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ABSTRACT 

Computer aided design (CAD) and geographic information systems (GIS) software should make the 

identification of no-passing zones possible with the click of a button. However, most highways were built 

before the use of CAD and GIS software was standard practice in highway design. As a result, the 

identification of highway segments that require no-passing zone markings is often achieved by 

transportation agencies using the two-vehicle method field procedure. The two-vehicle method is 

inherently labor intensive and time-consuming, thus the need for streamlined procedures that can be 

adopted by transportation agencies. 

 The Nevada DOT (NDOT) continuously conducts asset inventory surveys along highways using an 

instrumented data collection vehicle. An indirect result of the process includes an accurate dataset that 

describes the path followed by the data collection vehicle. Software that relies on the vehicle path dataset 

as input to create a model of the corresponding highway geometry was developed. Using the model, the 

software automates the identification of theoretical line of sight obstructions based on input from the 

user. Therefore, the software developed provides NDOT with a decision support system that allows 

identifying highway segments that are candidates for no-passing zones without the need for dedicated 

and labor-intensive field surveys. 
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EXECUTIVE SUMMARY 

No-passing zones markings on a highway segment communicate to drivers that there is not enough clear 

sight distance available to safely complete a passing maneuver that requires entering the opposing lane 

of traffic, overtaking a leading vehicle, and rejoining the initial lane without aggressively cutting off the 

passed vehicle. Computer aided design (CAD) and geographic information systems (GIS) software should 

make the identification of no-passing zones possible with the click of a button. However, most highways 

part of the existing transportation network were built before the use of CAD and GIS software in highway 

design was standard practice. As a result, detailed geometric data about existing highways is not always 

readily available to allow automating the identification of segments that warrant a no-passing zone. 

 As a result of the limited data available, a standard practice used to identify highway segments 

that need a no-passing zone still involves the use of field-based procedures that are labor-intensive in 

nature. A common procedure used, known as the two-vehicle method, requires two vehicles to be driven 

along a highway separated by a required sight distance determined by the design speed of the segment 

under analysis. If at a location along the segment the trailing vehicle driver is unable to see the leading 

vehicle, the implication is that not enough sight distance exists at the location of the trailing vehicle and 

that no-passing zone markings are required until the location when the leading vehicle becomes visible 

again. The methodology that is the foundation of the two-vehicle method can be automated if accurate 

data about the path followed by a vehicle (latitude, longitude, and elevation) is available.  

 As part of the internal business processes of the Nevada DOT, highway asset inventory surveys 

are continuously conducted using an instrumented data collection vehicle. An indirect result of the 

process includes an accurate dataset that describes the path followed by the data collection vehicle. A 

software tool that relies on vehicle path dataset as input to create a model of the corresponding highway 

geometry was developed. Using the underlying model, the software tool enables automating the 

identification of theoretical line of sight obstructions based on input from the end user. The software tool 

developed provides Nevada DOT with a decision support system that allows identifying highway segments 

that are candidates for no-passing zones without the need for dedicated labor-intensive field surveys. 

Therefore, the software tool maximizes the use of Nevada DOT resources by leveraging the power of 

existing datasets to eliminate the field visits associated with a legacy process. As a result, the process of 

identifying potential safety issues caused by limited line of sight availability due to existing highway 

geometry, due to changes to the alignment, or due to changes in posted speed has been streamlined as a 

result of the project described in this report.
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CHAPTER 1. BACKGROUND AND INTRODUCTION 

No-passing zones along a highway are typically marked with a double and solid yellow line as shown in 

Figure 1-1. As the name suggests, a vehicle traveling on a no-passing zone is not allowed by law to pass a 

leading vehicle while traveling along the no-passing zone. The passing restriction on a segment is caused 

by a limitation in the sight distance that is available to a driver during the passing maneuver due to a 

combination of the geometric characteristics and the design speed of the segment.  

 Sight distance is defined by Garber & Hoel as “the length of the highway a driver can see ahead 

at any particular time” [1]. Therefore, a limited sight distance scenario for a passing maneuver occurs 

when a passing vehicle traveling along a segment is unable to see a clear distance ahead on the opposing 

lane of traffic that is sufficiently long to safely initiate and complete a passing maneuver. A passing 

maneuver involves entering the opposing lane of traffic, overtaking the leading vehicle, and re-joining the 

travel lane without cutting off the passed vehicle. 

 
Figure 1-1. Example of No-Passing Zone in Nevada 

 In Nevada, the topographic characteristics of the state make the existence of highway segments 

that warrant a no-passing zone, due to limitations in the available sight distance, a common feature of 

two-lane highways such as the one shown in Figure 1-1. The determination on whether or not sufficient 

passing sight distance exists on a highway station is based on the measured sight distance available and 

the design speed of the highway. Across the country, these determinations are often made based on 

agency-specific policy derived from national guidelines. Determining highway segments that warrant a 
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no-passing zone is key to improving the safety of the transportation network. NDOT guidelines require 

marking a no-passing zone if the required passing sight distance shown in Table 1-1 is not available for 

highway segments with the corresponding speed. Available passing sight distance requirements are based 

on the 85th percentile speed of the highway. 

Table 1-1. Minimum Sight Distance Requirements as a Function of 85th Percentile Speed 

85th Percentile Speed Minimum Passing 
Sight Distance 85th Percentile Speed Minimum Passing 

Sight Distance 

30 MPH 500 ft 55 MPH 900 ft 
35 MPH 550 ft 60 MPH 1000 ft 
40 MPH 600 ft 65 MPH 1100 ft 
45 MPH 700 ft 70 MPH 1200 ft 
50 MPH 800 ft 75 MPH 1300 ft 

 

1.1 THE NEED FOR A STREAMLINED SIGHT DISTANCE MONITORING PROCEDURE 

In the past, the policy of the Nevada Department of Transportation (NDOT) called for the use of the two-

vehicle [2] method to locate segments along a highway that should be marked as a no-passing zone. The 

two-vehicle method requires two vehicles to be driven along a highway separated by a known distance 

determined by the design speed of the highway. If at a location along the highway the trailing vehicle is 

unable to see the leading vehicle, the implication is that not enough sight distance exists at the location 

of the trailing vehicle and that a no-passing zone is required at that point.  

 While standard practice, the two-vehicle method can be time-consuming and labor-intensive, 

especially since NDOT relies on a 3-person crew to perform the field work. The complexities and 

requirements associated with the two-vehicle method led NDOT to implement a technology-based 

solution that streamlined field-procedures associated with the two-vehicle method. However, equipment 

required by the solution adopted by NDOT is no longer sold/supported by the vendor. As a result, NDOT 

needs a new system that can streamline the process of locating no-passing zones.  

 With the advances in computer aided design (CAD) and geographic information systems (GIS), an 

argument can be made that identifying no-passing zones is something that should be possible with the 

“click of a button” and that field-based and labor-intensive procedures are unnecessary. However, the 

reality is that most highways part of existing transportation networks were built before the use of CAD 

and GIS in highway design was standard practice. Therefore, obtaining the detailed geometric 
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characteristics of highways built before CAD and GIS were standard tools is still not possible without some 

form of field-based dedicated data collection effort. Furthermore, even when the foundations for 

establishing no-passing zones policies have not changed since 1948 [3] changes in posted speeds often 

trigger a need for labor-intensive reviews of the alignment characteristics. For example, changes in parts 

of a highway vertical profile due to resurfacing projects could also trigger the need for a review of available 

sight distance for highway segments. As a result, tools to streamline the sight distance analysis procedures 

are still needed. 

1.2 PREVIOUS RESEARCH 

The need for these streamlined tools or procedures has prompted research throughout the years aimed 

at making the measurement of available sight distances and understanding the characteristics of existing 

highway alignments in general a simpler, more accurate, and faster process. Research efforts range from 

early-stage efforts to simply streamline the process to newer computer-based procedures that take 

advantage of data from global positioning system (GPS) sensors. 

1.2.1 Early-Stage Computational Efforts 

In 1989 work by Berg et al. [4] in Wisconsin introduced software capable of using Photolog data to locate 

horizontal curves and “provide estimates of the radius, length, superelevation, and maximum 

recommended speed”. The program identified “the location of segments with either stopping or passing 

sight distance restrictions due to horizontal and vertical alignment” [4]. As an early stage solution, Berg’s 

et al. program had limited success but demonstrated the feasibility of using similar data to conduct 

highway safety evaluations.  

