Column O equals 100%. If Column O has to be adjusted by more than .3 the sieve is invalid and another sieve shall be ran |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ρ-  | Take Line S (% Passing) + Line R (% Retained) = Line S (% Passing)<br>(EX. #200 sieve 5.5 + 2.1 = 7.6)                                                                                                                                                                                                                                                                                                                            |
| Q - | Job Mix range is sound on the Job Mix Formula written by the Resident Engineer NOTE: Make sure the current JMF is used                                                                                                                                                                                                                                                                                                            |
| R - | Specification range for the material being tested, found in the Special Provisions or Standard Specifications                                                                                                                                                                                                                                                                                                                     |
| S - | Weight of the entire sample (Mass After) after it has been burned off determined per Test Method Nev. T761 taken off of the ticket (EX. 2786)                                                                                                                                                                                                                                                                                     |
| Τ-  | Weight of the material (Mass After Wash) after it has been burned off, washed and dried determined per Test Method Nev. T761 and T206 (EX. 2658)                                                                                                                                                                                                                                                                                  |
| U - | Line S (Mass After (MF)) - Line T (Mass After Wash) = Line U (Mass - 200 Wash)<br>(EX. 2786 - 2658 = 128)                                                                                                                                                                                                                                                                                                                         |
| V - | Bitumen Ratio found on the current Job Mix Formula written by the Resident Engineer (EX. 5.3%)                                                                                                                                                                                                                                                                                                                                    |
| W - | Correction Factor that is determined prior to any acceptance testing for this Mix Design<br>and current JMF per Test Method Nev. T761, enter this number into the ignition<br>furnace prior to performing the burn-off procedure (EX. + 0.96) NOTE: Each ignition<br>furnace and mix design have it's own correction factor                                                                                                       |
| X - | Date the current correction factor being used was determined (EX. 7/1/2010)                                                                                                                                                                                                                                                                                                                                                       |
| Υ - | Number assigned to the ignition furnace that is being used to perform the burn-offs, found on the outside of the furnace (EX. 250400)                                                                                                                                                                                                                                                                                             |

# 040-050 Rev. 11/10

# FIELD MATERIAL SIEVE TEST / BITUMINOUS RATIO BY IGNITION METHOD

| Z -  | Initial Mass of PBS Type IIC determined per Test Method Nev. T306 (EX. 706.9)                                                                                                      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AA - | Final Mass of PBS Type IIC determined per Test Method Nev. T306 (EX. 705.6)                                                                                                        |
| BB - | Final Mass of PBS Type IIC determined per Test Method Nev. T306 (EX. 705.6)                                                                                                        |
| CC - | Line Z (Initial Mass) - Line AA (Final Mass) / Line BB (Final Mass) x 100 = Line CC (Moisture Correction) (EX. 706.9 - 705.6 / 705.6 x 100 = 0.18%)                                |
| DD - | Weight of the sample (Dry Mass) that is placed in the baskets prior to the burn off per Test Method Nev. T761 (EX. 2968.2)                                                         |
| EE - | Bitumen Ratio off of the printed ticket from the Muffle Furnace (EX. 5.65)                                                                                                         |
| FF - | Moisture correction value from Line CC (Moisture Correction) determined per Test<br>Method Nev. T306 (EX. 0.18%)                                                                   |
| GG - | Line EE (Bitumen Ratio) - Line FF (Moisture Content) = Line GG (Bitumen Ratio)<br>(EX. Ticket says 5.65 - 0.18 = 5.47%) Report to the nearest 0.1 as 5.5% on NDOT form<br>040-011) |
| HH - | NOTE: Manual Calculation shall only be used if the printed tape cannot be used (EX. power failure during burn-off, approval from Quality Assurance to manually calc etc.)          |
| II - | Resident Engineer or Assistant Resident Engineer on that specific crew (EX. R. John)                                                                                               |

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION REPORT OF CALIBRATION FACTOR (INCLUDING WEEKLY CHECKS) USING THE IGNITION FURNACE METHOD

| Contract No.:   | Tested by Date:                              |
|-----------------|----------------------------------------------|
| JMF No.:        | Furnace No: Calibration Factor:              |
| Test No. C.F. T | emperature Accept or Reject                  |
| 1               | Asphalt Source:                              |
| 2               | Asphalt Grade:                               |
| 3               | Type of Mixture:                             |
| 4               | Actual Lime %:                               |
| 5               | Lime Marinated: Yes or No                    |
| Act. Bit. Ratio | Calibration Factor:                          |
| Agg. (w\Lime)   |                                              |
| A: Agg.(Dry)    | (MI) (MF) (MF) BIT. RATIO                    |
| B: Lime         | DRY MASS MASS AFTER MASS AFTER               |
| C: Oil          | - = C.F. %                                   |
| D: Total        | BIT. RATIO ACT. BIT. RATIO                   |
| Act. Bit. Ratio | Calibration Factor:                          |
| Agg. (w\Lime)   |                                              |
| A: Agg.(Dry)    | $-$ { [() ÷]100 } =BIT. RATIO                |
| B: Lime         | DRÝ MÁSS MASS AFTER MASS AFTER               |
| C: Oil          | - = C.F. %                                   |
| D: Total        | BIT. RATIO ACT. BIT. RATIO                   |
| Act. Bit. Ratio | Calibration Factor:                          |
| Agg. (w\Lime)   |                                              |
| A: Agg.(Drv)    | $-$ { [() ÷]100 } =BIT. RATIO                |
| B: Lime         | DRÝ MÁSS MASS AFTER MASS AFTER               |
| C: Oil          | - = C.F. %                                   |
| D: Total        | BIT. RATIO ACT. BIT. RATIO                   |
| Act. Bit. Ratio | Calibration Factor:                          |
| Agg. (w\Lime)   |                                              |
| A: Agg.(Dry)    | $-$ { [() ÷]100 } =BIT. RATIO                |
| B: Lime         | DRÝ MÁSS MÁSS AFTER MÁSS AFTER               |
| C: Oil          | - = C.F. %                                   |
| D: Total        | BIT. RATIO ACT. BIT. RATIO                   |
| Act. Bit. Ratio | Calibration Factor:                          |
| Agg. (w\Lime)   |                                              |
| A: Agg.(Dry)    | $ (MI) - (MF) \rightarrow (MF) = BIT. RATIO$ |
| B: Lime         | DRY MASS MASS AFTER MASS AFTER               |
| C: Oil          | - = C.F. %                                   |
| D: Total        | BIT. RATIO ACT. BIT. RATIO                   |
| Remarks:        | 1                                            |

Resident Engineer NDOT 040-053 Rev. 08/10
|                         |                | DEPART                   | STATE OF NE<br>MENT OF TRA | VADA<br>NSPORTATION  |                   |                      |
|-------------------------|----------------|--------------------------|----------------------------|----------------------|-------------------|----------------------|
| REPORT OF C             | ALIBRATIO      | N FACTOR (INCL           | UDING WEEKLY (             | CHECKS) USING TH     |                   | N FURNACE METHOD     |
| A. Contract No.:        | 3925           | B                        | . Tested by:               | Joe Powell           | C. Date           | 7/1/2010             |
| D. JMF No.: 1           |                | E                        | Furnace No:                | 250400               | <b>F.</b> Calib   | ration Factor: +0.96 |
| G. Test No.             | <b>H.</b> C.F. | I. Temperature           | J. Accept or Reje          | ct                   |                   |                      |
| 1 <b>I-1-1</b>          | 1.13           | 538                      | Reject                     | K. Asphalt Sc        | ource: Par        | amount Fernley       |
| 2 <b>I-2-1</b>          | 0.78           | 482                      | Reject                     | L. Asphalt Gr        | ade: <b>PG</b>    | 64-28NV              |
| 3 <b>I-3-1</b>          | 0.94           | 482                      | Accept                     | M. Type of Mi        | ixture: <b>PB</b> | S Type II            |
| 4 <b>I-4-1</b>          | 0.97           | 482                      | Accept                     | N. Actual Lim        | e %: <u>1.4</u>   | 6                    |
| 5 <b>I-5-1</b>          | 1.05           | 482                      | Reject                     | <b>O.</b> Lime Marir | nated:            | Yes or No            |
| P. Act. Bit. Ratio      | 5.30           | Calibra                  | tion Factor:               |                      |                   |                      |
| <b>Q.</b> Agg. (w\Lime) | 2348.          | 7 {[( 2                  | 2462 0 -                   | N/A ) -              | N/A 1-            | 100 } = 643          |
| R. A: Agg.(Dry)         | 2314.          | 9                        | (MI)                       | (MF)                 | (MF)              | Y. BIT. RATIO        |
| <b>S.</b> B: Lime       | 33.8           | <b>V.</b> D              | RY MASS W. N               | ASS AFTER X. N       | ASS AFTER         |                      |
| <b>T.</b> C: Oil        | 122.7          | 7                        | 6.43 -                     | 5.30 = (             | C.F. <u>1.</u>    | <b>13</b> %          |
| <b>U.</b> D: Total      | 2471.          | <b>4 Z.</b> B            | IT. RATIO AA.              | ACT. BIT. RATIO      | В                 | B.                   |
| Act. Bit. Ratio         | 5.30           | Calibra                  | tion Factor:               |                      |                   |                      |
| Agg. (w\Lime)           | 2345.          | 8 {[( 2                  | 2462 2 -                   | N/A ) -              | N/A 1-            | 100 } - <b>608</b>   |
| A: Agg.(Dry)            | 2312           | 2                        | (MI)                       | (MF)                 | (MF)              | BIT. RATIO           |
| B: Lime                 | 33.8           | DR                       | AY MASS MAS                | SAFTER MA            | SS AFTER          |                      |
| C: Oil                  | 122.           | 5                        | 6.08 -                     | 5.30 = (             | C.F. <u>0.</u>    | <b>78</b> %          |
| D: Total                | 2468.          | <b>3</b> BI <sup>-</sup> | T. RATIO AC                | T. BIT. RATIO        |                   |                      |
| Act. Bit. Ratio         | 5.30           | Calibra                  | tion Factor:               |                      |                   |                      |
| Agg. (w\Lime)           | 2343.          | <u>1 {</u> [( 2          | 2/50 0 -                   | N/A ) -              | N/A 1-            | 100 } - 621          |
| A: Agg.(Dry)            | 2308.          | 4                        | (MI)                       | (MF)                 |                   | BIT. RATIO           |
| B: Lime                 | 33.7           | DR                       | IY MASS MAS                | SAFTER MA            | SS AFTER          |                      |
| C: Oil                  | 122.3          | 3                        | 6.24 -                     | 5.30 = (             | C.F. <u>0.</u>    | <b>94</b> %          |
| D: Total                | 2464.          | <b>4</b> BI <sup>-</sup> | T. RATIO AC                | T. BIT. RATIO        |                   |                      |
| Act. Bit. Ratio         | 5.30           | Calibra                  | tion Factor:               |                      |                   |                      |
| Agg. (w\Lime)           | 2352.          | 6 {[( 2                  | 4730 -                     | N/A ) -              | N/A 1/            | 100 } _ <b>627</b>   |
| A: Agg.(Dry)            | 2318.          | 7                        | (MI)                       | (MF)                 | (MF)              | BIT. RATIO           |
| B: Lime                 | 33.9           | DR                       | Y MASS MAS                 | SSAFTER MA           | SS AFTER          |                      |
| C: Oil                  | 122.9          | •                        | 6.27 -                     | 5.30 = (             | C.F. <u>0.</u>    | <b>97</b> %          |
| D: Total                | 2475.          | <b>5</b>                 | T. RATIO AC                | T. BIT. RATIO        |                   |                      |
| Act. Bit. Ratio         | 5.30           | Calibra                  | tion Factor:               |                      |                   |                      |
| Agg. (w\Lime)           | 2400           | ) {[( 2                  | 510.8 -                    | N/A ) -              | N/A 1-            | 100 } _ 635          |
| A: Agg.(Dry)            | 2365.          | 5                        | (MI)                       | (MF)                 | (MF)              | BIT. RATIO           |
| B: Lime                 | 34.5           | DR                       | Y MASS MAS                 | SAFIER MA            | SS AFTER          |                      |
| C: Oil                  | 125.4          | 1                        | 6.35 -                     | 5.30 = (             | C.F. <u>1.</u>    | <mark>05</mark> %    |
| D: Total                | 2525.          | <b>4</b>                 | r. RATIO AC                | T. BIT. RATIO        |                   |                      |
| CC. Remarks: 1          | Jsed I-3-1 a   | and I-4-1 for the        | calibration factor         | or. Dropped the t    | emperatu          | re to 482°C due      |

to excessive aggregate breakage in the ignition furnace. DD. Resident Engineer:

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

#### 040-053 Rev. 8/10

#### REPORT OF CALIBRATION FACTOR (INCLUDING WEEKLY CHECKS) USING THE IGNITION OVEN METHOD

- A Contract number for the material being tested, found in the Contract Plans or Special Special Provisions (3925)
- B Tested by, print first and last name of the tester or testers who completed the test (EX. Joe Powell)
- **C** Date the Calibration Factor was performed (EX. 7/1/2010)
- **D** Job Mix number assigned by the Resident Engineer (EX. 1)
- **E** Number assigned to the ignition furnace that is being used to perform the burn-offs, found somewhere on the outside of the furnace (EX. 250400)
- F Calibration Factor that is determined prior to any acceptance testing for this Mix Design and current JMF per Test Method Nev. T761 (EX. + 0.96) NOTE: Each ignition furnace will have it's own mix design and correction factor
- **G** Acceptance test number for this particular test (EX. I-1-1; I = Informational Test; 1 = First Acceptance test of the day; 1 = Number of days the material has been tested)
- H Calibration Factor from each individual test performed (EX. 1.13)
- Temperature determined per Test Method Nev. T761, will either be 482°C or 538°C (EX. 538°C)
- J Accept or reject each individual test determined per Test method Nev. T761 (EX. Reject)
- K Name of the producer providing the asphalt being utilized in the plantmix (EX. Paramount Fernley)
- L Grade of asphalt that is being used in the plantmix, found on the Mix Design approved from the Materials Division (EX. PG64-28NV)
- M Type of plantmix that is used, found in the Contract Plans or Special Provisions (EX. PBS Type II)

#### 040-053 Rev. 8/10

#### REPORT OF CALIBRATION FACTOR (INCLUDING WEEKLY CHECKS) USING THE IGNITION OVEN METHOD

- N Calculated mineral filler percent used to marinate the virgin aggregate. This information is determined by the bin percentages found on the JMF for this particular material per Test Method Nev. T761 (EX. 18% 1" Rock, 20% 3/4" Rock, 16% 3/8" Rock, 36% Crusher Fines, 10% Sand (18 + 20 + 16 = 54 x .01 (found in the Standard Specifications) = 0.54 36 + 10 = 46 x 0.02 (found in the Standard Specifications) = 0.92 0.54 + 0.92 = 1.46) NOTE: Each mix design or change to the job mix formula will result in a change to the actual lime percent
- O Is the material marinated or not Mix Design for this specific contract will indicate if the material is marinated or not. NOTE: Most bituminous plantmix products will be marinated in Nevada (EX. Yes)
- P Actual Bit ratio for this mix design. This value may change based on the current Job Mix Formula (EX. 5.30)
- Q Aggregate with lime from the calibrated hotplant coldfeed sample. NOTE: This will be the actual weight of hot aggregate that you start out with to perform the calibration factor
- R Total weight of aggregate minus the lime, Line Q (Aggregate with Lime) / (1 + Line N (Actual Lime % in Decimal Form) = Line R (Agg. without Lime (Dry))
   (EX. 2348.7 / (1 + 0.0146) = 2314.9)
- **S** Total amount of lime in this sample, Line Q (Aggregate with Lime) Line R (Aggregate without Lime (Dry)) = Line S (Lime) (EX. 2348.7 2314.9 = 33.8)
- **T** Total weight of asphalt to be added to the sample, Line R (Aggregate without Lime (Dry)) x Line P (Actual Bit. Ratio in Decimal Form) = Line T (Oil) (EX. 2314.9 x .053 = 122.7)
- U Line R (Aggregate without Lime (Dry)) + Line S (Lime) + Line T (Oil) = Line U (Total Material) (EX. 2314.9 + 33.8 + 122.7 = 2471.4)
- V Weight of the sample after mixing and weighing determined per Test Method Nev. T761 (EX. 2462.0)
- W This number would be the weight of the sample after it has completed the burn-off (Mass After) when weighing the material outside the furnace NOTE: This example shows N/A since the Bit Ratio was determined off of the tape per Test Method Nev. T761