 Regardless of the limitations, Berg et al. procedures remain valid and when modified can work 

with newer datasets. In fact, Drakopoulos and Örnek [5] relied on Wisconsin DOT photolog data to show 

that a more advanced algorithm can be used to obtain highway design information; a key factor in the 

automatic identification of available sight distance. Wisconsin efforts towards the use of existing data 

sources to evaluate highway alignments continue to this date. For example, Li et al. [6] used a centerline 

shapefile data to automatically finding curve radii across Wisconsin while Santiago et al. [7] used photolog 

data to find line of sight obstructions caused by vertical alignment geometry, a procedure further 

improved as part of the work documented in this report. 
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1.2.2 Automated Methodologies 

In theory, if a dataset that represents the centerline and elevation of a highway alignment is available, the 

automation of sight distance evaluations is straightforward. However, in practice a high-quality dataset is 

rarely available thus forcing engineers to rely on field-based studies to determine available sight distance 

values. Independent of standard practices and limitations, researchers have proposed solutions and 

techniques to automate the available sight distance evaluation process. Proposed solutions often rely on 

the use of consumer-grade GPS devices to collect and analyze highway alignments [2], [8], [9].  

 Consumer grade GPS sensors generate data that is not sufficiently accurate and consistent to 

represent the characteristics of the highway geometry. The limitation is illustrated in Figure 1-2 which 

shows GPS sensor data obtained from the highly-accurate sensors typically found in a dedicated data 

collection/asset inventory vehicle and data from a consumer grade GPS sensor such as those found in 

cellphones. As the figure shows, data from the data collection vehicle is evenly and consistently spaced 

along the route with limited deviation from a clear path. On the other hand, data points from the 

consumer grade sensors have a higher degree of deviation from a clearly defined path and are not evenly 

spaced along a surveyed route thus introducing the challenges discussed ahead into the analysis process. 

 

Figure 1-2. Visualization of Data from Different GPS Sensors 

 Challenges with existing procedures include coordinate transformations, removal of outliers, and 

data smoothing. Smoothing needs are usually triggered by the use of consumer-grade GPS devices. In fact, 
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Williams [9] created an analysis algorithm for sight distance evaluation and mentioned GPS data quality 

as a concern. Therefore, better GPS data, such as the one from an NDOT data collection vehicle, is key to 

creating an accurate highway alignment model. Even with data quality limitations, the literature is full of 

examples where GPS data has been used successfully to evaluate highway geometry. Nehate and Rys [10] 

combined GPS and design information (lane width and clear zone) to find stopping sight distance values 

by considering line of sight obstructions of vertical and horizontal nature. Nehate and Rys [10] work was 

an expansion of work by Lovell in 1999 [11] who proposed evaluating sight distance by considering only 

obstructions of horizontal nature and without the use of GPS data. 

 And while research continuously shows the feasibility of streamlining/automating sight distance 

computations, practices across DOTs have not caught up. DOTs appear not to be willing to sacrifice a 

certain degree of practicality in their existing processes. As a result, labor-intensive methods such as cone, 

eyeball, walking, and spotting remain the standard practice used to locate no-passing zones [8]. 

1.3 THE POTENTIAL OF EXISTING DATASETS 

Previous research on streamlining/automating the process of identifying line of sight obstructions, a key 

component of the no-passing zone identification process, has been focused on establishing mathematical 

procedures and on small-scale field tests. However, no work has created end-user-focused software 

capable of conducting a statewide level evaluation of line of sight obstructions that can be used to identify 

highway segments that should have no-passing zone markings. Fortunately, technology and data analysis 

procedures have evolved in such a way that datasets commonly owned by transportation agencies across 

the country can be used to identify locations along a highway with available sight distance values that 

warrant a no-passing-zone designation based on the design speed. These datasets eliminate the accuracy 

concerns associated with some of the procedures that rely on data obtained from consumer-grade GPS 

sensors. 

 One of these available datasets is the path followed by data collection vehicles used by 

transportation agencies for pavement performance monitoring and the inventory of highway assets. In 

fact, a by-product of the highway asset inventory process currently used by NDOT are data files for each 

highway route surveyed that contains the cumulative distance, elevation, and geographic position 

(longitude and latitude) followed by the data collection vehicle. These files, which contain observations 

spaced every 26.4 feet, can be used to create an accurate model that describes the vertical and horizontal 

alignment characteristics of each highway route surveyed during the asset inventory process. Throughout 

the report, the term highway route (or simply route) refers to a dataset representing vehicle positions on 
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a highway along the direction of travel. Except for one-way highways, each highway is typically surveyed 

once per direction thus resulting in two route datasets. 

1.4 OBJECTIVES 

The Traffic Operations and Safety (TOPS) Laboratory from the University of Wisconsin-Madison was 

selected by NDOT to create a software tool capable of analyzing data generated by the asset inventory 

vehicle used by NDOT and streamlining the available sight distance analysis process. Therefore, the 

objective of the work presented was the development of the software tool. The development process 

involved expanding previous work by members of the TOPS Laboratory to make possible the identification 

of theoretical line of sight obstructions due to vertical and horizontal alignment characteristics. 

1.4.1 Evolution of Software Architecture Decisions 

During initial discussions between the TOPS Laboratory and NDOT staff at the beginning of the project, 

the idea of creating an analysis tool that was web-based was explored. However, one of the challenges 

identified with a web-based tool was the availability of resources for the immediate and long-term 

support of the required server. And while a web-based system would have provided simple access to the 

system to anyone within the department, the potential support challenges steered the project team away 

from the initial idea.  

 As a result, and in order to balance the initially-identified need for an easy to access interface and 

a tool with low IT support requirements, a decision was made to focus development on a stand-alone 

desktop application that does not require any special permissions or a formal installation to run. The 

stand-alone tool created by the TOPS Laboratory is contained within a directory that can be placed on any 

directory of the end-user computer to which the user has write privileges. Alternatively, the end-user can 

keep the directory containing the tool executables and supporting files inside a flash drive and run the 

software directly from the flash drive once connected to a computer. 

1.5 REPORT STRUCTURE 

Chapter 2 of this report describes the programming languages used to create the sight distance analysis 

tool, the data required for the operation, and the underlying theory that makes the data analysis 

procedures implemented possible. Chapter 3 describes the typical results from the software tool along 

with some of the limitations of the procedures. Chapter 4 provides an overview of the interface and a 

description of the configuration files that govern the analysis executed by the software. Finally, Chapter 5 

presents conclusions and the recommended implementation approach.  



 
 

7 

CHAPTER 2. SOFTWARE TECHNICAL DETAILS 

As mentioned in Chapter 1, a software tool that relies on data collected using the asset inventory vehicle 

owned by NDOT was created as part of this project to visualize the data and perform line of sight 

obstruction evaluations. A screenshot of the main screen of the software is shown in Figure 2-1. As the 

figure shows, the software allows users to “virtually navigate” a highway. In addition to the virtual 

navigation, tools within the software allow the user to identify segments with potential line of sight 

obstructions based on the route data and user-defined analysis parameters.  

 
Figure 2-1. Screenshot of Software Displaying Highway Route 

 The software was designed to run without the need of installation thus making it easier to deploy 

by end users. The sections ahead describe some of the technical characteristics of the software, including 

the programming languages used, input files required, and nature of computational procedures. The goal 

of the sections ahead is not to provide instructions on how to use the software but to describe the 

underlying technical details. A summary of the software interface that acts as a user manual is presented 

in Chapter 4. 

2.1 PROGRAMMING LANGUAGES USED AND CODE DELIVERY METHOD 

Two languages were used in the development of the software. The first language was Visual Basic™ .Net 

(Vb.Net) and the second was JavaScript™. Vb.Net was used to create most of the software while 

JavaScript™ was used to create the web interface that displays the route data on a map. The web interface 
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relies on the OpenLayers Map Viewer Library [12] and requires internet connectivity to display the 

OpenStreetMap [13] data. The software also uses the DotSpatial [14] project by loading it as a dynamic-

link library (DLL) to enable the projection of latitude and longitude into X and Y coordinates. 

2.1.1 Compatibility and Operating System Requirements 

The software should run on computers that have Microsoft Windows™ and the .Net 4.5.2 framework 

installed. These requirements are typically satisfied by most computers that are kept up to date at 

transportation agencies across the country. Testing conducted on March 29, 2018 confirmed that the 

software was able to run on an NDOT computer running Microsoft Windows™ 7. No installation is required 

thus allowing anyone with a copy of the software executables, along with associated support files, to run 

the software on their computer thus reducing the IT support required to implement the deliverables of 

this project. 

 All the code associated with the software, including the executable files, were delivered to the 

NDOT project manager. The code consists of a Microsoft™ Visual Studio™ project in the Vb.Net 

programming language. The project was created using Microsoft™ Visual Studio™ 2015 Community 

Edition. Additional resources were created as part of the project (e.g., images used by the software). These 

resources, and associated source files have also been included as supplemental digital project files 

delivered to the NDOT project manager. 