#### 040-053 Rev. 8/10

#### REPORT OF CALIBRATION FACTOR (INCLUDING WEEKLY CHECKS) USING THE IGNITION OVEN METHOD

#### LINE EXPLANATION OF NEEDED INFORMATION

| X -    | This number would be the weight of the sample after it has completed the burn-off (Mass After) when weighing the material outside the furnace NOTE: This example shows N/A since the Bit Ratio was determined off of the tape per Test Method Nev. T761 |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Y -    | Bitumen Ratio shall be determined by using the indicated Bitumen Ratio from the furnace printout (EX. 6.43) NOTE: See Test Method Nev. T761 if calculating the Bit Ratio off of the scale outside of the ignition furnace                               |
| Z -    | Bit. Ratio from Line Y (EX. 6.43)                                                                                                                                                                                                                       |
| AA -   | Act. Bit. Ratio from the JMF (EX. 5.30)                                                                                                                                                                                                                 |
| BB -   | Line Z (Bit Ratio) minus Line AA (Act. Bit Ratio) equals Line BB (Single Correction Factor) (EX. 6.43 - 5.3 = + 1.13)                                                                                                                                   |
| CC -   | Any remarks that need to be documented (EX. Used I-3-1 and I-4-1 for the calibration factor. Dropped the temperature to 482°C due to excessive aggregate breakage in the ignition furnace)                                                              |
| DD -   | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. R. John)                                                                                                                                                          |
| NOTES: |                                                                                                                                                                                                                                                         |
| 1.     | There will be at least 2 and sometimes 4 burn offs per calibration factor see Test Method Nev. T761                                                                                                                                                     |

#### 2. Try to keep the remaining material waste in the mixing bowl under 10 grams after mixing

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION REPORT OF CALIBRATION FACTOR WITH RAP (INCLUDING WEEKLY CHECKS) USING THE IGNITION OVEN METHOD - PART 1

| Contract No :           | Conte          | Tested by:               |                | Date <sup>.</sup> |  |
|-------------------------|----------------|--------------------------|----------------|-------------------|--|
| Mix Design No.:         | JMF No.:       | Furnace No.:             |                | Actual Lime %:    |  |
| Calibration Factor: Tes | st No.:        |                          |                |                   |  |
| A: (Agg w/lime)         | ÷(1 - % RA     | P in decimal form)       | = (Agg w/lime  | e + RAP)          |  |
| (Agg w/lime + RAP)      | (Agg           | w/lime) = B:-            | (RAP)          |                   |  |
| Verify that RAP does    | not exceed 15% | ]                        |                |                   |  |
| (RAP) ÷                 | (Agg w/lime +  | RAP) x 100 =             | (% RAP)        |                   |  |
| (Agg w/lime) ÷          | (Agg w/lime +  | (%) RAP) x 100 = (%)     | Agg w/lime)    |                   |  |
| (Agg w/lime) ÷          | (1 + lime % ii | decimal form) =          | (Agg w/out lim | ne)               |  |
| (Agg w/lime)            | (Agg w/out li  | me) = (Lime)             | _              |                   |  |
| (Agg w/out lime)        | + (RAP)        | = (Dry agg w/ou          | ut lime + RAP) |                   |  |
| (Dry agg w/out lime -   | + RAP) × (E    | Bit.ratio added in decim | nal form) = C: | (Oil added)       |  |
| (Dry agg w/out lime -   | + RAP) + (     | _ime) + (Oil a           | dded) = D:     | (Total)           |  |

Calibration Factor: Test No.:

| A: (Agg w/lime) ÷        | (1 - % RAP in decimal form) = (Agg w/lime + RAP)                                                                    |
|--------------------------|---------------------------------------------------------------------------------------------------------------------|
| (Agg w/lime + RAP)       | $- {(\text{Agg w/lime})} = \textbf{B}: - {(\text{RAP})}$                                                            |
| Verify that RAP does not | exceed 15%                                                                                                          |
| (RAP) ÷ -                | $(Agg w/lime + RAP) \times 100 =(\% RAP)$                                                                           |
| (Agg w/lime) ÷           | (Agg w/lime + RAP) $\times 100 = (\% \text{ Agg w/lime})$                                                           |
| (Agg w/lime)             | (1 + lime % in decimal form) = (Agg w/out lime)                                                                     |
| (Agg w/lime)             | (Agg w/out lime) = (Lime)                                                                                           |
| (Agg w/out lime) +       | (RAP) = (Dry agg w/out lime + RAP)                                                                                  |
| (Dry agg w/out lime + R  | $\frac{(\text{Bit.ratio added in decimal form)}}{(\text{Bit.ratio added in decimal form)}} = C: (\text{Oil added})$ |
| (Dry agg w/out lime + R  | AP) + (Lime) + (Oil added) = D: (Total)                                                                             |

| STATE OF NEVADA                                                        |
|------------------------------------------------------------------------|
| DEPARTMENT OF TRANSPORTATION                                           |
| <b>REPORT OF CALIBRATION FACTOR WITH RAP (INCLUDING WEEKLY CHECKS)</b> |
| <b>USING THE IGNITION OVEN METHOD - PART 2</b>                         |

| Contract No.:                                                                                |          | Tested by:                                                                          | Date:                                                                                                                                     |
|----------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Mix Design No.:                                                                              | JMF No.: | Furnace No.:                                                                        | Calibration Factor:                                                                                                                       |
| Test No.     C.F.       1                                                                    |          |                                                                                     | Asphalt Source:<br>Asphalt Grade:<br>Type of Mixture:                                                                                     |
| Bit. Ratio Total<br>A: Agg w/lime<br>B: RAP<br>C: Oil added<br>D: Total                      | Cali     | ibration Factor: Test No<br>(MI)<br>DRY MASS<br>BIT. RATIO<br>BIT. RATIO            | $\frac{1}{(MF)} \div \frac{1}{(MF)} 100 = \frac{1}{BIT. RATIO}$ $\frac{1}{AFTER} = C.F. \qquad \%$ $\frac{1}{TIO TOTAL} = C.F. \qquad \%$ |
| Bit. Ratio Total          A: Agg w/lime         B: RAP         C: Oil added         D: Total | Cali     | ibration Factor: Test No<br>(MI)<br>DRY MASS<br>BIT. RATIO<br>BIT. RATIO<br>BIT. RA | $\frac{1.2}{(MF)} \div \frac{100}{MASSAFTER} = \frac{100}{BIT. RATIO}$                                                                    |
| Bit. Ratio Total<br>A: Agg w/lime<br>B: RAP<br>C: Oil added<br>D: Total                      | Cali     | ibration Factor: Test No<br>-<br>(MI)<br>DRY MASS<br>-<br>BIT. RATIO<br>BIT. RA     | $\frac{.3}{(MF)} \div \frac{.}{MASS AFTER} ]100 \} = \frac{.}{BIT. RATIO}$                                                                |
| Bit. Ratio Total<br>A: Agg w/lime<br>B: RAP<br>C: Oil added<br>D: Total                      | Cali     | ibration Factor: Test No<br>                                                        | $\frac{1}{4}$ $\frac{F}{AFTER}$ $\frac{(MF)}{MASS AFTER}$ $\frac{1}{100} = \frac{BIT. RATIO}{BIT. RATIO}$ $\frac{F}{MASS AFTER}$          |

Resident Engineer:

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION REPORT OF CALIBRATION FACTOR WITH RAP (INCLUDING WEEKLY CHECKS) USING THE IGNITION OVEN METHOD - PART 1

| A. Contract No.: | 3925                                 | B. Tested by:       | Leonard Cooper | C. Date:  | 8/28/2013    |
|------------------|--------------------------------------|---------------------|----------------|-----------|--------------|
| D. Mix Design No | .: <u>BF12-13</u> <b>E.</b> JMF No.: | 1 <b>F.</b> Furnace | e No.: 248500  | G. Actual | Lime %: 1.20 |

#### H.Calibration Factor: Test No.: 1

| $A: \frac{2101.4}{(Agg w/lime)} \div \frac{0.85}{(1 - \% \text{ RAP in decimal form})} = \frac{2472.2}{(Agg w/lime + RAP)}$ $\frac{2472.2}{(Agg w/lime + RAP)} \div \frac{2101.4}{(Agg w/lime)} = B: \frac{370.8}{(RAP)}$ $\frac{370.8}{(RAP)} \div \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{15.0}{(\% \text{ RAP})}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{85.0}{(\% \text{ Agg w/lime})}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{1.012}{(1 + \text{ lime } \% \text{ in decimal form})} = \frac{2076.5}{(Agg w/out \text{ lime})}$ $\frac{2076.5}{(Agg w/out \text{ lime})} + \frac{370.8}{(RAP)} = \frac{2447.3}{(Dry agg w/out \text{ lime } + RAP)}$                                                                                              | l                       |                              |                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|--------------------------------|
| $\frac{A.}{(Agg w/lime)} = \frac{1}{(1 - \% RAP in decimal form)} = \frac{1}{(Agg w/lime + RAP)}$ $\frac{2472.2}{(Agg w/lime + RAP)} = \frac{2101.4}{(Agg w/lime)} = B: \frac{370.8}{(RAP)}$ $\frac{370.8}{(RAP)} \div \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{15.0}{(\% RAP)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{85.0}{(\% Agg w/lime)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{1.012}{(1 + lime \% in decimal form)} = \frac{2076.5}{(Agg w/out lime)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{370.8}{(Agg w/out lime)} = \frac{24.9}{(Lime)}$                                                                                                                                                                                                 | 2101.4                  | . 0.85                       | 2472.2                         |
| $\frac{2472.2}{(Agg w/lime + RAP)} - \frac{2101.4}{(Agg w/lime)} = \mathbf{B}: \frac{370.8}{(RAP)}$ $\frac{1}{(RAP)}$ $\frac{1}{(RAP)} + \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{15.0}{(\% RAP)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{85.0}{(\% Agg w/lime)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{1.012}{(1 + lime \% \text{ in decimal form})} = \frac{2076.5}{(Agg w/out lime)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{2076.5}{(Agg w/out lime)} = \frac{24.9}{(Lime)}$                                                                                                                                                                                                                                                                      | A. (Agg w/lime)         | (1 - % RAP in decimal fo     | rm)(Agg w/lime + RAP)          |
| $\frac{(\text{Agg w/lime + RAP)}}{(\text{Agg w/lime)}} = \mathbf{B} \cdot \frac{(\text{RAP})}{(\text{RAP})}$ $\frac{\text{Verify that RAP does not exceed 15\%}}{(\text{RAP})}$ $\frac{370.8}{(\text{RAP})} \div \frac{2472.2}{(\text{Agg w/lime + RAP)}} \times 100 = \frac{15.0}{(\% \text{ RAP})}$ $\frac{2101.4}{(\text{Agg w/lime})} \div \frac{2472.2}{(\text{Agg w/lime + RAP)}} \times 100 = \frac{85.0}{(\% \text{ Agg w/lime})}$ $\frac{2101.4}{(\text{Agg w/lime})} \div \frac{1.012}{(1 + \text{lime \% in decimal form})} = \frac{2076.5}{(\text{Agg w/out lime})}$ $\frac{2101.4}{(\text{Agg w/lime})} - \frac{2076.5}{(\text{Agg w/out lime})} = \frac{24.9}{(\text{Lime})}$ $\frac{2076.5}{(\text{Agg w/out lime})} + \frac{370.8}{(\text{RAP})} = \frac{2447.3}{(\text{Dry agg w/out lime + RAP)}}$ | 2472.2                  | 2101.4                       | <b>B.</b> 370.8                |
| $\frac{ Verify that RAP does not exceed 15\% }{(RAP)} \stackrel{?}{\rightarrow} \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{15.0}{(\% RAP)}$ $\frac{2101.4}{(Agg w/lime)} \stackrel{?}{\rightarrow} \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{85.0}{(\% Agg w/lime)}$ $\frac{2101.4}{(Agg w/lime)} \stackrel{?}{\rightarrow} \frac{1.012}{(1 + lime \% in decimal form)} = \frac{2076.5}{(Agg w/out lime)}$ $\frac{2101.4}{(Agg w/lime)} \stackrel{?}{\rightarrow} \frac{2076.5}{(Agg w/out lime)} = \frac{24.9}{(Lime)}$ $\frac{2076.5}{(Agg w/out lime)} + \frac{370.8}{(RAP)} = \frac{2447.3}{(Dry agg w/out lime + RAP)}$                                                                                                                                                                    | (Agg w/lime + RAP)      | (Agg w/lime)                 | B. (RAP)                       |
| $\frac{370.8}{(RAP)} \div \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{15.0}{(\% RAP)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{85.0}{(\% Agg w/lime)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{1.012}{(1 + lime \% in decimal form)} = \frac{2076.5}{(Agg w/out lime)}$ $\frac{2101.4}{(Agg w/lime)} - \frac{2076.5}{(Agg w/out lime)} = \frac{24.9}{(Lime)}$ $\frac{2076.5}{(Agg w/out lime)} + \frac{370.8}{(RAP)} = \frac{2447.3}{(Dry agg w/out lime + RAP)}$                                                                                                                                                                                                                                                                                            |                         |                              |                                |
| $\frac{370.8}{(RAP)} \div \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{15.0}{(\% RAP)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{85.0}{(\% Agg w/lime)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{1.012}{(1 + lime \% in decimal form)} = \frac{2076.5}{(Agg w/out lime)}$ $\frac{2101.4}{(Agg w/lime)} - \frac{2076.5}{(Agg w/out lime)} = \frac{24.9}{(Lime)}$ $\frac{2076.5}{(Agg w/out lime)} + \frac{370.8}{(RAP)} = \frac{2447.3}{(Dry agg w/out lime + RAP)}$                                                                                                                                                                                                                                                                                            | Verify that RAP does no | ot exceed 15%                |                                |
| $\frac{(RAP)}{(Agg w/lime)} \div \frac{(Agg w/lime + RAP)}{(Agg w/lime + RAP)} \times 100 = \frac{(\% RAP)}{(\% RAP)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{1.012}{(Agg w/lime)} = \frac{2076.5}{(Agg w/out lime)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{2076.5}{(Agg w/out lime)} = \frac{24.9}{(Lime)}$ $\frac{2076.5}{(Agg w/out lime)} + \frac{370.8}{(RAP)} = \frac{2447.3}{(Dry agg w/out lime + RAP)}$                                                                                                                                                                                                                                                                                                                                                                                                  | 370.8                   | 2472.2 x 100                 | 15.0                           |
| $\frac{2101.4}{(Agg w/lime)} \div \frac{2472.2}{(Agg w/lime + RAP)} \times 100 = \frac{85.0}{(\% Agg w/lime)}$ $\frac{2101.4}{(Agg w/lime)} \div \frac{1.012}{(1 + lime \% in decimal form)} = \frac{2076.5}{(Agg w/out lime)}$ $\frac{2101.4}{(Agg w/lime)} - \frac{2076.5}{(Agg w/out lime)} = \frac{24.9}{(Lime)}$ $\frac{2076.5}{(Agg w/out lime)} + \frac{370.8}{(RAP)} = \frac{2447.3}{(Dry agg w/out lime + RAP)}$                                                                                                                                                                                                                                                                                                                                                                                            | (RAP) ·                 | (Agg w/lime + RAP)           | - (% RAP)                      |
| $\frac{(\text{Agg w/lime})}{(\text{Agg w/lime})} \div \frac{(\text{Agg w/lime} + \text{RAP})}{(\text{Agg w/lime})} \times 100 = \frac{(\% \text{ Agg w/lime})}{(\% \text{ Agg w/lime})}$ $\frac{2101.4}{(\text{Agg w/lime})} \div \frac{2076.5}{(1 + \text{lime \% in decimal form})} = \frac{24.9}{(\text{Lime})}$ $\frac{2076.5}{(\text{Agg w/out lime})} + \frac{370.8}{(\text{RAP})} = \frac{2447.3}{(\text{Dry agg w/out lime} + \text{RAP})}$                                                                                                                                                                                                                                                                                                                                                                  | 2101.4                  | 2472.2 x 100                 | 85.0                           |
| $\frac{2101.4}{(Agg w/lime)} \div \frac{1.012}{(1 + lime \% in decimal form)} = \frac{2076.5}{(Agg w/out lime)}$ $\frac{2101.4}{(Agg w/lime)} - \frac{2076.5}{(Agg w/out lime)} = \frac{24.9}{(Lime)}$ $\frac{2076.5}{(Agg w/out lime)} + \frac{370.8}{(RAP)} = \frac{2447.3}{(Dry agg w/out lime + RAP)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Agg w/lime)            | (Agg w/lime + RAP)           | = (% Agg w/lime)               |
| (Agg w/lime)(1 + lime % in decimal form)(Agg w/out lime) $2101.4$ $2076.5$ $2076.5$ (Agg w/lime) $(Agg w/out lime)$ $= \frac{24.9}{(Lime)}$ $2076.5$ $(Agg w/out lime)$ $= \frac{2447.3}{(Dry agg w/out lime + RAP)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2101.4                  | 1.012                        | _ 2076.5                       |
| $\frac{2101.4}{(Agg w/lime)} - \frac{2076.5}{(Agg w/out lime)} = \frac{24.9}{(Lime)}$ $\frac{2076.5}{(Agg w/out lime)} + \frac{370.8}{(RAP)} = \frac{2447.3}{(Dry agg w/out lime + RAP)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Agg w/lime)            | (1 + lime % in decimal form) | (Agg w/out lime)               |
| (Agg w/lime)(Agg w/out lime)(Lime) $2076.5$ $370.8$ $2447.3$ (Agg w/out lime) $(RAP)$ $(Dry agg w/out lime + RAP)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2101.4                  | 2076.5                       | 24.9                           |
| $\frac{2076.5}{(\text{Agg w/out lime})} + \frac{370.8}{(\text{RAP})} = \frac{2447.3}{(\text{Dry agg w/out lime + RAP})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Agg w/lime)            | (Agg w/out lime)             | (Lime)                         |
| (Agg w/out lime) (RAP) (Dry agg w/out lime + RAP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2076.5                  | 370.8                        | 2447.3                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Agg w/out lime)        | r (RAP) = (Dry a             | gg w/out lime + RAP)           |
| 2447.3 0.04 - <b>9</b> 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2447.3                  | 0.0                          | 97.9                           |
| (Dry agg w/out lime + RAP) x (Bit.ratio added in decimal form) = C. (Oil added)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Dry agg w/out lime + I | RAP) × (Bit.ratio added i    | decimal form) = C. (Oil added) |
| <u>2447.3</u> <u>24.9</u> <u>97.9</u> <u>2570.1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2447.3                  | 24.9                         | <u>97.9</u> <u>2570.1</u>      |
| (Dry agg w/out lime + RAP) + (Lime) + (Oil added) = D. (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Dry agg w/out lime +   | RAP) - (Lime)                | (Oil added) – D. (Total)       |

#### Calibration Factor: Test No.: 2

| 2076.7                 | 0.85 _ 2443.2                                             |
|------------------------|-----------------------------------------------------------|
| A. (Agg w/lime)        | (1 - % RAP in decimal form) (Agg w/lime + RAP)            |
| 2443.2                 | 2076.7 <u>366.5</u>                                       |
| (Agg w/lime + RAP)     | (Agg w/lime) (RAP)                                        |
| Verify that RAP does n | ot exceed 15%                                             |
| 366.5                  | 2443.2 x 100 - 15.0                                       |
| (RAP) ·                | (Agg w/lime + RAP) x 100 = (% RAP)                        |
| 2076.7                 | 2443.2x 10085.0                                           |
| (Agg w/lime)           | (Agg w/lime + RAP) $(% Agg w/lime)$                       |
| 2076.7                 | 1.012 _ 2052.1                                            |
| (Agg w/lime)           | (1 + lime % in decimal form) (Agg w/out lime)             |
| 2076.7                 | 2052.1 24.6                                               |
| (Agg w/lime)           | (Agg w/out lime) (Lime)                                   |
| 2052.1                 | 366.5 _ 2418.6                                            |
| (Agg w/out lime)       | (RAP) (Dry agg w/out lime + RAP)                          |
| 2418.6                 | 0.04 96.7                                                 |
| (Dry agg w/out lime +  | RAP) ^ (Bit.ratio added in decimal form) - C. (Oil added) |
| 2418.6                 | <u>24.5</u> <u>96.7</u> <u>2539.8</u>                     |
| (Dry agg w/out lime +  | RAP) (Lime) (Oil added) (Total)                           |

| R                            | EPORT OF               | CALIB         | DEPART<br>BRATION I | MENT OF TI<br>F <b>actor Witi</b> | RANSPO<br>H <b>Rap (II</b> | ORTATION<br>I <b>CLUDING</b> | I<br>WEEKLY         | CHECKS)        |             |
|------------------------------|------------------------|---------------|---------------------|-----------------------------------|----------------------------|------------------------------|---------------------|----------------|-------------|
|                              |                        | US            | SING THE            | IGNITION OV                       | EN MET                     |                              | Т 2                 | ,              |             |
| J. Contract No.:             | 39                     | 925           | к                   | . Tested by:                      | Leonar                     | d Cooper                     | _ L. Dat            | te: <u>8</u> / | 28/2013     |
| M. Mix Design No             | .:BF12-13 N            | I. JMF I      | No.: <u>1</u>       | O. Furnace N                      | 0.:                        | 248500                       | P. Cal              | libration Fac  | tor: + 0.22 |
| Q. Test No.                  | <b>R.</b> C.F.         | S. Tei        | mperature           | T. Accept or R                    | eject                      |                              |                     |                |             |
| 1 1                          | 0.17                   |               | 538                 | Accept                            | U.                         | Asphalt S                    | Source: <u>Ei</u>   | rgon           |             |
| 2 2                          | 0.27                   |               | 538                 | Accept                            | V.                         | Asphalt G                    | Grade: P            | G 76-22NV      |             |
| 4                            |                        |               |                     |                                   |                            | . Type of N                  | /lixture: <u>Pi</u> | BS Type 2 w    | //RAP       |
| X. 4.00<br>(BIT. RATIO ADDED | ) + <b>Y.</b><br>(BIT. | 0.50<br>RATIO | 0 =<br>RAP)         | <b>Z.</b> 4.50 (BIT. RATIO TO     | TAL)                       |                              |                     |                |             |
| Bit. Ratio Total             | 4.50                   | )             | Calibrat            | ion Factor: Te                    | st No. 1                   |                              |                     |                |             |
| AA: Agg w/lime               | 2101                   | .4            | {[( 2               | 5640 -                            | NI/A                       | \ <u>+</u>                   | NI/A                | 1100 } _       | 4 67        |
| BB: RAP                      | 370.                   | 8             | ι <u>(</u> 2        | (MI)<br>(MI)                      | (MF)                       |                              | (MF)                |                | BIT. RATIO  |
| CC: Oil added                | 97.9                   | )             | EE. DR              | Y MASS FF. N                      | ASS AFTE                   | R GG. MA                     | ASS AFTER           | пп.            |             |
| DD: Total                    | 2570                   | .1            |                     | 4.67 -                            | 4.50                       | =                            | C.F                 | D.17 %         |             |
|                              |                        |               | II. BIT             | T. RATIO <b>JJ.</b> B             | BIT. RATIO                 | TOTAL                        | ۲                   | KK.            |             |
| Bit. Ratio Total             | 4.50                   | )             | Calibrat            | ion Factor: Te                    | st No. 2                   |                              |                     |                |             |
| A: Agg w/lime                | 2076                   | .7            | {[( 2               | 5340 <b>-</b>                     | N/A                        | ) <u>-</u>                   | Ν/Δ                 | 1100 } _       | A 77        |
| B: RAP                       | 366.                   | 5             | ( [\ <u></u>        | (MI)                              | (MF)                       | _/ ·                         | (MF)                | 1,00 ] =       | BIT. RATIO  |
| C: Oil added                 | 96.7                   | 7             | DR                  | T WASS IN                         |                            |                              | ASS AFTER           |                |             |
| D: Total                     | 2539                   | .8            |                     | <u>4.77</u>                       | 4.50                       | =                            | C.F. (              | 0.27 %         |             |
|                              |                        |               | DII                 | . KATIO D                         | SIT. KATIO                 | IUTAL                        |                     |                |             |
| Bit. Ratio Total             |                        |               | Calibrat            | ion Factor: Te                    | st No. 3                   |                              |                     |                |             |
| A: Agg w/lime                |                        |               | { [(                | -                                 |                            | ) ÷                          |                     | ]100 } =       |             |
| B: RAP                       |                        |               | DR                  | (MI)<br>Y MASS M                  | (MF)<br>ASS AFTE           |                              | (MF)<br>ASS AFTER   |                | BIT. RATIO  |
| C: Oil added                 |                        |               | 2                   |                                   |                            |                              | ~ <b>-</b>          |                |             |
| D: Total                     |                        |               | BIT                 |                                   |                            |                              | C.F                 | %              |             |
|                              |                        |               |                     |                                   |                            |                              |                     |                |             |
| Bit. Ratio Total             |                        |               | Calibrat            | ion Factor: Tes                   | st No. 4                   |                              |                     |                |             |
| A: Agg w/lime                |                        |               | { [(                |                                   |                            | _) ÷                         |                     | ]100 } =       |             |
| B: RAP                       |                        |               | DR                  | (MI)<br>Y MASS M                  | (MF)<br>IASS AFTE          | R MA                         | (MF)<br>ASS AFTER   | -              | BIT. RATIO  |
| C: Oil added                 |                        |               |                     |                                   |                            |                              | <u>с</u> г          | 0/             |             |
| D: I otal                    |                        |               | BIT                 | RATIO B                           | BIT. RATIO                 | TOTAL =                      | с.г. <u>—</u>       | %              |             |
|                              |                        |               | 5                   | -                                 |                            |                              |                     |                |             |

STATE OF NEVADA

**LL.** Remarks: Calibration Factor Test's No. 1 and No. 2 are within the  $\pm$  0.15 tolerance. Used to establish a calibration factor of + 0.22

MM. Resident Engineer: Howard Koothrappali

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

# REPORT OF CALIBRATION FACTOR WITH RAP (INCLUDING WEEKLY CHECKS) USING THE IGNITION OVEN METHOD - PARTS 1 & 2

- A Contract number for the material being tested, found in the Contract Plans or Special Special Provisions (ex. 3925)
- **B** Tested by, print first and last name of the tester or testers who completed the test (ex. Leonard Cooper)
- **C** Date the Calibration Factor was performed (ex. 8/28/2013)
- **D** Mix Design No., assigned by the Carson Materials Division (ex. BF12-13)
- E JMF No., Job Mix Formula number assigned by the Resident Engineer (ex. 1)
- **F** Furnace No., number assigned to the ignition furnace that is being used to perform the burn-offs, typically found somewhere on the outside of the furnace (ex. 248500)
- G Actual Lime %, Calculated mineral filler percent used to marinate the virgin aggregate. This information is determined by the bin percentages found on the JMF for this particular material per Test Method Nev. T761 (ex. 30% 3/4" agg, 20% 3/8" agg, 27% crusher fines and 8% sand (30 + 20 = 50 x .01 (found in the Standard Specifications) = 0.50, 27 + 8 = 35 x 0.02 (found in the Standard Specifications) = 0.70, 0.50 + 0.70 = 1.20) NOTE: Each mix design or change to the job mix formula will result in a change to the actual lime.
- H Calibration Factor: Test No., correlates to the calibration factor test number "Line Q" located on Part 2 of form No. 040-053A (ex. 1)
- Mathematic calculations for the Calibration Factor Test No, to determine the weight of Agg w/lime, RAP, Oil added and Total weight (ex. Agg w/lime 2101.4, RAP 370.8, Oil added 97.9 and Total 2570.1)
   NOTE: Refer to the example for all calculations
- J Contract number for the material being tested, found in the Contract Plans or Special Provisions (ex. 3925)
- K- Tested by, print first and last name of the tester or testers who completed the test (ex. Leonard Cooper)
- L Date the Calibration Factor was performed (ex. 8/28/2013)

# REPORT OF CALIBRATION FACTOR WITH RAP (INCLUDING WEEKLY CHECKS) USING THE IGNITION OVEN METHOD - PARTS 1 & 2

| M - | Mix Design No, assigned by the Materials Division (ex. BF12-13)                                                                                                                                                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N - | JMF No, Job Mix Formula number assigned by the Resident Engineer (ex. 1)                                                                                                                                                                                                                  |
| 0 - | Furnace No, number assigned to the ignition furnace that is being used to perform the burn-offs, typically found somewhere on the outside of the furnace (ex. 248500)                                                                                                                     |
| Ρ-  | Calibration Factor that is determined prior to any acceptance testing for this particluar<br>Mix Design and current JMF per Test Method Nev. T761 (ex. + 0.22)<br><b>NOTE:</b> Each ignition furnace will have its own designated correction factor for each<br>specific type of material |
| Q - | Test No., Correlates to the specific Calibration Factor Test No.                                                                                                                                                                                                                          |
| R - | Calibration Factor from each individual test performed, refer to Line KK (ex. 0.17)                                                                                                                                                                                                       |
| S - | Temperature, determined per Test Method Nev. T761, will either be 482°C or 538°C (ex. 538°C)                                                                                                                                                                                              |
| т.  | Accept or Reject, each individual test determined per Test Method Nev. T761 (ex. Accept)                                                                                                                                                                                                  |
| U - | Asphalt Source, name of the producer providing the asphalt utilized in the plantmix (ex. Ergon)                                                                                                                                                                                           |
| V - | Asphalt Grade, grade of asphalt that is being used in the plantmix, found on the Mix Design approved from the Carson Materials Division (ex. PG76-22NV)                                                                                                                                   |
| W - | Type of Mixture, found in the Contract Plans or Special Provisions (ex. PBS Type 2 w/RAP)                                                                                                                                                                                                 |
| X - | Bit Ratio Added, found on the Mix Design approved from the Carson Materials Division (ex. 4.00)                                                                                                                                                                                           |
| Υ - | Bit Ratio RAP, found on the Mix Design approved from the Carson Materials Division (ex. 0.50)                                                                                                                                                                                             |
| Z - | Bit. Ratio Total, found on the Mix Design approved from the Materials Division<br>Line X (Bit. Ratio Added) + Line Y (Bit Ratio RAP) = Line Z (Bit. Ratio Total) (ex. 4.50)                                                                                                               |

# REPORT OF CALIBRATION FACTOR WITH RAP (INCLUDING WEEKLY CHECKS) USING THE IGNITION OVEN METHOD - PARTS 1 & 2

#### LINE EXPLANATION OF NEEDED INFORMATION

| AA - | Agg w/lime, from the calibrated hotplant coldfeed sample. Refer to Part 1 Line I of Form No. 040-053A for this weight (ex. 2101.4)<br><b>NOTE:</b> This will be the actual weight of hot aggregate that you start out with to perform the calibration factor |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BB - | RAP, refer to Part 1 Line I of Form No. 040-053A for this weight (ex. 370.8)                                                                                                                                                                                 |
| CC - | Oil added, refer to Part 1 Line I of Form No. 040-053A for this weight (ex. 97.9)                                                                                                                                                                            |
| DD - | Total, refer to Part 1 Line I of Form No. 040-053A for this weight (ex. 2570.1)                                                                                                                                                                              |
| EE - | Dry Mass (MI), weight of the sample after mixing and weighing determined per Test<br>Method Nev. T761 (ex. 2564.0)                                                                                                                                           |
| FF - | Mass After (MF), weight of the sample after it has completed the burn-off when weighing<br>the material outside the furnace<br><b>NOTE:</b> This example indicates N/A since the Bit Ratio was determined using the tape<br>per Test Method Nev. T761        |
| GG - | Mass After (MF), weight of the sample after it has completed the burn-off when weighing<br>the material outside the furnace<br><b>NOTE:</b> This example indicates N/A since the Bit Ratio was determined using the tape<br>per Test Method Nev. T761        |
| HH - | Bit. Ratio, shall be determined by using the indicated Bitumen Ratio from the furnace printout (ex. 4.67)                                                                                                                                                    |

**NOTE:** See Test Method Nev. T761 if calculating the Bit Ratio using the scale outside of the ignition furnace

- Bit. Ratio, shall be determined by using the indicated Bitumen Ratio from the furnace printout (ex. 4.67)
   NOTE: See Test Method Nev. T761 if calculating the Bit Ratio using the scale outside of the ignition furnace
- JJ Bit. Ratio Total, found on Line Z (Bit. Ratio Total) (ex. 4.50)
- **KK** C.F., Line II (Bit Ratio) Line JJ (Bit Ratio Total) = Line KK (C.F.) (ex. 4.67 4.50 = 0.17)

# REPORT OF CALIBRATION FACTOR WITH RAP (INCLUDING WEEKLY CHECKS) USING THE IGNITION OVEN METHOD - PARTS 1 & 2

#### LINE EXPLANATION OF NEEDED INFORMATION

- LL Remarks, anything pertinent that needs to be documented (ex. Calibration Factors Test No. 1 and No. 2 are within the ± 0.15 tolerance. Used to establish a calibration factor of + 0.22)
- **MM -** Resident Engineer or Assistant Resident Engineer signature verifying the accuracy of the reported results (ex. Howard Koothrappali)

#### NOTES:

- 1. There shall be a minimum of 2 burn-offs to establish an oven's calibration factor. Refer to Test Method Nev. T761
- Attempts shall be made to keep the remaining material waste in the mixing bowl under 10 grams after mixing