2.2 ROUTE DATA REQUIRED TO ENABLE THE SOFTWARE FUNCTIONALITY 

To enable the software operation, the only requirement is the GPS file for a highway route produced after 

the data collection process followed by the NDOT Roadway Systems division is complete. However, to 

improve the user experience and to simplify the process of visualizing the results, photos obtained by the 

data collection vehicle for the front and right side of the highway should also be used as input for the 

software. Figure 2-2 shows a screenshot of a typical directory (or “folder”) that contains the 

recommended data that should be used as input by the software. The Front and Right folders contain 

photos associated with the vehicle positions contained in the GPS file. The two folders can be in the same 

directory as the GPS file. Alternatively, both directories can be inside a directory named according to the 

route id (e.g., 6DO_-) that is in the same directory as the GPS file as shown in Figure 2-2. For simplicity in 

the illustration, other files that are typically included in the same directory as the GPS file are not show in 

the screenshot since the extra files are not required by the software. 
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Figure 2-2. Structure of Sample Folder Containing Route Data 

2.2.1 Nature of Data in the GPS File 

The GPS file shown in Figure 2-2 is a binary file containing “rows” of data for different positions along a 

highway. Each row is associated with information reported by the data collection vehicle instruments. 

Viewing the content of GPS files requires the use of a “hex editor” software as shown in Figure 2-3. Hex 

editors allow users to modify/view the binary data that define a file by displaying the hexadecimal 

representation of every byte in the file, something not possible with traditional text editors which only 

display the ASCII-based representation of data.  

 
Figure 2-3. View of the Content of a GPS File Using a Hex Editor 

 In Figure 2-3, rows of data contained in the GPS file are highlighted. As the figure shows, each row 

of data is made out of 60 bytes easily identifiable because of the similar sequence of hexadecimal number 

values (“01 33 2A 66”) at the start of each row. The software tool described in this report is able to process 

the structure of the file and extract values that are key for the line of sight analysis procedures introduced. 
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A list of the key values used by the software in the analysis procedures are shown in Table 2-1. Using the 

values, it is possible to describe the vertical profile of a highway as shown in Figure 2-4. 

Table 2-1. Key Values in GPS File 

Name Description 
Distance Cumulative distance along the highway as measured by the vehicle instruments. 

Latitude Latitude value at the corresponding distance. 

Longitude Longitude value at the corresponding distance. 

Elevation Elevation of the GPS antenna at the corresponding distance. 
  
 In Figure 2-4, the elevation and cumulative distance values are plotted on a Cartesian-style plane 

thus enabling the visualization of the vertical profile of a highway segment. While not shown, a similar 

figure can be created that shows the horizontal characteristics of the highway segment by plotting 

longitude values on the X-axis and latitude values on the Y-axis. The lines connecting the points in Figure 

2-4 should be treated as supporting the visualization since in the GPS file no data exists between the 

points. Therefore, the GPS file should be treated as containing a discrete model of the highway alignment 

in terms of position and elevation. Because the distance between the points (DP) is sufficiently small, the 

discrete model can be treated as accurately representing the continuous nature of a highway.  

 
Figure 2-4. Illustration of Highway Vertical Profile Available for Analysis 
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 It should be noted that the elevation values reported in the GPS file are for the antenna of the 

GPS sensor. Therefore, as will me mentioned ahead, an assumption is made that due to the constant and 

small offset between the highway surface and the antenna, an elevation-distance model created from the 

path followed by the antenna is equivalent to that of the highway surface. The sections ahead describe 

the steps that are involved in determining if a theoretical line of sight obstructions exists between a point 

i and a point downstream of the highway that is at least a distance TD from the point i. Individual steps 

are presented for finding obstructions due to the vertical profile of the highway and for obstruction due 

to the horizontal alignment. The software presented in this report executes the procedures described, 

including the iterations mentioned ahead, on every point part of the GPS file to generate results describing 

if sufficient sight distance exists at a given point or, if not, how much sight distance is available. 

2.3 DEFINITION OF KEY NOTATION 

Steps for the sight distance analysis procedures outlined in the sections ahead require the definition of a 

specific notation to facilitate the explanation. Table 2-2 shows the notation used along with a description 

of what the notation represents. A key item that is important in the notation is the use of an index value 

to represent a row of data, i.e., a vehicle position, contained in the GPS file as a photolog frame and 

associated with the information shown in Table 2-1. In a highway route for which 5000 photolog frames 

were collected, the first frame is represented by index 0 while the last frame is represented by index 4999. 

Table 2-2. Important Notation to Describe Nature of Vertical Line of Sight Obstructions 

Notation Description 

DP The distance between points that define a vehicle position in the GPS file. For the 
NDOT data collection vehicle, the distance equals 26.4 ft (8.05 meters). The distance 
is measured along the surface of the highway. 

i An index representing a point in the photolog dataset for which measurements from 
the instruments of the data collection vehicle can be found. 

AH Height of the GPS antenna above the surface of the highway. Assumed to be constant 
through the data collection associated with a route. 

TD The available sight distance for which a test is to be conducted. 

𝑂𝑂𝐻𝐻 The theoretical height of an object used in the line of sight calculations. For example, 
for passing sight distance a theoretical height of 3.5 ft is often used. 

𝐸𝐸𝐻𝐻 The theoretical height of the driver eye used in line of sight calculations. For example, 
3.5 ft in most available sight distance guidance. 

AE
i  Elevation of the GPS antenna reported by the instruments of the data collection 

vehicle for index  i. 
RE
i  Elevation of the highway surface for index i. 
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Notation Description 

CDi  Cumulative distance reported by the instruments of the data collection vehicle for 
index i. 

OE
i  Elevation of a theoretical obstruction on the highway at index i used in the line of sight 

calculations. 

EEi  Elevation of a theoretical driver eye on the highway at index i used for the line of sight 
calculations. 

 

 As previously mentioned, the procedures described in the sections ahead are executed for every 

point/observation in a GPS file, represented by an index i and associated with the route of interest. The 

steps are also executed for a test sight distance (TD) value and rely on analysis parameters such as the 

object height (OH) value dictate by the NDOT policy as input. And while the focus of the software is on 

the calculation of passing sight distance requirements, if the input values are modified, stopping sight 

distance requirements can also be evaluated thus the use of the generic term TD that represents a test 

sight distance. 

2.4 OBSTRUCTIONS DUE TO THE VERTICAL PROFILE CHARACTERISTICS 

To determine if for a given point on the highway represented by an index i a sufficiently large TD value is 

available the following assumptions and steps are followed. For every point on the highway, an 

assumption is made that RiE = AiE. For index/point i, a corresponding index, i + n, needs to be identified. 

The relationship between i and i + n needs to be one that causes the condition ahead to be satisfied.  

Ci+nD − CiD ≥ TD 

 The offset n can be calculated using the equation below. The ⌊ ⌋ notation is used to represent a 

function, commonly known as the floor function, that truncates the decimal places out of a number. 

Tn = � D� � + 1 DP

For both points, i and i + n, the corresponding theoretical elevation of the driver eye and a target 

object are then computed using the following equations. 

EiE = RiE + EH 

Oi+n
E = RiE + OH 
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 Using CDi  and CDi+n as the X coordinates and EEi  and OE
i+n  as the corresponding Y coordinates, two 

points that define the theoretical position of the driver eye (CDi , EEi ) and the position of a theoretical 

object (CDi+n, OE
i+n) can be established. These two points can be used to compute the slope (m) and 

intercept (b) parameters of a line as follows. In the equation defined, x represents a cumulative distance 

value along the highway, between points i and i + n, and y represents the expected elevation of the 

theoretical line of sight at the cumulative distance represented by x. 

mi
i+n =

OE
i+n − EEi

CDi+n − CDi
 

bii+n = EEi  

y = x ∗ mi
i+n + bii+n 

 Using the linear equation defined, the expected line of sight elevations for a set of positions along 

the highway defined by the range [CDi+1, CDi+n−1] are calculated. If none of the calculated elevation values 

in the set is lower than the corresponding highway elevation (RE
i ), i.e., no obstructions are found, it is 

determined that at point i  there is at least an available sight distance value equal to TD. In Figure 2-5 an 

example of a theoretical line of sight obstructed by the highway vertical profile is shown while Figure 2-6 

shows an example in which there is no obstruction for the line of sight. 