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

#### WATER VOLUME CALCULATIONS FOR SAND CONE APPARATUS AND MEASURING VESSEL (HAT)

| Contract No.                                                                                | Temperature of Water                                                                                  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Date                                                                                        | State Id No.                                                                                          |
| <ul> <li>One Piece Sand Cone</li> <li>Three Piece Sand Cone</li> </ul>                      | <ul> <li>Measuring Vessel Hat 250 mm (10 in.)</li> <li>Measuring Vessel Hat 200 mm (8 in.)</li> </ul> |
| Weight of Water<br>(Carry to nearest 0.1)                                                   | Ib                                                                                                    |
| Volume of Vessel = Weight of Water / 62.4<br>(Carry to nearest 0.001)                       | ft <sup>3</sup>                                                                                       |
| Volume of Vessel in $m^3$ = Volume in $ft^3 \times 0.0283168$<br>(Carry to nearest 0.00001) | m <sup>3</sup>                                                                                        |
| Remarks:                                                                                    |                                                                                                       |
| Tested By: Resi                                                                             | dent Engineer:                                                                                        |
| NDOT<br>040-067<br>Rev. 5/09 Distribution: Headquarters Construction, D                     | District, Resident Engineer, Contractor                                                               |

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

#### WATER VOLUME CALCULATIONS FOR SAND CONE APPARATUS AND MEASURING VESSEL (HAT)

| A. Contract No                            | 0. <b>3925</b>                                                   | B. Temperature of Water:                            | 78°F                            |
|-------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|
| C. Date                                   | 7/12/2010                                                        | D. State Id No.                                     | 19315                           |
| <b>е. Х с</b>                             | Dne Piece Sand Cone<br>Three Piece Sand Cone                     | Measuring Vessel Hat 2<br>Measuring Vessel Hat 2    | 50 mm (10 in.)<br>00 mm (8 in.) |
| F. Weight of W<br>(Carry to nearest of    | Vater<br>0.1)                                                    | <u>12.5</u> lb                                      |                                 |
| <b>G.</b> Volume of V (Carry to nearest ) | Vessel = Weight of Water / 62.4<br>0.001)                        | <b>0.200</b> ft <sup>3</sup>                        |                                 |
| H. Volume of \                            | Vessel in m <sup>3</sup> = Volume in ft <sup>3</sup> x 0.0283168 | m <sup>3</sup>                                      |                                 |
| I. Remarks:                               | Performed at the Elko Progress Lab,                              | with the supervision of the progres                 | s tester.                       |
| J. Tested By:                             | Jane Gethro                                                      | K. Resident Engineer: <u></u> Sey Geles             |                                 |
| NDOT<br>040-067<br>Rev. 5/09              | Distribution: Headquarters Constru                               | ction, District, Resident Engineer, Contractor<br>2 |                                 |

#### 040-067 Rev. 5/09

# WATER VOLUME CALCULATIONS FOR SAND CONE APPARATUS AND MEASURING VESSEL (HAT)

#### LINE EXPLANATION OF NEEDED INFORMATION

- A Contract number for the material being tested, found in the Contract Plans or Special Provisions (3925)
- **B** Temperature of the water used to determine the volume of the apparatus calibrated per Test Method Nev. T761 (EX. 78°)
- **C** Date the calibration was performed (EX. 7/12/2010)
- Fixed ID number on the calibrated piece of equipment (EX. 19315) NOTE: If there is not an ID number on the piece of equipment, label it with the crew number and a #1 or #2 depending if there is more than one piece of the same equipment
- E Check the appropriate box that applies to the specific type of equipment being calibrated (EX. X One Piece Sand Cone)
- F Total weight of water that it took to fill up the apparatus determined per Test Method Nev. T102 (EX. 12.5 lb)
- **G** Line F (Weight of Water) / 62.4 (Weight of a Cubic Foot of Water) = Line G (Volume of Vessel) (EX. 12.5 / 62.4 = 0.200)
- H Line G (Volume of Vessel in ft<sup>3</sup>) x 0.0283168 (conversion factor from English to metric)
   = Line H (Volume of Vessel in m<sup>3</sup>) NOTE: Only fill this line out if work is being performed on a metric contract
- Any remarks that need to be documented (EX. Performed at the Elko Progress Lab, with the supervision of the progress tester)
- J Tested by, print first and last name of the tester or testers who completed the test (EX. Jane Gethro)
- K Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Ray Geles)

#### NOTES:

1. Per Test Method Nev. T102, the apparatus shall be calibrated annually

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

#### SAND DENSITY CALCULATION - T102

| Contract No.     | State Id No.                                                                          |
|------------------|---------------------------------------------------------------------------------------|
| Date             |                                                                                       |
| _                |                                                                                       |
| Three            | Piece Sand Cone with 200 mm (8 in.) Measuring Vessel (Hat)                            |
| One F            | Piece Sand Cone with 250 mm (10 in.) Measuring Vessel (Hat)                           |
| Trial Pours      |                                                                                       |
| Initial Weigh    | t of Sand - Weight of Residue = Weight of Sand Used                                   |
| 1                | =lb                                                                                   |
| 2                | =lb                                                                                   |
| 3                | =lb                                                                                   |
|                  | Trial Pour Average =lb                                                                |
| (Note: All three | trial pours must be within $\pm$ 0.2 lb of each other, if not repeat this procedure.) |
|                  |                                                                                       |
| Trial Pour Av    | verage / Volume of the Sand Cone and Measuring Vessel (Hat) = Sand Density in lb/ft   |
|                  | / = lb/ft <sup>3</sup>                                                                |
| Sand Densit      | y in lb/ft <sup>3</sup> / 62.4 = Sand Density in Mg/m <sup>3</sup>                    |
|                  | $Ib/ft^3$ / 62.4 = Mg/m <sup>3</sup>                                                  |
|                  |                                                                                       |
| Remarks:         |                                                                                       |
|                  |                                                                                       |
|                  |                                                                                       |
| Tested By:       | Resident Engineer:                                                                    |
| NDOT             |                                                                                       |
| Rev. 3/09        | Distribution: Headquarters Construction, District, Resident Engineer, Contractor      |

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

#### SAND DENSITY CALCULATION - T102

| A. Contract No.                 | 3925                                                                                                 | <b>B.</b> State Id No.                                                                | 19315                                     |
|---------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------|
| C. Date                         | 7/12/2010                                                                                            |                                                                                       |                                           |
| D.                              | Three Piece Sand Cone w<br>One Piece Sand Cone with                                                  | ith 200 mm (8 in.) Measuring Vessel (Hat)<br>n 250 mm (10 in.) Measuring Vessel (Hat) |                                           |
| <u>Trial Pours</u><br><b>E.</b> | F.                                                                                                   | G.                                                                                    |                                           |
| Initial Weight of               | Sand - Weight of Residue =                                                                           | = Weight of Sand Used                                                                 |                                           |
| 1. <b>51.9</b>                  | - 21.9 =                                                                                             | <b>30.0</b> lb                                                                        |                                           |
| 2. <b>50.6</b>                  | =                                                                                                    | <b>30.0</b> lb                                                                        |                                           |
| 3. <b>50.3</b>                  | =                                                                                                    | <b>30.0</b> lb                                                                        |                                           |
| (Note: All three tria           | <b>H.</b> Trial Pour Average = $\frac{1}{2}$                                                         | <b>30.0</b> Ib of each other, if not repeat this procedure.)                          |                                           |
| <b>I.</b><br>Trial Pour Avera   | age / Volume of the Sand Co                                                                          | <b>J.</b><br>one and Measuring Vessel (Hat) = Sand De                                 | <b>K.</b><br>ensity in lb/ft <sup>3</sup> |
| 3(                              | 0.0 /                                                                                                | 0.334 =                                                                               | <b>89.8</b> lb/ft <sup>3</sup>            |
| L.<br>Sand Density in           | M. N.<br>Ib/ft <sup>3</sup> / 62.4 = Sand Density<br>Ib/ft <sup>3</sup> /<br>New sand brought in, ca | in Mg/m <sup>3</sup><br>62.4 =<br>librated for ratholes.                              | _Mg/m <sup>3</sup>                        |
| P. Tested By:                   | Bill Lewis                                                                                           | Q. Resident Engineer:                                                                 | Ress                                      |
| Rev. 3/09                       | Distribution: Headq                                                                                  | uarters Construction, District, Resident Engineer, Con<br>2                           | ntractor                                  |

#### 040-068 Rev. 3/09

#### SAND DENSITY CALCULATION - T102

| Α-  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                                       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Fixed ID number on the piece of equipment being tested (EX. 19315) NOTE: If there is not an ID number on the piece of equipment, label it with the crew number and a #1 or # 2 depending on if there is more than one piece of the same equipment |
| C - | Date the calibration was performed (EX. 7/12/2010)                                                                                                                                                                                                |
| D - | Check the appropriate box that applies to the equipment being calibrated (EX. X - One Piece Sand Cone)                                                                                                                                            |
| Ε-  | Initial weight of sand being used to determine the sand density determined per Test<br>Method Nev. T102 (EX. 51.9) NOTE: A minimum amount of 50.0 lb shall be used                                                                                |
| F-  | Weight of sand residue from filling the measuring vessel (hat) and sand cone determined per Test Method Nev. T102 (EX. 21.9)                                                                                                                      |
| G - | Line E (Initial Weight of Sand) - Line F (Weight of Residue) = Line G (Weight of Sand Used) (EX. 51.9 - 21.9 = 30.0 round to the nearest 0.1)                                                                                                     |
| Н-  | The sum of all three values of Line G (Weight of Sand Used) / $3 =$ Line H (Trial Pour Average) (EX. $30.0 + 30.0 + 30.0 = 90.0 / 3 = 30.0$ round to the nearest 0.1)                                                                             |
| 1-  | Value from Line H (Trial Pour Average) (EX. 30.0)                                                                                                                                                                                                 |
| J - | Volume of sand cone and measuring vessel (hat) from NDOT form 040-067 (EX. 0.334)                                                                                                                                                                 |
| К-  | Line I (Trial Pour Average) / Line J (Volume of the Sand Cone and Measuring Vessel (hat)) = Line K (Sand Density in $Ib/ft^3$ ) (EX. 30.0 / 0.334 = 89.8 round to the nearest 0.1)                                                                |
| L-  | Line K (Sand Density in lb/ft <sup>3</sup> ) (EX. 89.8) NOTE: Only fill this line out if work is being performed on a metric contract                                                                                                             |
| M - | 62.4 (weight of a cubic foot of water) NOTE: Only fill this line out if work will be done on a metric contract                                                                                                                                    |

#### 040-068 Rev. 3/09

#### SAND DENSITY CALCULATION - T102

| N - | Line L (Sand Density in $lb/ft^3$ ) / Line M (62.4 weight of a cubic foot of water) = Line N (Sand Density in Mg/m <sup>3</sup> ) (EX. 89.8 / 62.4 = 1.439) NOTE: Only fill this line out if work is being performed on a metric contract |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - | Any remarks that need to be documented (EX. New sand brought in, calibrated for ratholes)                                                                                                                                                 |
| Ρ-  | Print first and last name of the tester or testers who completed the test (EX. Bill Lewis)                                                                                                                                                |
| Q - | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Kyle Ross)                                                                                                                                          |

| Contract No<br>Date                                                                                                                                                                                                                                                       | Test Hole No. (code)<br>Station<br>Distance to Centerline<br>Embankment Depth<br>Type of Material<br>Compaction Equipment                                           |                |                                      |                                    |                                        |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------|------------------------------------|----------------------------------------|--------------|
|                                                                                                                                                                                                                                                                           | Sand Vo                                                                                                                                                             | olume Data Ne  | v. T102                              |                                    |                                        |              |
| <ol> <li>Initial Wt. of Sand</li> <li>Wt. of Residue</li> <li>Wt. of Sand Used, 1 - 2</li> <li>Sand Density</li> <li>Vol. Hole + Cone + Plate, 3/4</li> <li>Vol. of Cone + Plate</li> <li>Vol. of Hole, 5 - 6</li> </ol>                                                  | kg (lbs)<br>kg (lbs)<br>kg (lbs)<br>Mg/m <sup>3</sup> (lb/ft <sup>3</sup> )<br>m <sup>3</sup> x 1000 (ft <sup>3</sup> )<br>m <sup>3</sup> x 1000 (ft <sup>3</sup> ) |                |                                      |                                    |                                        |              |
|                                                                                                                                                                                                                                                                           | Excavat                                                                                                                                                             | ed Sample Ne   | v. T102                              |                                    |                                        |              |
| <ol> <li>8. Total Excavated Wet Wt.</li> <li>9. Wet Wt.</li> <li>10. Dry Wt.</li> <li>11. Wt. of Water, 9 - 10</li> <li>12. % Moisture, (11 / 10)100</li> <li>13. Field Wet Density, 8 / 7</li> <li>14. Field Dry Density,         [13 / (100 + % Moisture)]10</li> </ol> | kg (lbs)<br>grams<br>grams<br>grams<br>Mg/m³ (lb/ft³)<br>Mg/m³ (lb/ft³)                                                                                             |                |                                      |                                    |                                        |              |
|                                                                                                                                                                                                                                                                           | Data for Calculated Maxi                                                                                                                                            | imum Density   | Determinatio                         | n Nev. T108                        |                                        |              |
| Total Sample Wt.                                                                                                                                                                                                                                                          |                                                                                                                                                                     |                |                                      |                                    |                                        |              |
| Wt. of + 3/4"                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                | % retained on ·                      | +3/4",                             | % retaine                              | d on +No.4   |
| Wt. of + No. 4                                                                                                                                                                                                                                                            | _                                                                                                                                                                   | (Method        | Selected)                            | Method "                           | A" 🗆 Metho                             | od "D"       |
| 16. Wt. of Mold + Compacted Soi<br>17. Wt. of Mold<br>18. Wt. of Compacted Soil, 16 - 1                                                                                                                                                                                   | l grams<br>grams<br>7 grams                                                                                                                                         | Point 1        | Point 2                              | Point 3                            | Point 4                                | Point 5      |
| (Line 18 / 453.59) x Factor                                                                                                                                                                                                                                               | (lb/ft³)                                                                                                                                                            |                |                                      |                                    |                                        |              |
| (Line 19 / (100 + % Moist.))10                                                                                                                                                                                                                                            | 00 (lb/ft³) *                                                                                                                                                       | *              |                                      |                                    |                                        |              |
| Note: Mold Volume Factor, F<br>For Method "A" (4" Mole<br>For Method "D" (6" Mole                                                                                                                                                                                         | = (1 / Volume)<br>d) use <b>30.03</b><br>d) use <b>13.33</b>                                                                                                        | We<br>Dry      | t Density = (Wt.<br>⁄ Density = (Wet | of Compacted S<br>Density / (100 + | Soil / 453.59) x F<br>⊦ % Moisture)) x | actor<br>100 |
| N                                                                                                                                                                                                                                                                         | loisture Content, Nev. T11                                                                                                                                          | 12 or T108 (Mi | crowave Over                         | n Procedure)                       |                                        |              |
| 21. Wet Wt.<br>22. Dry Wt.<br>23. Wt. of Water, 21 - 22<br>24. % Moisture, (23 / 22)100<br>* Oven-dry density po                                                                                                                                                          | grams<br>grams<br>grams                                                                                                                                             | Point 1        | Point 2                              | Point 3                            | Point 4                                | Point 5      |



Rev. 02/13

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

| A. Contract No. 3925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C. Test Hole No. (code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-SB-90                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <b>B.</b> Date 4/8/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D. Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "X" 7+22                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E. Distance to Centerline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2' RT                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F. Embankment Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2' frm. Finish Gr                                                                                                                                                                                                                                                                        | ade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G. Type of Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Granular Back                                                                                                                                                                                                                                                                            | fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H. Compaction Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vibratory Rolle                                                                                                                                                                                                                                                                          | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sand Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lume Data Nev. 1                                                                                                                                                                                                                                                                         | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| I. 1. Initial Wt. of Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kg (lbs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.0                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| J. 2. Wt. of Residue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.1                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| <b>K.</b> 3. Wt. of Sand Used, 1 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.9                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| L. 4. Sand Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ma/m <sup>3</sup> (b/ft <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84.6                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| M 5 Vol Hole + Cone + Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3/4 m <sup>3</sup> x 1000 (ft <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 377                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| <b>N</b> 6 Vol. of Cons. + Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $m^3 \times 1000 (ft^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.011                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $m^{3} \times 1000 (H^{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.199                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| <b>U.</b> 7. VOI. Of HOIE, 5 - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m x 1000 (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.178                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Excavate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed Sample Nev. T                                                                                                                                                                                                                                                                         | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| P. 8. Total Excavated Wet Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kg(lbs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.7                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| <b>Q.</b> 9. Wet Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2587                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| <b>R</b> . 10. Dry Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2389                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| <b>S.</b> 11. Wt. of Water, 9 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 198                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| <b>T.</b> 12. % Moisture, (11 / 10)100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.3 %                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| U. 13. Field Wet Density, 8 / 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mg/m³ (b/ft³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127.5                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mg/m³ (b/ft³)<br>Mg/m³ (b/ft³)<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 127.5<br>117.7                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                               |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. 1205</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mg/m³ (b/ft³)<br>Mg/m³ (b/ft³)<br>00<br>Data for Calculated Maxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 127.5<br>117.7                                                                                                                                                                                                                                                                           | terminatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Nev. T108                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                               |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" 35</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mg/m³ (b/ft³)<br>Mg/m³ (b/ft³)<br>00<br>Data for Calculated Maxi<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 127.5<br>117.7<br>mum Density Det                                                                                                                                                                                                                                                        | terminatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Nev. T108<br>+3/4". <sup>15</sup>                                                                                                                                | .0 % retaine                                                                                                                                                                                                                      | ed on +No.4                                                   |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                        | Mg/m³ (b/ft³)<br>Mg/m³ (b/ft³)<br>00<br>Data for Calculated Maxi<br>Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 127.5<br>117.7<br>mum Density Der<br>% re<br>% re                                                                                                                                                                                                                                        | terminatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Nev. T108<br>+3/4",15<br>Method "A                                                                                                                               | 0% retaine<br>."⊠ Meth                                                                                                                                                                                                            | ed on +No.4<br>nod "D" □                                      |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                        | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>00<br>Data for Calculated Maxi<br>Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>127.5</u><br>117.7<br>mum Density Det<br><u>2.9</u> % re<br>(Method Sele                                                                                                                                                                                                              | terminatio<br>etained on -<br>ected)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Nev. T108<br>⊧3/4",<br>Method "A                                                                                                                                 | 0.0% retaine<br>."⊠ Meth                                                                                                                                                                                                          | ed on +No.4<br>nod "D"                                        |
| U. 13. Field Wet Density, 8 / 7<br>V. 14. Field Dry Density,<br>[13 / (100 + % Moisture)]10<br>W. Total Sample Wt. <u>1205</u><br>X. Wt. of + 3/4" <u>35</u><br>Y. Wt. of + No. 4 <u>181</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>00<br>Data for Calculated Maxi<br>Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 127.5<br>117.7<br>mum Density Det<br><u>2.9</u> % re<br>(Method Sele<br>Point 1                                                                                                                                                                                                          | terminatio<br>etained on -<br>ected)<br>Point 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Nev. T108<br>⊧3/4",5<br>Method "A<br>Point 3                                                                                                                     | 0% retaine<br>."⊠ Meth<br>Point 4                                                                                                                                                                                                 | ed on +No.4<br>nod "D"                                        |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted DD 17, 10(4 of Mold)</li> </ul>                                                                                                                                                                                                                                                                                                                                                          | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>00<br>Data for Calculated Maxi<br><br>Z.<br>ed Soil grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127.5<br>117.7<br>mum Density Det<br><u>2.9</u> % re<br>(Method Sele<br>Point 1<br>6050                                                                                                                                                                                                  | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Nev. T108<br>⊧3/4",5<br>Method "A<br>Point 3<br>6230                                                                                                             | .0% retaine<br>"⊠ Meth<br>Point 4<br>6175                                                                                                                                                                                         | ed on +No.4<br>nod "D"                                        |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacte<br/>BB. 17. Wt. of Mold</li> </ul>                                                                                                                                                                                                                                                                                                                                                        | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>00<br>Data for Calculated Maxi<br>Z.<br>ed Soil grams<br>grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 127.5<br>117.7<br>mum Density Det<br><u>2.9</u> % re<br>(Method Sele<br>Point 1<br>6050<br>4200                                                                                                                                                                                          | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Nev. T108<br>+3/4",15<br>Method "A<br>Point 3<br>6230<br>4200                                                                                                    | 0.0 % retaine<br>" ⊠ Meth<br>Point 4<br>6175<br>4200                                                                                                                                                                              | ed on +No.4<br>nod "D"                                        |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted<br/>BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, <sup>4</sup></li> </ul>                                                                                                                                                                                                                                                                                                  | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>Data for Calculated Maxi<br>Z.<br>Calculated Maxi<br>grams<br>16 - 17 grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127.5<br>117.7<br>mum Density Det<br><u>2.9</u> % re<br>(Method Sele<br>Point 1<br>6050<br>4200<br>1850                                                                                                                                                                                  | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Nev. T108<br>•3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030                                                                                              | <sup>5.0</sup> % retaine<br>" ⊠ Meth<br>Point 4<br>6175<br>4200<br>1975                                                                                                                                                           | ed on +No.4<br>nod "D"                                        |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted<br/>BB. 17. Wt. of Mold<br/>CC. 18. Wt. of Compacted Soil, 7</li> <li>DD. 19. Wet Density,</li> </ul>                                                                                                                                                                                                                                                                                    | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>Data for Calculated Maxi<br>Z.<br>ed Soil grams<br>grams<br>16 - 17 grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127.5<br>117.7<br>mum Density Det<br>2.9 % re<br>(Method Sele<br>Point 1<br>6050<br>4200<br>1850                                                                                                                                                                                         | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Nev. T108<br>-3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030                                                                                              | <sup>5.0</sup> _% retaine<br>"⊠ Meth<br>Point 4<br>6175<br>4200<br>1975                                                                                                                                                           | ed on +No.4<br>Nod "D"                                        |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted<br/>BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, 7</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> </ul>                                                                                                                                                                                                                                               | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>Data for Calculated Maxi<br>Cartering Calculated Maxi<br>Cartering Calculated Maxi<br>Cartering Calculated Maxi<br>Cartering Calculated Maxi<br>Cartering Cartering | 127.5<br>117.7<br>mum Density Det<br><u>2.9</u> % re<br>(Method Sele<br>Point 1<br>6050<br>4200<br>1850<br>122.5                                                                                                                                                                         | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Nev. T108<br>-3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4                                                                                     | 0.0% retaine<br>"⊠ Meth<br>Point 4<br>6175<br>4200<br>1975<br>130.7                                                                                                                                                               | ed on +No.4<br>nod "D"                                        |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted<br/>BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, 7</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,</li> </ul>                                                                                                                                                                                                                 | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>Data for Calculated Maxi<br>Z.<br>ed Soil grams<br>grams<br>16 - 17 grams<br>(lb/ft³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127.5<br>117.7<br>mum Density Den<br>2.9 % re<br>(Method Sele<br>Point 1<br>6050<br>4200<br>1850                                                                                                                                                                                         | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Nev. T108<br>►3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4                                                                                     | 5.0 % retaine<br>%" ⊠ Meth<br>Point 4<br>6175<br>4200<br>1975<br>130.7                                                                                                                                                            | ed on +No.4<br>nod "D"                                        |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, 7</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,<br/>(Line 19 / (100 + % Moist.))1</li> </ul>                                                                                                                                                                                   | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>Data for Calculated Maxi<br><br>ed Soil grams<br>grams<br>16 - 17 grams<br>(lb/ft³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 127.5<br>117.7<br>mum Density Det<br><u>2.9</u> % re<br>(Method Sele<br>Point 1<br>6050<br>4200<br>1850<br>122.5                                                                                                                                                                         | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1<br>118.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Nev. T108<br>+3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4<br>118.4                                                                            | 0.0 % retaine<br>" ⊠ Meth<br>Point 4<br>6175<br>4200<br>1975<br>130.7<br>112.7                                                                                                                                                    | ed on +No.4<br>nod "D"                                        |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted<br/>BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, 7</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,<br/>(Line 19 / (100 + % Moist.))1</li> <li>Note: Mold Volume Factor. F</li> </ul>                                                                                                                                          | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>Data for Calculated Maxi<br><br>ed Soil grams<br>grams<br>16 - 17 grams<br>(lb/ft³)<br>100 (lb/ft³) *<br>F = (1 / Volume)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127.5<br>117.7<br>mum Density Det<br>2.9 % re<br>(Method Sele<br>Point 1<br>6050<br>4200<br>1850<br>122.5<br>111.9<br>Wet De                                                                                                                                                             | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1<br>118.5<br>ensity = (Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Nev. T108<br>+3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4<br>118.4<br>of Compacted S                                                          | 0% retaine<br>" ⊠ Meth<br>Point 4<br>6175<br>4200<br>1975<br>130.7<br>112.7<br>oil / 453.59) x F                                                                                                                                  | ed on +No.4<br>nod "D"<br>Point 5<br>                         |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, 7</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,<br/>(Line 19 / (100 + % Moist.))1</li> <li>Note: Mold Volume Factor, For Method "A" (4" Mo</li> </ul>                                                                                                                          | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>00<br>Data for Calculated Maxi<br><br>ed Soil grams<br>grams<br>16 - 17 grams<br>(lb/ft³)<br>100 (lb/ft³) *<br>F = (1 / Volume)<br>Id) use <b>30.03</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127.5<br>117.7<br>mum Density Det<br>2.9 % re<br>(Method Sele<br>Point 1<br>6050<br>4200<br>1850<br>122.5<br>111.9<br>Wet De<br>Dry De                                                                                                                                                   | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1<br>118.5<br>ensity = (Wt.<br>nsity = (Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Nev. T108<br>+3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4<br>118.4<br>of Compacted S<br>Density / (100 +                                      | 0.0 % retaine<br>% retaine<br>% Meth<br>Point 4<br>6175<br>4200<br>1975<br>130.7<br>130.7<br>112.7<br>oil / 453.59) x F<br>% Moisture)) x                                                                                         | ed on +No.4<br>nod "D"<br>Point 5<br>                         |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted<br/>BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, 7</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,<br/>(Line 19 / (100 + % Moist.))1</li> <li>Note: Mold Volume Factor, F<br/>For Method "A" (4" Mo<br/>For Method "D" (6" Mo</li> </ul>                                                                                      | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>00<br>Data for Calculated Maxi<br><br>ed Soil grams<br>grams<br>16 - 17 grams<br>(lb/ft³)<br>100 (lb/ft³) *<br>F = (1 / Volume)<br>Id) use <b>30.03</b><br>Id) use <b>13.33</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 127.5<br>117.7<br>mum Density Det<br><u>2.9</u> % re<br>(Method Sele<br>Point 1<br>6050<br>4200<br>1850<br>122.5<br>111.9<br>Wet De<br>Dry De                                                                                                                                            | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1<br>118.5<br>misity = (Wt.<br>nsity = (Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Nev. T108<br>+3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4<br>118.4<br>of Compacted S<br>Density / (100 +                                      | 0.0 % retaine<br>% retaine<br>% Meth<br>Point 4<br>6175<br>4200<br>1975<br>130.7<br>112.7<br>0il / 453.59) x F<br>% Moisture)) x                                                                                                  | ed on +No.4<br>nod "D"                                        |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, 7</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,<br/>(Line 19 / (100 + % Moist.))1</li> <li>Note: Mold Volume Factor, F<br/>For Method "A" (4" Mo<br/>For Method "D" (6" Mo</li> </ul>                                                                                          | $Mg/m^{3} (b/ft^{3})$ $Mg/m^{3} (b/ft^{3})$ $Mg/m^{3} (b/ft^{3})$ $Mg/m^{3} (b/ft^{3})$ $Mg/m^{3} (b/ft^{3})$ $Z.$ $Gata for Calculated Maxies Grams Grams Grams Grams (Ib/ft^{3}) (Ib/ft^{3}) = (1 / Volume) (Id) use 30.03 (Id) use 13.33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 127.5<br>117.7<br>mum Density Det<br><u>2.9</u> % re<br>(Method Sele<br>Point 1<br>6050<br>4200<br>1850<br>122.5<br>111.9<br>Wet De<br>Dry De                                                                                                                                            | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1<br>118.5<br>unsity = (Wt.<br>nsity = (Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Nev. T108<br>+3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4<br>118.4<br>of Compacted S<br>Density / (100 +                                      | 0.0 % retaine<br>" ⊠ Meth<br>Point 4<br>6175<br>4200<br>1975<br>130.7<br>112.7<br>oil / 453.59) x F<br>% Moisture)) x                                                                                                             | ed on +No.4<br>nod "D"<br>Point 5<br>                         |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, 6</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,<br/>(Line 19 / (100 + % Moist.))1</li> <li>Note: Mold Volume Factor, F<br/>For Method "A" (4" Mo<br/>For Method "D" (6" Mo</li> </ul>                                                                                          | $Mg/m^{3} (b/ft^{3})$ $Mg/m^{3} (b/ft^{3})$ $Mg/m^{3} (b/ft^{3})$ $Mg/m^{3} (b/ft^{3})$ $Mg/m^{3} (b/ft^{3})$ $Mg/m^{3} (b/ft^{3})$ $T = (1 / Volume)$ $Mg/m^{3} (b/ft^{3})$ $M$                      | 127.5<br>117.7<br>mum Density Def<br>2.9 % re<br>(Method Sele<br>Point 1<br>6050<br>4200<br>1850<br>122.5<br>111.9<br>Wet De<br>Dry De<br>2 or T108 (Micror                                                                                                                              | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1<br>118.5<br>msity = (Wt.<br>nsity = (Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Nev. T108<br>+3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4<br>118.4<br>of Compacted S<br>Density / (100 +                                      | 0.0 % retaine<br>" ⊠ Meth<br>Point 4<br>6175<br>4200<br>1975<br>130.7<br>112.7<br>oil / 453.59) x F<br>% Moisture)) x                                                                                                             | ed on +No.4<br>nod "D"<br>Point 5<br>                         |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, 5</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,<br/>(Line 19 / (100 + % Moist.))1</li> <li>Note: Mold Volume Factor, F<br/>For Method "A" (4" Mo<br/>For Method "D" (6" Mo</li> </ul>                            | $Mg/m^{3} 	begin{tabular}{l}{l} & Mg/m^{3} 	begin{tabular}{l} & Mg/m^{3} 	begin{tabular}{$                      | 127.5<br>117.7<br>mum Density Def<br>2.9 % re<br>(Method Sele<br>Point 1<br>6050<br>4200<br>1850<br>122.5<br>111.9<br>Wet De<br>Dry De<br>2 or T108 (Micror<br>Point 1                                                                                                                   | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1<br>118.5<br>ansity = (Wt.<br>nsity = (Wt.<br>nsity = (Wt.<br>nsity = (Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Nev. T108<br>+3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4<br>118.4<br>of Compacted S<br>Density / (100 +<br>Point 3                           | 0.0 % retaine<br>" ⊠ Meth<br>Point 4<br>6175<br>4200<br>1975<br>130.7<br>112.7<br>0il / 453.59) x F<br>% Moisture)) x<br>Point 4                                                                                                  | ed on +No.4<br>hod "D"<br>Point 5<br>Factor<br>100<br>Point 5 |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted<br/>BB. 17. Wt. of Mold + Compacted<br/>BB. 17. Wt. of Mold<br/>CC. 18. Wt. of Compacted Soil, 7</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,<br/>(Line 19 / (100 + % Moist.))1</li> <li>Note: Mold Volume Factor, F<br/>For Method "A" (4" Mo<br/>For Method "D" (6" Mo</li> <li>I</li> <li>FF. 21. Wet Wt.</li> </ul>                   | $Mg/m^{3} for ffa Mg/m^{3} for ffa Mg/m^{3} for ffa Mg/m^{3} for ffa Mg/m^{3} for fa Mg/m^{3}$                      | 127.5           117.7           mum Density Det           2.9 % re           (Method Sele           Point 1           6050           4200           1850           122.5           111.9           Wet De           Dry De           2 or T108 (Microw           Point 1           430.5 | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1<br>118.5<br>ensity = (Wt.<br>nsity = (Wt.<br>nsity = (Wt.<br>nsity = (Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Nev. T108<br>+3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4<br>118.4<br>of Compacted S<br>Density / (100 +<br>Point 3<br>503.5                  | 2.0 % retaine<br>" ⊠ Meth<br>Point 4<br>6175<br>4200<br>1975<br>130.7<br>112.7<br>0il / 453.59) x F<br>% Moisture)) x<br>Point 4<br>457.9                                                                                         | ed on +No.4<br>hod "D"<br>Point 5<br>Factor<br>100<br>Point 5 |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, 7</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,<br/>(Line 19 / (100 + % Moist.))1</li> <li>Note: Mold Volume Factor, F<br/>For Method "A" (4" Mo<br/>For Method "D" (6" Mo</li> <li>FF. 21. Wet Wt.</li> <li>GG. 22. Dry Wt.</li> </ul>                                        | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>Data for Calculated Maxi<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 127.5         117.7         mum Density Det         2.9         % re         (Method Sele         Point 1         6050         4200         1850         122.5         111.9         Wet De         Dry De         2 or T108 (Microw         Point 1         430.5         393.2         | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1<br>118.5<br>nsity = (Wt.<br>nsity = (Wt.<br>nsit | n Nev. T108<br>+3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4<br>118.4<br>of Compacted S<br>Density / (100 +<br>Point 3<br>503.5<br>443.5         | 0.0       % retaine         " ⊠ Meth         Point 4         6175         4200         1975         130.7         112.7         oil / 453.59) x F         % Moisture)) x         Point 4         457.9         394.9              | ed on +No.4<br>nod "D"<br>Point 5<br>Factor<br>100<br>Point 5 |
| <ul> <li>U. 13. Field Wet Density, 8 / 7</li> <li>V. 14. Field Dry Density,<br/>[13 / (100 + % Moisture)]10</li> <li>W. Total Sample Wt. <u>1205</u></li> <li>X. Wt. of + 3/4" <u>35</u></li> <li>Y. Wt. of + No. 4 <u>181</u></li> <li>AA. 16. Wt. of Mold + Compacted BB. 17. Wt. of Mold</li> <li>CC. 18. Wt. of Compacted Soil, 6</li> <li>DD. 19. Wet Density,<br/>(Line 18 / 453.59) x Factor</li> <li>EE. 20. Dry Density,<br/>(Line 19 / (100 + % Moist.))1</li> <li>Note: Mold Volume Factor, F<br/>For Method "A" (4" Mo<br/>For Method "D" (6" Mo</li> <li>FF. 21. Wet Wt.</li> <li>GG. 22. Dry Wt.</li> <li>HH. 23. Wt. of Water, 21 - 22</li> </ul> | Mg/m³ (b/ff³)<br>Mg/m³ (b/ff³)<br>Data for Calculated Maxi<br>Z.<br>ed Soil grams<br>grams<br>16 - 17 grams<br>(lb/ft³)<br>100 (lb/ft³) *<br>F = (1 / Volume)<br>Id) use 30.03<br>Id) use 13.33<br>Moisture Content, Nev. T11<br>grams<br>grams<br>grams<br>grams<br>grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 127.5           117.7           mum Density Det                                                                                                                                                                                                                                          | terminatio<br>etained on -<br>ected)<br>Point 2<br>6195<br>4200<br>1995<br>132.1<br>118.5<br>nsity = (Wt.<br>nsity = (Wt.<br>nsit | n Nev. T108<br>+3/4",<br>Method "A<br>Point 3<br>6230<br>4200<br>2030<br>134.4<br>118.4<br>of Compacted S<br>Density / (100 +<br>Point 3<br>503.5<br>443.5<br>60.0 | 0.0       % retaine         " ⊠ Meth         Point 4         6175         4200         1975         130.7         112.7         oil / 453.59) x F         % Moisture)) x         Point 4         457.9         394.9         63.0 | ed on +No.4<br>nod "D"<br>Point 5<br>Factor<br>100<br>Point 5 |