 
Figure 2-5. Line of Sight Obstruction Example 
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Figure 2-6. No Line of Sight Obstruction Example 

2.4.1.1 Iterative Process if an Obstruction is Found Between Points i and i + n 

If an obstruction is found, a new value of n, referred to as n’ and equal to n – 1, is used to determine if a 

line of sight obstructions exists. Determining obstructions by using n’ means that the line of sight 

obstructions analysis is conducted for a new TD value referred to as TD′  and equal to Dp ∗ n′. Iterations 

that use a lower n’ continue until a corresponding TD′  is found for which no line of sight obstructions exist. 

The value of TD′  is then reported as the available sight distance value for point i. 

2.5 OBSTRUCTIONS DUE TO THE HORIZONTAL ALIGNMENT CHARACTERISTICS 

Like the previously described process for analyzing the vertical profile of the highway, computing the sight 

distance available at a point i along the highway due to the characteristics of the horizontal alignment 

requires the identification of the corresponding theoretical line of sight obstructions. The identification of 

theoretical line of sight obstructions due to the characteristics of the horizontal alignment is based on the 

concept that limited assumptions can be made about the amount of a roadside distance that can be 

assumed as clear. For example, due to vegetation, farming, and other land developments an argument 

can be made that assuming the existence of a clear distance beyond the edge of the shoulder is not a safe 

assumption from the perspective of highway safety management. Therefore, for a clear line of sight to 

exist between a point i on the highway and another point i + n (with the offset n calculated as shown in 

section 2.5.1), a straight line connecting the points must always stay inside the clear boundaries of the 

highway.  
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Figure 2-7 illustrates the condition described. In the figure, the dashed lines represent the path of 

a vehicle described by the data in the GPS file. For analysis purposes, in the scenario shown, a vehicle 

would travel in the i to i + n direction. The solid lines represent the boundaries of what can be considered 

an unobstructed highway surface from the perspective of horizontal geometry. Point PA represents a 

position along the vehicle path described by the GPS file while point PC represents the coordinate of the 

intersection of the line (perpendicular to the theoretical line of sight) that connects PA with the rightmost 

edge of the unobstructed highway surface. Point PB represents the coordinate of where the intersection 

between the mentioned perpendicular line and the theoretical line of sight takes place. In the figure, PC 

is located on the rightmost edge given the travel direction and the right curve illustrated, Section 2.5.1.1 

discusses how to approach scenarios concerning both right and left curves. 

 
Figure 2-7. Description of Theoretical Concept of Horizontal Line of Sight Obstructions 

In Figure 2-7 no theoretical line of sight obstructions exists between i and i + n because the 

distance between PB and PA is lower than the distance between PC and PA. In other words, no theoretical 

line of sight obstruction exists because the line of sight between i and i + n is inside the boundaries of the 

unobstructed highway surface. The sections ahead describe the mathematical steps involved in 

implementing the analysis procedure described. 

2.5.1 Mathematical Definition of Procedures 

The parameters that define a theoretical line of sight, such as that connecting points i and i + n in Figure 

2-7 (i.e., the slope, m, and intercept, b) can be obtained using the familiar equation ahead. In the equation, 

the x and y coordinates are the projected coordinates of the latitude and longitude values that define 

points in the path followed by the data collection vehicle and contained in the GPS file. In the equation, 

the subscript i indicates the point along the highway for which the evaluation is conducted. Accordingly, 

superscript i + n indicates that the slope computed is for a line connecting position i with position i + n. 

The n value represents the previously described frame offset. 
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𝑚𝑚𝑖𝑖
𝑖𝑖+𝑛𝑛 =

𝑦𝑦𝑖𝑖+𝑛𝑛 − 𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖+𝑛𝑛 − 𝑥𝑥𝑖𝑖

 

𝑏𝑏𝑖𝑖𝑖𝑖+𝑛𝑛 = 𝑦𝑦𝑖𝑖+𝑛𝑛 − 𝑚𝑚𝑖𝑖
𝑖𝑖+𝑛𝑛 ∗ 𝑥𝑥𝑖𝑖+𝑛𝑛 

 Based on the slope (mi
i+n) and intercept (bii+n) parameters, the form in which the typical equation 

of the line is written can be changed from the y = mx + b form into the ax + by + c form using the 

following values for the parameters. 

a = mi
i+n 

b = −1 

c = −bii+n 

 Using the a, b, and c parameters, the following equation can be defined and used to compute the 

perpendicular distance from a point to a line. In the equation, the index j refers to points in the dataset 

found between the [i, i + n] range. In other words, j represents the index of a point between the highway 

points i and i + n defining the theoretical line of sight analyzed. The value of d⊥ is also the distance 

between PB  and PA. 

d⊥ =
�axj + byj + c�
√a2 + b2

 

 As part of the analysis process, a d⊥ value is calculated for every point found in the [i, i + n] range. 

If any of the values is found to meet the condition shown ahead then an obstruction is said to exist 

between points i and i + n. In the condition shown, T⊥ represents the clear width shown in Figure 2-7 as 

the distance between PC  and PA. As will be discussed further ahead in the report, when implementing the 

analysis procedures, the user of the software will be required to enter two different types of T⊥ values, 

one that will be used as a comparison threshold for left curves and one for right curves. 

d⊥ > T⊥ 

 As in the case for the identification of line of sight obstructions caused by the vertical profile of 

the highway, if an obstruction is found, then an iterative process in which the above condition is tested 

for smaller values of i + n is followed until a point is found that does not satisfies the above condition. 

Once that happens, at point i, an available sight distance value equal to at least TD  (i.e., TD′ ) is said to exist. 
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2.5.1.1 Selecting TD Value Based on Nature of Curvature 

The mathematical procedure introduced in Section 2.5.1 is agnostic to the curvature type (left or right) 

that connects the theoretical locations of the driver eye (at position i) and a hypothetical object (at 

position i + n). The reason for the agnostic nature of the process is because the process of identifying 

obstructions involves, as a first step, calculating the perpendicular distance values between the theoretical 

line that connects the eye and object and the vehicle path points location between position i and position 

i + n. As previously shown, the perpendicular distance calculation is independent of the curvature.  

 As a second step in the analysis process, the perpendicular distances calculated are compared 

with a threshold value, previously introduced as T⊥, to determine if an obstruction exists. The T⊥ value 

represents the available distance to the left or right of the vehicle path that for analysis purposes is 

expected to be clear. Figure 2-8 shows a scenario in which the theoretical line of sight is obstructed 

because the maximum perpendicular distance between the line of sight and the vehicle path is greater 

than the corresponding available clear distance to the right of the path. Similarly, Figure 2-9 shows the 

same scenario described but for the case of a left curve. 

 

Figure 2-8. Theoretical Line of Sight Obstruction on Right Curve 

 As previously suggested, the T⊥ value is treated as input in the sight distance analysis process 

focused on obstructions due to the horizontal alignment characteristics of the highway. Theoretically, the 

T⊥ value can be considered as infinite under a flat terrain situation with no development or vegetation 

outside the highway boundaries. Such an assumption is not realistic. In fact, a challenge faced by 

transportation agencies is controlling what happens outside the highway boundaries created by the outer 

shoulder edges. As a result, for purposes of identifying line of sight obstructions caused by the horizontal 

characteristics of the highway, an assumption is often made that there is no guaranteed clear distance 



 
 

18 

beyond the outer edge of highway shoulders. Therefore, if an assumption is made that the vehicle path 

data represents the middle of the rightmost lane of the highway, then the T⊥ value for the right curve can 

be considered to be half a lane width plus the combined paved and unpaved shoulder width of the 

adjacent shoulder. The same convention suggests a T⊥ value of 1.5 times a lane width plus the combined 

paved and unpaved width of the corresponding shoulder. 

 

Figure 2-9. Theoretical Line of Sight Obstruction on Left Curve 

 As will be shown in Chapter 4, the TD value will be an input to the software tool described in this 

report. Therefore, selecting a corresponding TD value requires engineering judgment, knowledge about 

the typical design policies that would have been followed at the highway route analyzed, or actual 

information about the characteristics of the highway. The end user of the software tool introduced should 

keep in mind that the procedures presented are the foundation of a decision-support system that relies 

on existing data to model the roadway geometry. Therefore, the final decision about how obstructions 

are identified should be made by the user. 
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CHAPTER 3. STRUCTURE OF RESULTS AND LIMITATIONS 

The software developed as part of the project presented in this report relies on the datasets and analysis 

procedures described in Chapter 2. As with any other tools, there are limitations associated with the 

operation of the software as well as limitations associated with the underlying analysis methodologies 

implemented by the software. A summary of the results produced by the software is shown in the section 

ahead and the limitations associated with the results are shown in the subsequent sections. 

3.1 RESULTS GENERATED BY THE SOFTWARE 

Two types of output files containing the results of the analysis process can be generated by the software. 

The first file is a Keyhole Markup Language (KML) file and the second is a Comma Separated Value (CSV) 

file. The KML file can be opened with software such as Google™ Earth to show a visual representation of 

the locations along a route where theoretical obstructions to the line of sight were identified by the 

software based on the route data and user-defined analysis parameters. While typically opened using 

Google™ Earth, KML files are plain text files with a well-defined structure that can be interpreted by other 

programs to show location-based datasets. A screenshot of the KML file visualization is shown in Figure 

3-1. In the figure, highway segments identified as not complying with the minimum passing sight distance 

requirements for 75 MPH are marked and information about the segment is available. 

 
Figure 3-1. Sample KML File Visualized Using Google™ Earth 
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 The second type of a file produced by the software, the CSV file, contains the geographic position 

information associated with every single position and photo logged by the NDOT data collection vehicle. 

Along with the position information, column 8 shows the available sight distance due to the vertical profile 

of the highway while column 9 shows the available sight distance due to the horizontal geometry of the 

highway. Available sight distance values reported are never higher than the sight distance used as input 

for the analysis process. The maximum value reported as available sight distance is a design decision made 

to make the computational process faster. Therefore, when interested in using the software to calculate 

available sight distance values for each vehicle position, a speed value higher than any analysis speed 

along the highway segments should be used as input for the software. Further details about the inputs for 

the software are discussed in Chapter 4. 

 

Figure 3-2. Sample CSV Style Output Generated by the Analysis Tool 

3.2 LIMITATIONS OF ASSOCIATED WITH DIRECTION OF TRAVEL 

The analysis procedures mathematically defined in Chapter 2 assume the availability of vehicle path data 

contained in a GPS file. Vehicle path datasets, which are an indirect result of the highway assets inventory 

process, are associated with a specific direction of travel along the highway. In fact, the highway asset 

inventory process traditionally involves the data collection vehicle traveling once per direction along the 

highway. Therefore, when interpreting the results from the analysis procedures, the end user must keep 
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in mind that theoretical line of sight obstruction results identified should be treated as being tied to the 

direction of travel represented by the dataset. Having theoretical line of sight obstructions tied to a single 

direction of travel along the highway have implications for results that can be better explained using the 

illustration shown in Figure 3-3. 

 

Figure 3-3. Illustration of Line of Sight Obstructions by Direction of Travel 

 The goal of Figure 3-3 is to illustrate that analyzing two vehicle path datasets from a highway, one 

per direction of travel, can result in the identification of highway segments with theoretical line of sight 

obstructions that are different and associated with a direction of travel. Therefore, when interpreting 

obstruction results such as the one shown in Figure 3-3 that are produced by the software, the user should 

analyze the combined results from both directions of travel. These combined results can be used to 

determine where potential obstructions exist on a specific direction of travel and where potential 

obstructions are independent of the direction of travel. 

3.3 LIMITATIONS RESULTING FROM VEHICLE PATH DATASET ACCURACY 

Just like in their physical reality, highway alignments during the design process are modeled as been 

continuous. However, the data used to model the geometry of a highway alignment by the software tool 

is discrete in nature. In other words, elevation and position values for the path followed by the data 

collection vehicle are only known for points spaced at a constant distance interval determined by the 

configuration of the data collection vehicle. Therefore, end users relying on the implementation of the 

procedures introduced in Chapter 2 by the software need to be aware that results produced are only as 

good as the model that can be established from the vehicle path dataset. In fact, the accuracy of the model 

used to identify theoretical line of sight obstructions is correlated to the spacing between consecutive 

points that define a vehicle path dataset. In general, a shorter space between the points results in a more 
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accurate model while a longer space results in a lower accuracy model. The two sections ahead discuss 

the aforementioned correlation in more detail from the perspective of the horizontal and vertical 

geometry of a highway alignment. 

3.3.1 Horizontal Geometry Perspective 

Latitude and longitude values part of the vehicle path dataset, in their projected form, are treated by the 

software tool developed as accurately representing the horizontal characteristics of a highway alignment. 

Therefore, the underlying assumption of the software is that the distance (i.e. space) between points is 

short enough to treat the data as accurately representing the curvature of the highway. Figure 3-4 

illustrates how model accuracy is correlated to the distance between points part of the vehicle path 

dataset. A good quantifiable indicator of how accurate a collection of points is at representing a curve is 

the area between the lines connecting the points and the smooth and continuous line that defines the 

curve. As shown in the figure, longer distances between points result in an increased area and reduced 

model accuracy. 

 

Figure 3-4. Illustration of How Distance Between Points Decreases the Accuracy of a Model 

 From a results interpretation perspective, the implications of the discussed model accuracy 

considerations are that false obstructions could be identified due to the limitations of the underlying 

vehicle path dataset. Based on the 26.4 feet of spacing between points produced by the NDOT data 

collection vehicle that define the vehicle path dataset, the concern for misidentified obstructions should 

be minimal in most circumstances and easily manageable. However, if there are concerns about the 

quality of the results produced by the software due to the quality of the vehicle path data, alternatives 

exist. Under such a scenario, the line of sight analysis procedures should be executed with a higher 

threshold for identifying an obstruction due to horizontal geometry and the results compared side-by-

side to see if a small increase in the threshold value causes a potential obstruction been removed from 

the results. As will be shown in Chapter 4, the software tool provides an interface to change the 
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aforementioned threshold value. And since software results are available in map form, performing the 

side-by-side comparison is a simple task. 

 One special case that should be mentioned regarding how the vehicle path dataset could lead to 

incorrectly identified obstructions is related to intersections. From an alignment modeling perspective, a 

vehicle path is assumed to represent a continuous road with curves that do not require stopping or 

slowing down before changing the direction of travel. As a result, theoretical line of sight obstructions 

identified by the software and which are found at the location of an intersection (where the highway 

changes direction) should be highlighted as in need of further review and analysis of the situation. 

3.3.2 Vertical Geometry Perspective 

The analysis procedures introduced in Chapter 2 rely on the cumulative distance and elevation values 

associated with each point in a vehicle path dataset. Therefore, as in the case of the horizontal geometry 

there are limitations that should be considered when interpreting the location of theoretical line of sight 

obstructions identified by the software as caused by the vertical profile of the highway. As in the case of 

the horizontal geometry, under most circumstances, the 26.4 feet spacing between the points that define 

a vehicle path dataset is short enough to accurately represent the vertical profile characteristics of a 

highway. Still, the same correlation between model accuracy and distance between points, previously 

shown in Figure 3-4, exists and should be understood by users of the software. 

 In the case of the model limitations associated with vertical geometry, these limitations could 

result in false negatives as opposed to the false positives mentioned in the case of horizontal geometry. 

From the line of sight analysis perspective, a false negative represents a highway segment that should 

have been flagged as having a theoretical line of sight obstruction but was reported as providing sufficient 

sight distance. As previously discussed, the potential for false negatives is not something that should be 

expected as the norm but instead an exception caused by uncommon vertical alignment characteristics. 

Uncommon characteristics that could cause the underlying highway model used in detecting theoretical 

line of sight obstructions to be significantly inaccurate include sudden pavement bumps and sharp 

changes in the vertical slope of the highway alignment. These two are highway features/defects that 

would not be captured when modeling the vertical profile of a highway by assuming that a smooth 

curvature can be used to connect the vehicle path points defined by cumulative distance and elevation 

values. 
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 If the user suspects that potential false negatives exist on the results produced by the software, 

then the line of sight analysis procedure could be executed with different parameters values to account 

for the potential model inaccuracies that results from the use of the vehicle path data. From the 

perspective of vertical geometry, theoretical line of sight obstructions are detected using eye and object 

height as input parameters and false negatives are produced when an obstruction on the highway can’t 

be properly modeled using the vehicle path data. As a result, the eye height and object height parameters 

should be equally reduced by an amount based on the expected errors that the model is suspected of not 

capturing. The negative offset on parameter value should be site-specific and rely on engineering 

judgment and knowledge of site conditions. 

3.4 LIMITATIONS ASSOCIATED WITH THE END OF A ROUTE 

When determining if sufficient sight distance exists at a point along the highway, the procedure used 

involves identifying a point downstream of the test location (specifically at a distance equal to TD) and 

determining if the line of sight that connects the two points is obstructed. As previously shown, the 

determination about the existence of an obstruction is made based on the scenario analyzed (i.e. 

horizontal or vertical) and on the analysis parameters. If no obstruction to the line is found, then the 

analysis procedure reports that for the point analyzed at least the distance to the downstream point is 

said to exist as the available sight distance. Given the nature of the analysis procedure, when evaluating 

the availability of sight distance at locations represented by points on the vehicle path dataset that are 

near the end of the highway route, there are limitations that must be understood prior to interpreting the 

results. 