[(1-P) x 2] + [P x "As Plotted" Opt. Moisture]

Note: For Metric, lb/ft<sup>3</sup> / 62.4 = Mg/m<sup>3</sup>

Determine Decimal Equiv. of % ± No.4 or ± 3/4" (Round to nearest 0.001)

| (                                    |       |
|--------------------------------------|-------|
| XX. 37. Sieve Test No.               | T-1-1 |
| YY. 38. Total Sample Wt.             | 1205  |
| <b>ZZ.</b> 39. Wt. of No.4 or + 3/4" | 181   |
| AAA. 40. Dec. Equiv. (1-P), 39 / 38  | 0.150 |
| BBB. 41. Wt. of No.4 r - 3/4"        | 1024  |
| CCC. 42. Dec. Equiv. (P), 41 / 38    | 0.850 |



% Moisture

### MOISTURE-DENSITY DETERMINATION, COMPACTION REPORT

| Α-  | Contract Number for the material being tested, found in the contract plans or special provisions (ex. 3925)                                                                                                                                                                                                                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Date the sample was taken or test was performed (ex. 4/8/2013)                                                                                                                                                                                                                                                                  |
| C - | Test Hole No., actual test number for this particular test. (ex. 1-SB-90). 1 is the number of tests ran on that material, SB represents the material being tested (refer to the Construction Manual for coding) and 90 is the minimum percent compaction required (Standard Specifications or Special Provisions) (ex. 1-SB-90) |
| D - | Station, approximate sample location, found in the Contract Plans or on the jobsite survey stationing (ex. "X" 7+22)                                                                                                                                                                                                            |
| Ε-  | Distance to Centerline, distance right or left of centerline that the compaction test was performed (ex. 2' RT.)                                                                                                                                                                                                                |
| F - | Embankment Depth, depth at which the compaction test was performed (ex. 2' from finish grade) (Depth may also be found on the slope stakes or by using the elevation markers)                                                                                                                                                   |
| G - | Type of Material as specified and found in the contract plans or special provisions (ex. Granular Backfill)                                                                                                                                                                                                                     |
| Н-  | Compaction Equipment, type of equipment used to compact the material (ex. Vibratory Roller)                                                                                                                                                                                                                                     |
| I - | Initial Weight of Sand in lbs or kg used to fill the test hole and cone (ex. 50.0)<br><b>NOTE:</b> Minimum of 50 lb needed                                                                                                                                                                                                      |
| J - | Wt. of Residue, remaining in the bucket after the test hole and sand cone are filled (ex. 18.1)                                                                                                                                                                                                                                 |
| К-  | Line I (Initial Weight of Sand) - Line J (Weight of Residue) = Wt. of Sand Used (ex. 50.0 - 18.1 = 31.9)                                                                                                                                                                                                                        |
| L - | Sand Density, established per Test Method Nev. T102 during sand calibration,<br>and reported on NDOT form 040-068<br><b>NOTE:</b> Sand densities may change each time the sand is calibrated (ex. 84.6)                                                                                                                         |

### MOISTURE-DENSITY DETERMINATION, COMPACTION REPORT

| M - | Line K (Weight of Sand Used) / Line L (Sand Density) = Vol. Hole + Cone + Plate (ex. 31.9 / 84.6 = 0.377)                                                                       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N - | Vol. of Cone + Plate, is established per Test Method Nev. T102 (ex. 0.199)                                                                                                      |
| 0 - | Line M (Vol. Hole + Cone + Plate) - Line N (Vol. of Cone + Plate) = Vol. of Hole<br>(ex. 0.377 - 0.199 = 0.178)                                                                 |
|     | <b>NOTE:</b> If the test hole is less than .0042 m <sup>3</sup> (Metric) or 0.15 ft <sup>3</sup> (English), the test is invalid and another test shall be performed immediately |
| Ρ-  | Total Excavated Wet Wt entire sample excavated from the test hole per Test Method Nev. T102 (ex. 22.7)                                                                          |
| Q - | Wet Wt., Representative split of the entire sample excavated from the test hole per Test Method Nev. T102 (ex. 2587)                                                            |
| R - | Dry Wt., sample after all moisture has been removed, per Test Method Nev. T112 (ex. 2389)                                                                                       |
| S - | Line Q (Wet Weight) - Line R (Dry Weight) = Wt. of Water<br>(ex. 2587 - 2389 = 198)                                                                                             |
| т.  | Line S (Weight of Water) / Line R (Dry Weight) x 100 = % Moisture<br>(ex. (198 / 2389) X 100 = 8.3)                                                                             |
| U - | Line P (Total Excavated Wet Weight) / Line O (Vol. Of Hole) = Field Wet Density (ex. 22.7 / 0.178 = 127.5)                                                                      |
| V - | [Line U (Field Wet Density) / (100 + Line T (% Moisture))] x 100 = Field Dry Density<br>(ex. [127.5 / (100 + 8.3)] X 100 = 117.7)                                               |
| W - | Total Sample Wt., Representative sample as obtained per Test Method Nev. T200 (ex. 1205)                                                                                        |

#### **MOISTURE-DENSITY DETERMINATION, COMPACTION REPORT**

#### LINE EXPLANATION OF NEEDED MATERIAL

X - Wt. of +3/4", weight of material retained on the 3/4" sieve obtained per Test Method Nev. T206 (ex. 35)

**NOTE:** Weight retained shall include not only the 3/4" sieve, but any sieves greater than 3/4". For materials without sieve specifications such as borrow or original ground, these weights may be obtained by use of stacked No. 4 and 3/4" barrel sieves. Values indicated will be used in the determination of which Proctor Method to utilize

Y - Wt. of +No. 4, weight of material retained on the No. 4 sieve obtained per Test Method Nev. T206 (ex. 181)

> **NOTE:** Weight retained shall include not only the No. 4 sieve, but any sieves greater than No. 4, including weights on the 3/4" sieve and greater. For materials without sieve specifications such as borrow or original ground, these weights may be obtained by use of stacked No. 4 and 3/4" barrel sieves. Values indicated will be used in the determination of which Proctor Method to utilize

 Line X (Wt. of +3/4") / Line W (Total Sample Wt.) = % Retained on +3/4" (ex. (35 / 1205) x 100 = 2.9)
 NOTE: 2.9 < 30 , Method "D" criteria met</li>

> Line Y (Wt. of +No. 4) / Line W (Total Sample Wt.) = % Retained on No. 4 (ex. (181 / 1205) x 100 = 15.0) **NOTE:** 15.0 < 40 , Method "A" criteria met

**NOTE:** When both criteria are met for determining "Method A" and "Method D", "Method A" shall be used

- AA -Wt. of Mold + Compacted Soil, determined weight of trimmed and compacted specimen<br/>with collar extension removed and recorded to the nearest 1 g. (ex. 6050 for Point 1)
- **BB** Wt. of Mold, determined weight of clean and dry mold. Include the base plate, exclude the collar extension and record to the nearest 1 g. (ex. 4200 for Point 1)
- CC Line AA (Wt. of Mold + Compacted Soil) Line BB = Wt. of Compacted Soil (Wt. of Mold) (ex. 6050 - 4200 = 1850 for Point 1)
- DD Line CC (Wt. of Compacted Soil) / 453.59 (grams to lbs) x 30.03 = Wet Density (Vol. of Method "A" mold) (ex. (1850 / 453.59) x 30.03 = 122.5 for Point 1)

### MOISTURE-DENSITY DETERMINATION, COMPACTION REPORT

| EE - | Line DD (Wet Density) / ((100 + Line II ( % Moisture)) x 100 = Dry Density<br>(ex. (122.5 / (100 + 9.5)) x 100 = 111.9 for Point 1)                                                                                                                                          |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FF - | Wet Wt., wet weight of representative moisture sample obtained from extruded specimen (ex. 430.5 for Point 1)                                                                                                                                                                |
| GG - | Dry Wt., dry weight of representative moisture sample obtained from extruded specimen (ex. 393.2 for Point 1)                                                                                                                                                                |
| HH - | Line FF (Wet Weight) - Line GG (Dry Weight) = Wt. of Water<br>(ex. 430.5 - 393.2 = 37.3 for Point 1)                                                                                                                                                                         |
| II - | Line HH (Weight of Water) / Line GG (Dry Weight) x 100 = % Moisture<br>(ex. (37.3 / 393.2) X 100 = 9.5 for Point 1)                                                                                                                                                          |
| JJ - | Wt. of Aggregate = A, (+No. 4 for Method "A") or (+3/4" for Method "D") sample shall be 500 g per Test Method Nev. T104                                                                                                                                                      |
| KK - | Wt. of Pycnometer = p, clean, dry and with lid (ex. 449)                                                                                                                                                                                                                     |
| LL - | (Line LL (Weight of Pyc. + Water) - Line KK = (Wt. of Pyc. + Water) - p = M<br>(Wt. of Pycnometer) = M (ex. 1454 - 449, M = 1005)                                                                                                                                            |
| MM - | (Wt. of Pyc. + Water + Aggregate) - $(p + A)$ ) = M <sub>1</sub> ,<br>[(Line MM (Wt. of Pyc. + Water + Agg.)] - [Line KK (Wt. of Pyc.) + Line JJ (Wt. of Agg.)] = M <sub>1</sub> (ex. 1754 - (500 + 449), M <sub>1</sub> = 805)                                              |
| NN - | Wt. of Water Recovered from Pyc. = $M_{2,}$ (ex. 793)                                                                                                                                                                                                                        |
| 00 - | If $M_1 - M_2 \le 14$ g, use formula G = [A / (M - M <sub>1</sub> )] x 62.4<br>(ex. [500 / (1005 - 805)] x 62.4 = 156.0)                                                                                                                                                     |
| PP - | If $M_1 - M_2 > 14$ g, use formula G = A / [(M - M <sub>1</sub> ) + 0.5 (M <sub>1</sub> - M <sub>2</sub> - 14)] x 62.4                                                                                                                                                       |
| QQ - | Decimal Equiv. of % +No. 4 or +3/4", (1-P),<br>If utilizing Method "A", decimal equiv of +No. 4 is to be indicated<br>If utilizing Method "D", decimal equiv of +3/4" is to be indicated<br>Value is determined mathmatically on Line AAA (Dec. Equiv. (1-P))<br>(ex. 0.150) |

#### **MOISTURE-DENSITY DETERMINATION, COMPACTION REPORT**

| RR-                | Decimal Equiv. of % -No. 4 or -3/4", (P),<br>If utilizing Method "A", decimal equiv of -No. 4 is to be indicated<br>If utilizing Method "D", decimal equiv of -3/4" is to be indicated<br>Value is determined mathmatically on Line CCC (Dec. Equiv. (P))<br>(ex. 0.850)                                                                                                                                   |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS-                | Maximum Dry Density = d, value is indicated on Line VV (As Plotted, Max. Dry Density) (ex. 119.2)                                                                                                                                                                                                                                                                                                          |
| π-                 | Corrected Max. Dry Density, D = dG / [(d)(1-P) + (G)(P)]<br>(ex. (119.2 x 156.0) / [(119.2 x 0.150) + (156.0 x 0.850)] = 123.6)                                                                                                                                                                                                                                                                            |
|                    | <b>NOTE:</b> Aggregate corrections only apply to Method "A" if aggregate particles exceed 5% by mass retained on the No. 4 sieve or Method "D" if particles exceed 5% by mass retained on the 3/4" sieve.                                                                                                                                                                                                  |
| UU-                | Line V (Field Dry Density) / Line TT (Corrected Max. Dry Density) = % Compaction x 100 (ex. (117.7 / 123.6) x 100 = 95.2)                                                                                                                                                                                                                                                                                  |
|                    | <ul> <li>NOTE: If no oversized aggregate correction is required at the time the Proctor Curve is established, calculate as follows:</li> <li>% Compaction, Line V (Field Dry Density) / Line VV (As Plotted Maximum Dry Density) x 100 (ex. (117.7 / 119.2) x 100 = 95.2)</li> </ul>                                                                                                                       |
| VV &<br>PLOT CHART | As Plotted Max. Dry Density and Optimum Moisture, plot Line EE (Dry Density) and its corresponding Line II (% Moisture)<br>The oven-dry densities of the soils shall be plotted as ordinates (y-axis) and corresponding moisture content as abscissa (x-axis) (ex. 119.2 @ 12.5%)                                                                                                                          |
| WW-                | Corrected Max. Density and Opt. Moisture Utilizing the Coarse Aggregate Correction,<br>Line TT (Corrected Max. Dry Density) = 123.6<br><b>Corrected Optimum Moisture Calculation:</b><br>[(Line QQ x 2) + (Line RR x As Plotted Opt. Moisture)]<br>[(0.150 x 2) + (0.850 x 12.5)] = 10.9 (ex. 123.6 @ 10.9%)<br><b>NOTE:</b> If its determined that no oversized aggregate correction is to be applied per |
| vv                 | Test Method Nev. T108, no further action may be necessary                                                                                                                                                                                                                                                                                                                                                  |
| λλ-                | Sieve Lest No., sieve test number from the corresponding sieve (ex. 1-1-1 T = Acceptance Test, 1 = first acceptance test of the day, 1 = number of days material has been tested) (ex. T-1-1)                                                                                                                                                                                                              |
|                    | <b>NOTE:</b> In instances such as borrow or original ground in which weights where obtained from barrel sieves, indicate N/A                                                                                                                                                                                                                                                                               |

# MOISTURE-DENSITY DETERMINATION, COMPACTION REPORT

| YY-   | Total Sample Wt., Representative sample as obtained per Test Method Nev. T200 from the actual sieve test (ex. 1205)                                                                                                                         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <b>NOTE:</b> In instances such as borrow or original ground, these weights may be obtained by use of barrel sieves                                                                                                                          |
| ZZ-   | Wt. of +No. 4 or +3/4", weight of material retained on the No. 4 sieve obtained per Test Method Nev. T206. (ex. 181)                                                                                                                        |
|       | <b>NOTE:</b> Weight retained shall include not only the No. 4 or 3/4" sieve, but any sieves greater than. If a sieve analysis is performed in conjunction with the Proctor Curve, "retained weights" may be obtained from NDOT form 040-013 |
| AAA-  | Line ZZ / Line YY = Dec. Equiv. of % +No. 4 or +3/4", (1-P)<br>(ex. (181 / 1205 = 0.150))<br>If utilizing Method "A", decimal equiv of +No. 4 is to be indicated                                                                            |
| BBB-  | Wt. of -No. 4 or -3/4", weight to include any sieves less than No. 4 or 3/4".<br>Test Method Nev. T206. (ex. 1024)                                                                                                                          |
|       | <b>NOTE:</b> If a sieve analysis is performed in conjunction with the Proctor Curve, weights may be obtained from NDOT form 040-013.                                                                                                        |
| CCC-  | Line BBB / Line YY = Dec. Equiv. of % -No. 4 or -3/4", (P)<br>(ex. (1024 / 1205 = 0.850))<br>If utilizing Method "A", decimal equiv of -No. 4 is to be indicated<br>If utilizing Method "D", decimal equiv of -3/4" is to be indicated      |
| DDD-  | Remarks, anything pertanent that should be documented (ex. Test performed on corrugated matel pipe backfill met specs. Inspector and R.E. notified)                                                                                         |
| EEE-  | Tested By, full printed name of the tester or testers who completed the test (ex. Leonard Cooper)                                                                                                                                           |
| FFF - | Resident Engineer, RE or ARE signature verifiying the accuracy of the reported results (ex. Howard Koothrappali)                                                                                                                            |