 The cutoff point that determines points along the highway that are near the end of the route and 

that should be evaluated in more detail are those found to be at a distance less than TD from the end of 

the highway route. If the available sight distance reported by the software for a point along the highway 

route, and within the aforementioned cutoff, is equal to the remaining distance along the highway route 

then that point should be treated as potentially having an available sight distance higher than reported. 

Further evaluation of the mentioned points includes the use of available sight distance values on the 

opposite direction of travel and the use of additional data sources. The use of available sight distance 

values on the opposite direction of travel can be of value if the highway geometry is symmetrical along 

the center line of the highway and the direction of travel. 
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CHAPTER 4. INTERFACE SUMMARY AND CONFIGURATION 

The sections ahead discuss the interface of the software that implements the procedures described in 

Chapter 2 and that produces the results summarized in Section 3.1. As will be shown ahead, concepts 

presented include the operation of the software as a route visualization tool and the use of the software 

to generate the results showing the location of theoretical line of sight obstructions that can be used to 

streamline the no-passing zone identification process. Finally, a summary of the software configuration 

parameters is introduced. 

4.1 LAUNCHING THE SOFTWARE AND FOLDER STRUCTURE 

Launching the software requires opening the SightDistanceTool.exe file located in the folder that contains 

the files and folders required for the operation of the software and that are shown in Figure 4-1. The 

contents of the folder, which is a project deliverable, should be placed in a local folder where the user has 

writing rights. Additional content in Figure 4-1 that is required for the proper operation of the tool includes 

the posted speed database which is located inside the data folder and further described in Section 4.4. 

The img folder contains the images that are displayed by the software and which can be modified by the 

user as needed to change the appearance and supplemental information shown by the software. The 

config folder contains files that allow customizing analysis parameters used in the analysis interface and 

other files that are required to make the operation of the software possible. More information about key 

components of the config folder is presented in Section 4.6. The DotSpatial.Projections.dll is required by 

the software to convert latitude and longitude values into projected coordinates. 

 

Figure 4-1. Location of Tool  

Sight Distance Analysis Tool Executable 
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 The maps folder contains files that make the operation of the map interface possible. The 

contents of this folder should be treated as an individual application that is loaded by the software and 

that is created using HTML and JavaScript™. Modifications to the content of the maps folder are possible 

but should be treated as changing the code of the application. If not done properly, the changes can 

render the mapping functionality of the software inoperable. 

4.2 OPENING A ROUTE FOR ANALYSIS OR VISUALIZATION 

The analysis process implemented by the software requires opening a vehicle path dataset contained in a 

GPS file. To open the dataset, the Open Route menu must be accessed as shown in Figure 4-2. The GPS 

file that is opened by the software is the type of file that is produced by the asset inventory process and 

that makes visualization of a highway route possible. The content of the GPS file is considered to be in 

“binary format” which means the content can’t be easily viewed using a text editor due to the specific 

encoding used to store the data. The structure of the file has been previously shown in Figure 2-3 and 

discussed in Section 2.2. 

 

Figure 4-2. Screenshot: Load Route Interface 

 After the GPS file is opened, the interface of the software will change from the one shown in 

Figure 4-2 to the one shown in Figure 4-3 and that contains photographs associated with the highway 

route defined in the GPS file. As previously mentioned, the only requirement to operate the software is 
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the presence of the GPS file. The highway photos shown in the figure will only be visible if the necessary 

folder structure, previously shown in Figure 2-2, is in place. Otherwise, the photo area of the software will 

be replaced with an error message indicating that no photos are available for the route. 

 

Figure 4-3. Screenshot: Route Loaded 

 If the corresponding photographic data is available, then the software can be used as a 

visualization tool to navigate to a location along the highway route and export associated route data. The 

section ahead discusses the use of the software as a highway route visualization tool. 

4.3 USING THE SOFTWARE AS A VISUALIZATION TOOL 

To use the software shown in the figures as a highway route visualization tool there are two primary 

approaches that can be used. The first approach involves the use of a navigation menu that allows specific 

frame (a point part of the GPS file) data to be displayed on the screen. As will be discussed, frame-by-

frame navigation is also possible using the mouse and a set of keyboard shortcuts. The second approach 

involves the use of a map interface to display the entire vehicle path contained in the GPS file and which 

also allows selecting a location along the map that will be displayed on the software. 

4.3.1 Navigating to a Specific Frame on a Route 

Once the GPS file is loaded, the Navigation menu shown in Figure 4-4 allows users to move forward and 

backward along the route using the buttons shown on the screen. The Navigation menu includes the 
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ability to enter a “playback mode” which causes the software to automatically move forward and 

backward along the route without the need for any additional user input. As shown in Figure 4-4, next to 

each navigation command there is a corresponding keyboard shortcut that can be used to operate the 

navigation interface without the need for directly accessing the menus. 

 

Figure 4-4. Screenshot: Navigating to Specific Frame 

 As the user virtually navigates the route, information about the highway location shown on the 

photograph is displayed on the “status bar” of the software. Information displayed includes the current 

frame number, route name, county information (if available), date the photograph shown was taken, a 

cumulative mileage value, and the corresponding latitude and longitude values. Each time the frame 

displayed by the software changes, the “status bar” information is updated with the corresponding 

information. 

4.3.1.1 Navigation Control Using the Mouse 

An alternative to use the Navigation menu to change frame positions is to use the scroll wheel typically 

found in a computer mouse to navigate along the route. Scrolling in the positive direction moves forward 

while scrolling in the negative direction moves backward on the route. Double-clicking with the left mouse 

button on the highway photo causes the route automatic playback to start moving on the forward 

direction while double-clicking with the right button causes the route playback to start moving in the 

backward direction. While playback is active, a single click of any mouse button pauses the playback. 
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When the automatic route playback is paused, a single click of the left mouse button causes the route 

position to move forward by one frame while a single click of the right mouse button causes the route 

position to move backward by one frame. 

4.3.2 Navigating to a Specific Location on a Map 

The Route Data menu allows access to the Show Map View action. When launched, a map interface like 

the one shown in Figure 4-5 is launched. The map interface displays the entire route contained in the GPS 

file as a green line on the map and allows navigating to a specific location on the route by clicking the 

desired location on the map. If the click is outside the boundaries of the route, the route location closest 

to the click will be the one displayed. The highway location shown on the photo, (i.e., the position for 

which the “status bar” displays data) is shown as a red marker on the map Window.  

 

Figure 4-5. Screenshot: Navigating to Specific Location on Map 

 As previously mentioned in Section 2.1, the software relies on OpenStreetMap [13] data to display 

the map interface and requires internet connectivity to appropriately display the map tiles. Therefore, the 

names and locations of the highways shown in the map are not controlled by the user since 

OpenStreetMap is a crowdsourced online mapping system. For major highways, such as the ones 

contained in the GPS files analyzed by the software, the mapping data provided by OpenStreetMap should 

be adequate both in terms of quality and content. 

4.3.3 Exporting Route Data as CSV File 

In addition of the route navigation and visualization capabilities of the software, the software can also be 

used to convert the vehicle path data contained in the GPS file into a CSV file. The version of the CSV file 

produced by the software contains not only information such as latitude and longitude values that are 

part of the GPS but also projected coordinate values that are not part of the GPS file. To convert the 
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vehicle path data into CSV, the Export Route Data action part of the Route Data menu must be selected. 

When selected, the user will be asked to select where will the data be saved. The ability to export route 

data into a CSV file can be useful when creating visualizations of the alignment of a route using tools such 

as spreadsheet computer programs. 

 

Figure 4-6. Screenshot: Exporting Route Data as CSV File 

 The structure of the CSV file produced is shown in Figure 4-7 in the form of a screenshot. As the 

figure shows, information contained in the CSV file columns include frame number, cumulative distance, 

elevation, longitude, latitude, projected X coordinate, projected Y coordinate, date of data collection, and 

posted speed. The posted speed column is an optional field that is only populated if the necessary data is 

loaded into the software as will be shown in Section 4.4. Finally, while the data contained in the GPS files 

is in metric units (i.e., meters) the CSV file maintains the convention used throughout the entire software 

interface and contains vehicle path information in feet. 
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Figure 4-7. Screenshot: Results of Route Data Export to CSV File 

 The projected coordinate values included in the exported CSV file are based on the assumption 

that the vehicle path data contained in the GPS file was collected in WGS84 coordinate reference system 

and that the target projection is the based on the NAD_1983_UTM_Zone_11N parameters. As will be 

shown in Section 4.6, these are configuration parameters for the software that can be changed based on 

the needs and analysis goal of the user. 

4.4 ADDING SUPPLEMENTAL SPEED DATA (OPTIONAL) 

An optional feature of the software shown in the previous figures is the ability to load a posted speed 

database provided to the project team by NDOT. The purpose of the database is to assign a posted speed 

value (if available) to each point defined in the GPS file. This posted speed database is what would make 

it possible for the CSV file shown in Figure 4-7 to display a posted speed value in Column 9. Figure 4-8 

shows a screenshot of the CSV file that defines the database that is available to the software. As shown 

in the figure, the database is a collection of posted speed sign locations along with the corresponding 

speed limit and other information such as the name of the highway route. 

 For the software to use the database, the user needs to manually load the database through the 

menu interface shown in Figure 4-9 by accessing the corresponding action available under the Add 

Supplemental Data menu item. As with other menu interfaces, loading a GPS file into the software is what 

enables the interface. Once posted speed data is loaded, the software will assign a posted speed to each 

point contained in the loaded GPS file if matching data, based on the route name, is found in the database. 
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Figure 4-8. Screenshot: Posted Speed Data 

 If posted speed data is loaded, the implication is that during the analysis process that will be 

discussed in Section 4.5 an automatic required sight distance value is used based on the posted speed 

data identified. While this can provide flexibility into the analysis process, the flexibility is only provided if 

accurate data is contained in the database. Since the database is manually generated through a dedicated 

data collection effort, the end user must take into account the possibility of errors in the analysis process 

due to incorrect posted speed values. 

 

Figure 4-9. Screenshot: Procedure to Load the Posted Speeds Database 
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4.5 ANALYSIS INTERFACE FOR LINE OF SIGHT OBSTRUCTIONS 

Figure 4-10 shows the software interface used to identify theoretical line of sight obstructions. To launch 

the interface, a GPS file must first be loaded into the software as shown in Section 4.2. Once loaded, the 

analysis interface can be accessed by selecting Line of Sight Obstructions action from the Analysis Tools 

menu. As the figure shows, the analysis interface consists of a collection of input parameters that makes 

the identification of theoretical line of sight obstructions possible. 

 

Figure 4-10. Screenshot: Line of Sight Analysis Interface 
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4.5.1 Selecting Analysis Parameters 

Prior to identifying theoretical line of sight obstructions, the parameter values that will be used by the 

analysis procedure must be selected/entered in the software. By default, the software will have a set of 

values for eye height, object height, left/right horizontal clearance, frame rate, and distance threshold 

(required sight distance) in feet assigned. However, all these values can be changed by the user based on 

the desired analysis parameters. In addition to the ability to enter parameter values manually, the 

interface provides for drop-down boxes that allow access to other pre-defined values. For example, when 

the selected item on the analysis speed dropdown box is changed, the corresponding required distance 

threshold is changed. 

 To support the user, the interface of the software has been designed to display information (or a 

graphic) about the active parameter. For example, when a parameter field becomes active the field is 

highlighted in green and support information is displayed. In the case shown in Figure 4-10, the active 

field is the eye height one and as a result the corresponding support image displayed on the upper portion 

of the analysis interface explains the meaning of the parameter. Therefore, the best explanation for each 

of the analysis parameters provided by the interface is available directly through the analysis interface. 

As an additional example, when the focus is on the analysis speed drop-down box, the interface displayed 

changes accordingly as shown in Figure 4-11. 

 

Figure 4-11. Screenshot: Example of Support Information for Analysis Speed Options 
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4.5.1.1 Frame Rate Parameter 

While listed as a parameter that can be changed, for analysis that rely on data from the NDOT data 

collection vehicle the value of 26.4 should be treated as a constant. The ability to change the value has 

been introduced in the case that the data collection procedures change in the future and a different 

distance between points in a GPS file is needed as part of the analysis procedures. 

4.5.2 Details About Other Parameters 

In addition to the information about each of the parameters that is significant for the analysis procedures, 

and that is displayed through the interface as previously shown in Figure 4-11, the mathematical 

implication of each parameter can also be found on this report. Chapter 2 provides details about the 

meaning of each parameter for the analysis process. 

4.5.3 Selecting an Analysis Speed 

If the speed database is loaded by using the procedure discussed in Section 4.4, specifying an analysis 

speed is redundant as the known posted speed for a point will be used to determine the required sight 

distance at a location on the highway and if a theoretical line of sight obstruction exists. However, if no 

posted speed information is loaded (a recommended approach to avoid errors caused by a potentially 

incorrect data source) then a recommended approach is to select an analysis speed that is higher than 

any of the speeds along the highway. 

 By selecting a higher analysis speed, if an obstruction is found on a segment the available sight 

distance is also reported. Using the reported sight distance available the user can then decide, based on 

the known speed for the segment where the obstruction is located, if the available sight distance reported 

is sufficient for the known speed conditions.  

4.5.4 Executing the Analysis for an Entire Highway Route or for a Highway Segment 

By pressing the Run Route Analysis button, theoretical line of sight obstructions are identified based on 

the specified analysis parameters (including the required sight distance) along the entire highway route. 

Obstruction calculations are performed by analyzing both the horizontal and vertical alignment 

characteristics of the modeled highway alignment. As an alternative to analyzing an entire highway route, 

a start and end frame can be selected for analysis, thus limiting the results produced by the software to 

the segment specified using the frame values. When the keyboard/mouse focuses on the start or end 

frame box (e.g., while changing the value) the highway photo shown on the main screen will switch to the 

corresponding location to support the process of narrowing the analysis to the specified segment. 
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4.5.5 Focusing on Vertical or Horizontal Obstructions 

By default, the analysis executed when the Run Route Analysis or Run Segment Analysis buttons are 

pressed involves taking into account the horizontal and vertical characteristics of the highway alignment. 

If the user prefers to only analyze obstructions one condition at a time, the interface provides for the 

corresponding option. For example, if the Ignore Horizontal Line of Sight Obstructions is checked, then the 

results produced by the software will only take into account the vertical profile characteristics of the 

highway alignment. Similarly, if the Ignore Vertical Line of Sight Obstructions is checked then only the 

horizontal alignment characteristics are considered. This functionality is useful when generating maps, as 

will be shown in the next section, since individual maps for obstructions can be overlaid together to see 

where each type of obstruction exists on the alignment.  

4.5.6 Exporting the Results 

Once the analysis for an entire highway route or segment is executed, the list of individual obstructions is 

displayed on the analysis interface as shown in Figure 4-12. As the list shows, the theoretical line of sight 

obstructions are identified by the start and end frame as well as by the controlling highway alignment 

characteristic that triggered the identification of a theoretical line of sight obstruction (vertical or 

horizontal). The purpose of having each individual obstruction will be explained in the next section. 

However, exporting the entire results as a KML file or as a CSV file can be achieved by pressing the 

corresponding button. The Export Results button produces a CSV file, that the user gets to select where it 

is saved, and the Generate KML button produces a KML file with a save location also specified by the user. 

Examples of the results generated have been previously introduced in Section 3.1.  

 

Figure 4-12. Screenshot: List of Individual Obstructions 
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 Selecting an individual obstruction from the list automatically changes the highway photo 

displayed on the software interface (i.e., the photo and coordinates) associated with the first frame of the 

obstruction selected. This functionality allows users to navigate to a highway location and visually confirm 

(if photos are available) the geometric conditions of the highway. To clear the results displayed, and stored 

in memory, the Clear Results button can be used. The results displayed are also cleared if an analysis is 

executed again. 

4.5.6.1 Generating Results for Multiple Conditions 

If the user is interested in conducting multiple analysis to compare the results, once an analysis is executed 

the individual results should be saved by using Export Results or Generate KML buttons. Multiple analysis 

of the same route with different parameters can be conducted to create maps that show obstructions 

identified not only under different analysis speeds but also under different horizontal clearance values. 

For example, as previously mentioned in the report, if concerns exist about horizontal obstructions caused 

by selecting a horizontal clearance threshold that does not necessarily represents reality, then an analysis 

focused only on obstructions due to horizontal characteristics can be executed for a range of horizontal 

clearance values. The results can then be compared side-by-side to see if small changes in clearance values 

result in obstructions removed from the list of results. 

4.5.7 Examining Individual Obstructions 

Once an individual obstruction is selected from the list, the Show Profile button can be pressed to view 

the vertical profile characteristics (elevation and cumulative distance) associated with the obstructions as 

shown in Figure 4-13. The blue line represents the vertical profile of the portion of the road with the 

reported obstruction. The yellow line represents the vertical profile of a portion of a road that is 

immediately downstream of the segment with the reported obstruction.  