## NEVADA DEPARTMENT OF TRANSPORTATION **REPORT OF PROFILOGRAPH TEST**

| Report No:         | Contract No: | Contractor:       |             |  |  |
|--------------------|--------------|-------------------|-------------|--|--|
| Lane Description:  |              | Type of Material: |             |  |  |
| Date of Test:      |              | Smoothness Type:  |             |  |  |
| Date of Placement: |              | Lot No:           | Pay Factor: |  |  |

| Station                                                                  | to       | Station  | Section Length mm or (in.) |                     |                      | High Point Location(s)                 |                      |             |
|--------------------------------------------------------------------------|----------|----------|----------------------------|---------------------|----------------------|----------------------------------------|----------------------|-------------|
| (Include                                                                 | e Roadwa | ay Line) | km or (mi)                 | Left<br>Wheel Track | Right<br>Wheel Tracl | K                                      | Thgit i onit         | Location(3) |
|                                                                          | to       |          |                            |                     |                      |                                        |                      |             |
|                                                                          | to       |          |                            |                     |                      |                                        |                      |             |
|                                                                          | to       |          |                            |                     |                      |                                        |                      |             |
|                                                                          | to       |          |                            |                     |                      |                                        |                      |             |
|                                                                          | to       |          |                            |                     |                      |                                        |                      |             |
|                                                                          | to       |          |                            |                     |                      |                                        |                      |             |
| to                                                                       |          |          |                            |                     |                      |                                        |                      |             |
| to                                                                       |          |          |                            |                     |                      |                                        |                      |             |
|                                                                          | to       |          |                            |                     |                      |                                        |                      |             |
|                                                                          | to       |          |                            |                     |                      |                                        |                      |             |
| TOTALS:                                                                  |          |          |                            |                     | Ave<br>whe           | erage total of the<br>eel tracks (PCCI | e two<br>P):         |             |
| Profile Index (P.I.):                                                    |          |          | Checked By:                |                     |                      | PROFILE II                             | NDEX                 |             |
| Average P.I. (PCCP):                                                     |          |          |                            | Smooth<br>Typ       | iness<br>be          | mm/km (in./mi)                         | mm/0.1km (in./0.1mi) |             |
| Metric: P.I. = 1 km ÷ total section length in km X total measure         |          |          | ment in mm                 | Тур                 | A                    | 80 (5)                                 | 8 (0.5)              |             |
| English: P.I. = 1 mi ÷ total section length in mi X total measurer       |          |          | ment in in.                | Тур                 | eΒ                   | 110 (7)                                | 11 (0.7)             |             |
| Note: For one shift, the reports shall be numbered as follows: T-1-1, T- |          |          | 2-1, T-3-1                 | Type                | ЭC                   | 160 (10)                               | 16 (1.0)             |             |

Reprofiled sections shall be numbered as follows: T-1-1R1, T-2-1R1, T-3-1R1...

(Signature)

Significant Figures: 0.001 km, 1.0 mm, 0.001 mi, 0.01 in.

Remarks:

Resident Engineer:

Inspector: \_\_\_\_\_ Operator: \_\_\_\_\_

NDOT 040-073

Rev. 6/08

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

# NEVADA DEPARTMENT OF TRANSPORTATION

#### **REPORT OF PROFILOGRAPH TEST**

A. Report No: T-1-1 B. Contract No: 3925

D. Lane Description: Eastbound No. 1 Lane

F. Date of Test: 7/12/2010

H. Date of Placement: 7/12/2010

**C.** Contractor: **Granite Construction Co.** 

**E.** Type of Material: **PBS Type 2C** 

G. Smoothness Type: A

I. Lot No: J. Pay Factor:

| K. Station                                                                                                                                          | to<br>Road                                                             | Station<br>way Line) | L. Section Length | mm o<br><b>M.</b> Left    | nm or (in.)<br>t <b>N.</b> Right |                                                        | <b>O.</b> High Point Location(s)                                                                                 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------|-------------------|---------------------------|----------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                     | louu                                                                   |                      |                   | Wheel Track Wheel Tr      |                                  | el Track                                               |                                                                                                                  |  |
| "S" 553 + 00                                                                                                                                        | to                                                                     | "S" 558 + 28         | 0.100             |                           | C                                | 0.12                                                   |                                                                                                                  |  |
| "S" 558 + 28                                                                                                                                        | to                                                                     | "S" 563 + 56         | 0.100             |                           | 0.00                             |                                                        |                                                                                                                  |  |
| "S" 563 + 56                                                                                                                                        | to                                                                     | "S" 568 + 84         | 0.100             |                           | C                                | ).40                                                   |                                                                                                                  |  |
| "S" 568 + 84                                                                                                                                        | to                                                                     | "S" 574 + 12         | 0.100             |                           | C                                | 0.00                                                   |                                                                                                                  |  |
| "S" 574 + 12                                                                                                                                        | to                                                                     | "S" 579 + 40         | 0.100             |                           | C                                | 0.00                                                   |                                                                                                                  |  |
| "S" 579 + 40                                                                                                                                        | to                                                                     | "S" 584 + 68         | 0.100             |                           | 0.64                             |                                                        | Fails to meet in./0.1mi spec.<br>MG @ 579 + 51                                                                   |  |
| "S" 584 + 68                                                                                                                                        | to                                                                     | "S" 589 + 96         | 0.100             |                           | 0.18                             |                                                        |                                                                                                                  |  |
| "S" 589 + 96                                                                                                                                        | to                                                                     | "S" 595 + 24         | 0.100             |                           | C                                | 0.00                                                   |                                                                                                                  |  |
| "S" 595 + 24                                                                                                                                        | to                                                                     | "S" 600 + 52         | 0.100             |                           | C                                | 0.00                                                   |                                                                                                                  |  |
| "S" 600 + 52                                                                                                                                        | to                                                                     | "S" 603 + 00         | 0.047             |                           | C                                | ).05                                                   | (0.1/0.047)x0.05 = 0.11                                                                                          |  |
| P. T                                                                                                                                                | ΌΤΑ                                                                    | LS:                  | 0.947             |                           | 1                                | 1.39                                                   | <b>Q.</b> Average total of the two wheel tracks (PCCP):                                                          |  |
| <b>R.</b> Profile Index (P.I.):                                                                                                                     |                                                                        | 1.468                | T. Checked By:    |                           |                                  | PROFILE INDEX                                          |                                                                                                                  |  |
| S. Average P.I. (PCCP):                                                                                                                             |                                                                        |                      | TM Smoothr        |                           | Smoothn<br>Type                  | mm/km (n./mi) mm/0.1km(in./0.1mi)                      |                                                                                                                  |  |
| Metric: P.I. = 1 km ÷ total section length in km X total measure                                                                                    |                                                                        |                      | ment in mm        |                           | Type A 80 ((5) 8                 |                                                        |                                                                                                                  |  |
| English: P.I. = $1 \text{ n}$                                                                                                                       | English: P.I. = 1 ml $\div$ total section length in ml X total measure |                      |                   | nent in in.               |                                  | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |                                                                                                                  |  |
| English: P.I. = 1 mi $\div$ total section length in mi X total measurem<br>Note: For one shift, the reports shall be numbered as follows: T-1-1, T- |                                                                        |                      |                   | ment in in.<br>2-1, T-3-1 |                                  | Туре<br>Туре<br>Туре                                   | B         110         (7)         11         (0.7)           C         160         (10)         16         (1.0) |  |

Reprofiled sections shall be numbered as follows: T-1-1R1, T-2-1R1, T-3-1R1...

Significant Figures: 0.001 km, 1.0 mm, 0.001 mi, 0.01 in.

**U.** Remarks: Profile Index = (1 / 0.947) x 1.39 = 1.468

Equipment was calibrated and the parameters were checked on 7-12-2010. See attachment for parameter settings.

V. Resident Engineer:

Billy James

**W.** Inspector:

**Ryan James** 

**X.** Operator: **Angie Pineapple** 

(Signature)

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

#### 040-073 Rev. 6/08

#### **REPORT OF PROFILOGRAPH TEST**

| Α-  | Test number for this particular test (EX. T-1-1; T = Test; 1 = First acceptance test of the day; 1 = Number of days the material has been tested)                                                                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                                                                             |
| C - | Name of the Prime Contractor awarded the contract (EX. Granite Construction Co.)                                                                                                                                                                                                        |
| D - | Lane where the test was performed (EX. Eastbound No. 1 Lane)                                                                                                                                                                                                                            |
| Ε-  | Type of material as specified, found in the Contract Plans or Specials Provisions (EX. PBS Type 2C)                                                                                                                                                                                     |
| F - | Date the test was taken (EX. 7/12/2010)                                                                                                                                                                                                                                                 |
| G - | Smoothness Type found in the Special Provisions (EX. A)                                                                                                                                                                                                                                 |
| н-  | Date the material was placed (EX. 7/12/2010)                                                                                                                                                                                                                                            |
| 1-  | Each mile is considered a lot and will be given a number starting with one continuing with consecutive numbering throughout the project (EX. 1) NOTE: This only applies to ride incentive project on Open Grade. See the Special Provisions for this information                        |
| J - | Used on ride incentive projects found in the Special Provisions                                                                                                                                                                                                                         |
| Κ-  | Station to station length should be 528 ft or (0.1 mi) unless profiling a short section (EX. "S" 553 + 00 to "S" 558 + 28) NOTE: A ramp or the last portion of a lane)                                                                                                                  |
| L-  | Length of each station to station section should be 528 ft or (0.1 mi). If it is a short section, it will be less than 528 ft (0.1 mi) (EX. 0.100)                                                                                                                                      |
| M - | Profile for one section 528 ft (0.1mi), per Test Method Nev. T446, check the Special<br>Provisions to make sure you are in the appropriate wheel track (EX. Not using left wheel<br>track) NOTE: Typically right wheel track is used for PBS and right and left wheel track<br>for PCCP |
| N - | Profile for one section 528 ft (0.1 mi), per Test Method Nev. T446, check the Special Provisions to make sure you are in the appropriate wheel track (EX. 0.12)                                                                                                                         |

#### 040-073 Rev. 6/08

#### **REPORT OF PROFILOGRAPH TEST**

| 0 -        | Station at which a high point (must grind) is located within the 528 ft (0.1 mi) section.<br>Counts that are not within specification should be noted. See the Special Provisions for<br>any changes, otherwise use the index on NDOT form 040-073 (EX. Fails to meet in./0.1<br>mi spec. MG @ 579 + 51) |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ρ-         | Sum of all Line L (Section Length) (EX. 0.100 + 0.100 + 0.100 + 0.100 + 0.100 + 0.100 + 0.100 + 0.100 + 0.047 = 0.947)                                                                                                                                                                                   |
|            | Sum of Line M (Left Wheel Track) (EX. N/A)                                                                                                                                                                                                                                                               |
|            | Sum of Line N (Right Wheel Track) (EX. 0.12 + 0.00 + 0.40 + 0.00 + 0.00 + 0.64 + 0.18 + 0.00 + 0.00 + 0.05 = 1.39)                                                                                                                                                                                       |
| Q -        | Average total of the two wheel tracks (PCCP) NOTE: Only used on PCCP                                                                                                                                                                                                                                     |
| R -        | 1.0 / by Line P (Total for Line L (Section Length)) x Line P (Total for Line N (Right Wheel Track)) equals Line R (Profile Index (P.I)) (EX. (1 / 0.947) x 1.39 = 1.468)                                                                                                                                 |
| S -        | 1.0 / by Line P (Total for Line L (Section Length)) x Line Q (Average Total of the Two Wheel Tracks (PCCP)) = Line S (Average P.I. (PCCP))                                                                                                                                                               |
| т-         | Initials of the person who checked to make sure the calculations were performed properly and to ensure that the form was filled out correctly (EX. TM)                                                                                                                                                   |
| U -        | Any remarks that need to be documented for this test (EX. Profile Index = $(1 / 0.947)$ x $1.39 = 1.468$ Equipment was calibrated and the parameters were checked on 7-12-2010, See attachment for parameter settings.) NOTE: Inspector shall be present during the calibration of the profilograph      |
| V -        | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Billy James)                                                                                                                                                                                                       |
| <b>W</b> - | Inspected by, print first and last name of the person who walked with the profilograph or watched the contractor perform Test Method Nev. T446 (EX. Ryan James)                                                                                                                                          |
| X -        | Operated by, print first and last name of the person who ran the profilograph (EX. Angle Pineapple)                                                                                                                                                                                                      |

### NEVADA DEPARTMENT OF TRANSPORTATION

#### **REPORT OF PROFILOGRAPH TEST**

A. Report No: T-1-1R1 B. Contract No: 3925

D. Lane Description: Eastbound No. 1 Lane

**C.** Contractor: **Granite Construction Co.** 

**E.** Type of Material: **PBS Type 2C** 

F. Date of Test: 7/13/2010

H. Date of Placement: 7/12/2010

G. Smoothness Type: A

I. Lot No: J. Pay Factor:

| K. Station                                                                         | to     | Station      | L. Section Length                           | mm or (in.) |                   |                                       | <b>O.</b> High Point Location(s)                            |  |
|------------------------------------------------------------------------------------|--------|--------------|---------------------------------------------|-------------|-------------------|---------------------------------------|-------------------------------------------------------------|--|
| (Include Roadway Line)                                                             |        | km or (mi)   | M. Left N. Right<br>Wheel Track Wheel Track |             | Right<br>el Track |                                       |                                                             |  |
| "S" 579 + 40                                                                       | to     | "S" 584 + 68 | 0.100                                       |             | 0.22              |                                       | High Point was ground out to meet specifications @ 579 + 51 |  |
|                                                                                    | to     |              |                                             |             |                   |                                       |                                                             |  |
|                                                                                    | to     |              |                                             |             |                   |                                       |                                                             |  |
|                                                                                    | to     |              |                                             |             |                   |                                       |                                                             |  |
|                                                                                    | to     |              |                                             |             |                   |                                       |                                                             |  |
|                                                                                    | to     |              |                                             |             |                   |                                       |                                                             |  |
|                                                                                    | to     |              |                                             |             |                   |                                       |                                                             |  |
|                                                                                    | to     |              |                                             |             |                   |                                       |                                                             |  |
|                                                                                    | to     |              |                                             |             |                   |                                       |                                                             |  |
|                                                                                    | to     |              |                                             |             |                   |                                       |                                                             |  |
| P. T                                                                               | ΟΤΑ    | LS:          | 0.947                                       |             | C                 | ).97                                  | <b>Q.</b> Average total of the two wheel tracks (PCCP):     |  |
| <b>R.</b> Profile                                                                  | e Inde | x (P.I.):    | 1.024                                       | T. Checked  | T. Checked By:    |                                       | PROFILE INDEX                                               |  |
| S. Average P.I. (PCCP):                                                            |        |              | тм                                          |             | Smoothn<br>Type   | mess mm/km(m./mi) mm/0.1km (m./0.1mi) |                                                             |  |
| Metric: P.I. = 1 km ÷ total section length in km X total measure                   |        |              | ment in mm                                  |             | Туре              | A 80 (5) 8 (0.5)                      |                                                             |  |
| English: P.I. = 1 mi ÷ total section length in mi X total measurem                 |        |              |                                             | ment in in. |                   | Туре                                  | B 110 (7) 11 (0.7)                                          |  |
| Note: For one shift, the reports shall be numbered as follows: T-1-1, T-2-1, T-3-1 |        |              |                                             |             | Туре              | C 160 (10) 16 (1.0)                   |                                                             |  |

Reprofiled sections shall be numbered as follows: T-1-1R1, T-2-1R1, T-3-1R1...

Significant Figures: 0.001 km, 1.0 mm, 0.001 mi, 0.01 in.

**U.** Remarks: New Profile Index = (1 / 0.947) x 0.97 = 1.024

Equipment was calibrated and the parameters were checked on 7-12-2010. See attachment for parameter settings.

V. Resident Engineer:

Billy James

**W.** Inspector:

**Ryan James** 

**Angie Pineapple** 

NDOT 040-073 Rev. 6/08

**X.** Operator:

#### 040-073 Rev. 6/08

#### **REPORT OF PROFILOGRAPH TEST**

#### LINE EXPLANATION OF NEEDED INFORMATION

| A - | Re-test number for this particular test (EX. T-1-1R1; T = Test; 1 = First acceptance test of the day; 1 = Number of days the material has been tested; R1= Re-test 1)                                                                                                                                                                                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (EX. 3925)                                                                                                                                                                                                                                          |
| C - | Name of the Prime Contractor awarded the contract (EX. Granite Construction Co.)                                                                                                                                                                                                                                                                     |
| D - | Lane where the test was performed (EX. Eastbound No. 1 Lane)                                                                                                                                                                                                                                                                                         |
| Ε-  | Type of material as specified, found in the Contract Plans or Specials Provisions (EX. PBS Type 2C)                                                                                                                                                                                                                                                  |
| F - | Date the re-test was taken (EX. 7/13/2010)                                                                                                                                                                                                                                                                                                           |
| G - | Smoothness Type found in the Standard Specifications or Special Provisions (EX. A)                                                                                                                                                                                                                                                                   |
| н-  | Date the material was placed (EX. 7/12/2010)                                                                                                                                                                                                                                                                                                         |
| I - | Each mile is considered a lot and will be given a number starting with one continuing with consecutive numbering throughout the project (EX. 1) NOTE: This only applies to a ride incentive project. See Special Provisions for additional information                                                                                               |
| J - | Used on ride incentive projects found in the Special Provisions                                                                                                                                                                                                                                                                                      |
| К-  | Station to station length shall equal 528 ft or $(0.1 \text{ mi})$ unless profiling the last section of the day may be less than 528 ft or $(0.1 \text{ mi})$ . Since this is a re-test, this station to station will be the same as the failing section from T-1-1 (EX. "S" 579 + 40 to "S" 584 + 68) NOTE: Place only the re-test(s) on this sheet |
| L - | Length of each section should equal 528 ft or (0.1 mi) unless it is the last section and it may be less than 528 ft (0.1 mi) (EX. 0.100) NOTE: since this a re-test this number                                                                                                                                                                      |

shall match the number from T-1-1)

#### 040-073 Rev. 6/08

#### **REPORT OF PROFILOGRAPH TEST**

| М - | Profile for one section 528 ft (0.1mi), per Test Method Nev. T446, check the Special Provisions to make sure you are in the appropriate wheel track (EX. Not using left wheel track)                                                                                                                          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N - | New profile for one section 528 ft (0.1 mi), determined per Test Method Nev. T446 (EX. 0.22)                                                                                                                                                                                                                  |
| 0 - | Station at which there was a high point and notification if the 528 ft (0.1 mi) is in or out of Specification (EX. High point ground out to meet specifications)                                                                                                                                              |
| Ρ-  | Sum of all Line L (Section of Length) (EX. $0.100 + 0.100 + 0.100 + 0.100 + 0.100 + 0.100 + 0.100 + 0.100 + 0.047 = 0.947$ ) NOTE: Since this is a re-test, this number will be the same as T-1-1R1                                                                                                           |
|     | Total of all Line N (Right Wheel Track) from T-1-1 minus failing section(s) plus the new .1 mi from the re-test = Line P (Total (Line N Right Wheel Track)) (EX. $0.12 + 0.00 + 0.40 + 0.00 + 0.00 + 0.64 + 0.18 + 0.00 + 0.00 + 0.05 = 1.39 - 0.64 = 0.75 + 0.22 = 0.97$ )                                   |
| Q - | Average total of the two wheel tracks (PCCP) NOTE: Only used on PCCP                                                                                                                                                                                                                                          |
| R - | 1.0 / Line P (Total for Line L (Section Length)) x Line P (Total for Line N (Right Wheel Track)) = Line R (Profile Index (P.I)) (EX. $(1 / 0.947) \times 0.97 = 1.024$ )<br>NOTE: Since this is a re-test this is the new Profile Index                                                                       |
| S - | 1.0 / Line P (Total for Line L (Section Length)) x Line Q (Average Total of the two wheel tracks (PCCP)) = Line S (Average P.I. (PCCP))                                                                                                                                                                       |
| т-  | Initials of the person who checked to make sure the calculations were done properly (EX. TM)                                                                                                                                                                                                                  |
| U - | Any remarks that need to be documented for this test (EX. New Profile Index = $(1 / 0.947) \times 0.97 = 1.024$ Equipment was calibrated and the parameters were checked on 7-12-2010. See attachments for parameter settings) NOTE: Profile Index is based off the total .1 mi sections from T-1-1 + T-1-1R1 |
| V - | Resident Engineer or Assistant Resident Engineer signature on that specific crew (EX. Billy James)                                                                                                                                                                                                            |
## 040-073 Rev. 6/08

# **REPORT OF PROFILOGRAPH TEST**

#### LINE EXPLANATION OF NEEDED INFORMATION

- W Inspected by, forst and last name of the person who walked with the profilograph and watched the contractor complete Test Method T446 (EX. Ryan James)
- X Operated by, first and last name of the person who ran the profilograph (EX. Angie Pineapple)

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION CONCRETE FIELD SUMMARY REPORT

| Date:                                     | Contract No.:       |                  |     | Projected Size of Pour: |           |              |                  | Actual:Tester(s):      |          |                         |          |                                                                                    |           |   |      |  |
|-------------------------------------------|---------------------|------------------|-----|-------------------------|-----------|--------------|------------------|------------------------|----------|-------------------------|----------|------------------------------------------------------------------------------------|-----------|---|------|--|
| Producer:                                 |                     |                  |     | Mix                     | Design No | o.:          |                  | Strength:              |          | Con                     | ntracto  | r:                                                                                 |           |   |      |  |
| Item to be Constructed:                   |                     |                  |     |                         | Aggreg    | ate Moisture | es from Tester(s | Tester(s): Agg. Ty     |          |                         | %        | Time                                                                               | Agg. Type | % | Time |  |
| Specifications and : S<br>Design Criteria | Slump               | Air              | u   | J.W                     |           | Ten          | np               |                        |          |                         |          |                                                                                    |           |   |      |  |
| Location/Station                          | Load No<br>Truck No | <u>).</u><br>. Т | ïme | Slu                     | mp/Flow   | % Air        | Unit<br>Weight   | Air Temp<br>Conc. Temp | C<br>Bea | Cylinder/<br>3eam Set # |          | Remarks(when taking cylinders/beams in<br>cylinder size and method of field curing |           |   | lude |  |
|                                           |                     |                  |     | 1st                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 2nd                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 1st                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 2nd                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 1st                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 2nd                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 1st                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 2nd                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 1st                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 2nd                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     | _                |     | 1st                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 2nd                     |           |              |                  |                        |          |                         | -        |                                                                                    |           |   |      |  |
|                                           |                     | _                |     | 1St<br>Orad             |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     | _                |     | ∠nu<br>1.ct             |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 151<br>2nd              |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 1st                     |           |              |                  |                        |          |                         | +        |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 2nd                     |           |              |                  | ļ                      |          |                         | <u> </u> |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 1st                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |
|                                           |                     |                  |     | 2nd                     |           |              |                  |                        |          |                         |          |                                                                                    |           |   |      |  |

Additional Remarks:

Resident Engineer:

NDOT 040-078 Rev. 1/14

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

(Signature)

Sheet \_1 of \_1\_\_\_

#### STATE OF NEVADA DEPARTMENT OF TRANSPORTATION CONCRETE FIELD SUMMARY REPORT

| A. Date: 5/13/2017 B. Contract No.: 3650              |                                         | C.         | C. Projected Size of Pour: 2! |                             |                    | <b>1<sup>3</sup> D.</b> Actual: <b>263 yd<sup>3</sup></b> |                               | E. Tester(s)         |                 | Adam West                                                    |                                                                                       |           |   |      |
|-------------------------------------------------------|-----------------------------------------|------------|-------------------------------|-----------------------------|--------------------|-----------------------------------------------------------|-------------------------------|----------------------|-----------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------|---|------|
| F. Producer: Burt Ward Ready Mix Inc.                 |                                         |            |                               | Mix Desi                    | ign No. <b>F</b> / | A 1372 N                                                  | H. Strength: 4000 psi I. Co   |                      | ontractor:      | Martinson & Leslie Inc.                                      |                                                                                       |           |   |      |
| J. Item to be Constructed:                            | A                                       | butment #2 | 2                             |                             | Aggregate          | e Moistures                                               | from Tester(s): Tim           | е <b>К.</b> /        | Agg. T<br>#67   | ype L. %                                                     | M. Time                                                                               | Agg. Type | % | Time |
| Specifications and<br>Design Criteria <b>N.</b> Slump | N. Slump <u>1" - 4"</u> O. <u>4 - 7</u> |            |                               | 152.6 <del>±</del>          | ± 3lbs_Q. Te       | emp                                                       | 50°F - 90°F                   |                      |                 | 3.4                                                          | 6:45am                                                                                |           |   |      |
| R. Location/Station                                   | S. Load No.<br>T. Truck No.             |            | ۱<br>Slun                     | V.W.<br>Slump/Flow X. % Air |                    | <b>Y.</b> Unit<br>Weight                                  | Z. Air Temp<br>AA. Conc. Temp | BB. Cylin<br>Beam Se | nder CC         |                                                              | Remarks(when taking cylinders/beams include cylinder size and method of field curing) |           |   |      |
| Structure B-1237                                      | #3<br>#4236                             | 8:00am     | 1st<br>2nd                    | 4                           | 5                  | 151.3                                                     | 67°F<br>72°F                  | 19                   | 9               | Set #19 store<br>6" x 12" Cylin                              | et #19 stored in insulated box onsite<br>" x 12" Cylinders                            |           |   |      |
|                                                       |                                         |            | 1st<br>2nd                    |                             |                    |                                                           |                               |                      | -               |                                                              |                                                                                       |           |   |      |
| Structure B-1237                                      | #12<br>#237                             | 10:00am    | 1st<br>2nd                    | 4                           | 5.5                | 151.8                                                     | 73°F<br>74°F                  | 20                   | 9<br>6          | Set #20 stored in insulated box onsite<br>5" x 12" Cylinders |                                                                                       |           |   |      |
|                                                       |                                         |            | 1st<br>2nd                    |                             |                    |                                                           |                               |                      |                 |                                                              |                                                                                       |           |   |      |
| Structure B-1237                                      | #21<br>#4250                            | 11:32am    | 1st<br>2nd                    | 4                           | 5                  | 152.3                                                     | 82°F<br>76°F                  | 21                   | 97 <del>6</del> | Set #21 stored in insulated box onsite<br>6" x 12" Cylinders |                                                                                       |           |   |      |
|                                                       |                                         |            | 1st<br>2nd                    |                             |                    |                                                           |                               |                      | -               |                                                              |                                                                                       |           |   |      |
|                                                       |                                         |            | 1st<br>2nd                    |                             |                    |                                                           |                               |                      | -               |                                                              |                                                                                       |           |   |      |
|                                                       |                                         |            | 1st<br>2nd                    |                             |                    |                                                           |                               |                      | -               |                                                              |                                                                                       |           |   |      |
|                                                       |                                         |            | 1st<br>2nd                    |                             |                    |                                                           |                               |                      | -               |                                                              |                                                                                       |           |   |      |
|                                                       |                                         |            | 1st<br>2nd                    |                             |                    |                                                           |                               |                      |                 |                                                              |                                                                                       |           |   |      |

**DD.** Additional Remarks:

All cylinders made this day include 1/7, 1/14, 3/28 day breaks. All test performed at the placement site.

All test this day met the required tolerances.

NDOT 040-078 Rev. 1/14 EE. Resident Engineer:

**Cesar Romero** 

(Signature)

Distribution: Headquarters Construction, District, Resident Engineer, Contractor

## 040-078 Rev. 01/14

## CONCRETE FIELD SUMMARY REPORT

## LINE EXPLANATION OF NEEDED INFORMATION

| A - | Date that the testing was performed (Ex. 5/13/2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В-  | Contract number for the material being tested, found in the Contract Plans or Special Provisions (Ex. 3625)                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C - | Estimated cubic yards of concrete from field measurements (Ex. 256 yd <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D - | Total cubic yards placed into the structure (Ex. 263 yd <sup>3</sup> )<br><b>NOTE:</b> Actual yards placed could be different than quantities ordered on tickets                                                                                                                                                                                                                                                                                                                                                                                   |
| Ε-  | Print first and last name of the tester(s) who actually tested the fresh concrete (Ex. Adam West)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| F-  | Producer of the concrete mix being placed (Ex. Burt Ward Ready Mix Inc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G - | Mix Design number that the sample represents. Mix Design approved by the Materials Division (Ex. FA 1372 N)                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Η-  | Project specified strength, found in the Standard Specifications,<br>Special Provisions, or Contract Plans and indicated as Mpa if the contract is<br>metric or psi if the contract is english (Ex. 4000 psi)<br><b>NOTE:</b> If the mix design specifies 4000 psi then the specified strength has to meet<br>4000 psi even if the barrier rail only has to meet a 3000 psi                                                                                                                                                                        |
| 1-  | Prime contractor awarded the contract (Ex. Martinson & Leslie Inc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| J - | Item being constructed from the Contract Plans (Ex. Abutment #2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| К-  | Size of the aggregate being used in the approved mix design (Ex. #67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L - | Moisture content result of the aggregate type in percent form per Test Method Nev. T112<br><b>NOTE:</b> Moisture percentages of the aggregates at the batch plant are not required to be<br>performed by the State testers when a Concrete Quality Control Plan is required<br>per Section 501.01.01 of the contract special provisions. If so required in the Specials<br>then it is the duty of the Contractors Quality Control Supervisor to supply the<br>plant inspector (if there is one) with the aggregate moisture percentages. (Ex. 1.2) |
| M - | Time the moisture percentage was completed per Test Method Nev. T112 (EX. 6:45am)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

3

# 040-078 Rev. 01/14

# CONCRETE FIELD SUMMARY REPORT

## LINE EXPLANATION OF NEEDED INFORMATION

| N -        | Slump specification as specified on the approved Mix Design from the Materials Division (Ex. 1" - 4")                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 -        | Air content specification as specified on the approved Mix Design from the Materials Division (Ex. 4 - 7)                                                                                                               |
| Ρ-         | Specified unit weight specification limits of the concrete mix as stated on the approved Mix Design approved by the Materials Division (152.6 $\pm$ 3 lbs)                                                              |
| Q -        | Specification range for the fresh concrete temperature on the approved Mix Design approved by the Materials Division (Ex. 50°F - 90°F)                                                                                  |
| R -        | Approximate sample location found in the Contract Plans or job site survey stakes (Ex. Structure B-1237)                                                                                                                |
| S -        | Consecutive load delivery number as stated on the load ticket (Ex. #3)                                                                                                                                                  |
| т.         | Delivery vehicle number found on the delivery vehicle and batch ticket (Ex. 4236)<br><b>NOTE:</b> Vehicle number and batch ticket vehicle number should match                                                           |
| U -        | Actual time that the sample was taken. (Ex. 8:00am)                                                                                                                                                                     |
| V -        | Slump results from Test Method Nev. T438 performed at time of sampling (Ex. 4) <b>NOTE:</b> If slump test is required on before and after admixtures are added use 1st for the before slump and 2nd for the after slump |
| <b>W</b> - | Slump flow results per Test Method Nev. T417 and T418 use 1st for the first test result and 2nd for the second test result                                                                                              |
| X -        | Air results from Test Method Nev. T431 or T432, performed at time of sampling. (Ex. 5)                                                                                                                                  |
| Υ-         | Unit weight results from Test Method Nev. T435, performed at the time of sampling (Ex. 151.3)                                                                                                                           |
| Z -        | Ambient air temperature (Ex. 67°F)                                                                                                                                                                                      |
| AA -       | Temperature of the concrete, per Test Method Nev. T440. (Ex. 72°F)                                                                                                                                                      |
| BB -       | Successive cylinder/beam set numbers for each mix design (Ex. 19)                                                                                                                                                       |

#### 040-078 Rev. 01/14

## **CONCRETE FIELD SUMMARY REPORT**

#### LINE EXPLANATION OF NEEDED INFORMATION

| CC - | Anything that needs to be documented (Ex. Set #19 stored in insulated box onsite |
|------|----------------------------------------------------------------------------------|
|      | 6" x 12" cylinders)                                                              |

- DD Anything that needs to be documented (Ex. All cylinders made this day include for 1/7, 1/14, 3/28 day breaks. All test performed at the placement site. All test this day meet the required tolerances)
- EE The Resident Engineers or Assistant Resident Engineer signature on that specific crew (Ex. Cesar Romero)