 For analysis purposes, the profile analysis tool shown in Figure 4-13 is significant for obstructions 

in which the vertical alignment of the highway is the factor causing the line of sight obstruction. However, 

the tool is available for any type of obstruction. When the tool is launched, only the blue and yellow lines 

are shown. However, clicking on the profile causes the red dashed line on the figure to appear. The red 

dash line represents the required line of sight that was used to identify obstructions and when the figure 

is clicked the line appears at the closest location to the click that represents a point part of the vehicle 

path dataset and also part of the segment with obstructions. The profile analysis tool acts as a tool to 

visualize the severity of the vertical obstructions identified since the user can see the location along the 

highway where the theoretical line of sight is blocked. 
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Figure 4-13. Screenshot: Vertical Profile of Individual Obstruction 

  Selecting one or more individual obstructions shown on the list and pressing the Show Map 

button launches the map visualization tool shown in Figure 4-14. In the map, individual obstruction 

segments are shown in red. The map interface can be controlled with the middle scroll wheel of the mouse 

by pressing and holding to pan and by scrolling to zoom in/out. 

 

Figure 4-14. Screenshot: Map Interface Showing the Location of Individual Obstructions Selected 
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4.6 CONFIGURING PRE-DEFINED PARAMETER VALUES 

Throughout the software development process, the goal was providing a flexible interface that can be 

configured by the users without the need for changes to the code. As a result, text configuration files that 

define the parameters and operation of the software are included inside the config folder located in the 

same the directory that contains the software executable files. The location of the config folder relative 

to the other software files  is shown in Figure 4-15. 

 

Figure 4-15. Screenshot: Location of Folder Containing Configuration Files 

Folder Containing Configuration Files 

 Figure 4-16 highlights key analysis interface parameters that are configurable by the user. Each of 

the configurable parameters is associated with drop-down boxes that cause the corresponding value fields 

to change. A description of how each of the key configurable options shown can be customized by the 

user is presented in the sections ahead. As will be shown, changing the configuration parameters involves 

modifying the content of text files and can be achieved with a simple text editor. 

 

Figure 4-16. Key Analysis Values Configurable by User 

Option 1 

Option 2 

Option 3 
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4.6.1 Analysis Parameters: Object Height by Analysis Type [Option 1] 

The values that are readily available as object height for the user to select can be configured using text 

files located in the objectparams folder part of the config folder. Figure 4-17 shows the default 

configuration files that are distributed with the software. Each file name that is inside the objectparams 

folder is displayed as an option in the drop-down box that allows users to select an object analysis height. 

The analysis height value associated with the corresponding file will match the content of the 

corresponding text file. For example, when the user selects “Passing – Passenger Car (4.25 ft)” in the 

software as the object analysis height, the reason that a height value of 4.25 is assigned to the text box is 

because 4.25 is the content of the text “Passing – Passenger Car (4.25 ft).txt” file. Configuration files placed 

inside the objectparams folder can be used to easily add options to the software that enable analyzing 

different object height values corresponding to sight distance analyses that are not necessarily tied to 

passing sight distance analysis parameters. Similarly, if the analysis parameters recommended by 

guidelines change, then new values can be added to the objectparams folder, thus avoiding the need to 

manually enter a value every time the software is launched. 

 

Figure 4-17. Configuration: Object Height Values 

4.6.2 Analysis Parameters: Eye Height by Analysis Type [Option 2] 

Values readily available as eye height for the user to select can be configured using text files located in 

the eyeparams folder part of the config folder. Figure 4-17 shows the default configuration file that is 

distributed with the software. Each file name that is inside the eyeparams folder is displayed as an option 
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in the drop-down box that allows users to select an eye height for analysis. The eye height value associated 

with the corresponding file will match the content of the corresponding text file. For example, when the 

user selects “AASHTO 1994” in the software as the eye height for analysis, the reason that an eye height 

value of 3.5 is assigned to the text box is because 3.5 is the content of the “AASHTO 1994.txt” file. 

Configuration files placed inside the eyeparams folder can be used to easily add options to the software 

that enable analyzing different eye height values corresponding to sight distance analyses that are not 

necessarily tied to the typical passing sight distance analysis parameters. Similarly, if the analysis 

parameters recommended by guidelines change, then new values can be added to the eyeparams folder 

thus avoiding the need to manually type a value every time the software is launched. 

 

Figure 4-18. Configuration: Eye Height Values 

4.6.3 Analysis Parameters: Required Sight Distance by Speed [Option 3] 

Analysis speed and required sight distance values displayed by the software are based on the content of 

folders that are located inside the speedparams folder. When a user selects an object height option from 

the corresponding drop-down box, the software looks for a folder located inside the speedparams folder 

that matches the name of the selected option. Inside the folder, a collection of files like the one shown in 

Figure 4-19 is required. As the figure shows, the file names describe speed values that will be presented 

to the user as analysis speed options associated with the object height parameter option selected. In turn, 

the content of each file is the required sight distance value associated with the speed and which is 

automatically populated into the corresponding required distance field of the sight distance analysis tool. 
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Figure 4-19. Configuration: Sight Distance Requirements by Speed 

4.6.4 Additional Configuration Parameters 

In addition to the configuration files introduced in the previous sections, which control key parameters of 

the analysis process, there are other configuration files that the user can change. These configuration files 

are located in the config folder. A list of these additional files, which are meaningful to the analysis, is 

shown in Table 4-1 along with a summary of the file purpose. 

Table 4-1. Purpose of Additional Configuration Files 

File Name Description 
Original.prj File containing the technical details of the coordinate system associated with 

the location data included in the GPS file. 

Desination.prj File containing the technical details of the projected coordinate system to 
which the latitude and longitude values in the GPS file will be converted. 

LeftClearance.txt Default value used as the typical clear distance available to the left of the 
vehicle path (in ft). 

RightClearance.txt Default value used as the typical clear distance available to the right of the 
vehicle path (in ft). 

FrameRate.txt Contains a list of distance between frames that should be made available to 
the user. One distance between frame value (in ft) per line of the file. 
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CHAPTER 5. CONCLUSIONS AND IMPLEMENTATION GUIDANCE 

No-passing zones markings communicate to drivers that there is not enough clear sight distance available 

on a marked highway segment to safely complete a passing maneuver that requires entering the opposing 

lane of traffic, overtaking a leading vehicle, and rejoining the initial lane without aggressively cutting off 

the vehicle passed. No-passing zones are typically marked using a double solid yellow line along the middle 

of the road. As conditions change along the highway (e.g. due to a new posted speed or changes to the 

geometry), the need to evaluate the new conditions for compliance with sight distance requirements is 

often triggered. This means that segments without a no-passing zone today may be in need of one in the 

future.  

 With the widespread use of computer aided design (CAD) and geographic information systems 

(GIS), identifying no-passing zones is something that arguably should be possible with the “click of a 

button” on a software tool. However, an existing reality is that most highways that are part of the existing 

transportation network were built before the use of CAD and GIS was standard practice in highway design. 

As a result, detailed geometric data about existing highways is not always readily available to allow 

automating the required available sight distance analysis. As a result of the limited data available, a 

standard practice used to identify highway segments that need a no-passing zone based on the highway 

geometry and speed still involves the use of field-based procedures that are labor-intensive in nature. 

  A common procedure used by transportation agencies across the United States, known as the 

two-vehicle method, requires two vehicles to be driven along a highway separated by a required sight 

distance determined by the design speed of the segment under analysis. If at a location along the segment 

the trailing vehicle driver is unable to see the leading vehicle, the implication is that not enough sight 

distance exists at the location of the trailing vehicle and that no-passing zone markings are required until 

the location when the leading vehicle becomes visible again. 

5.1 PREVIOUS NDOT STREAMLINING EFFORTS 

If the methodology that is the foundation of the two-vehicle method can be automated or streamlined 

the time savings associated with the identification of no-passing zones could be significant. For example, 

NDOT standard procedures called for the use of a 3-person crew to perform the field work associated with 

the identification of no-passing zones through the two-vehicle method. As a result of the complexities and 

requirements associated with the two-vehicle method, NDOT pursued the implementation of a 

technology-based solution that streamlined field-procedures associated with the two-vehicle method. 
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However, equipment required by the solution adopted by NDOT is no longer sold/supported by the 

vendor. As a result, NDOT identified the need for a new system that can streamline the process of locating 

no-passing zones.  

5.2 DEVELOPMENT OF SOFTWARE TO STREAMLINE ANALYSIS PROCEDURES 

Software that eliminates the need for field work to conduct line of sight obstruction evaluations was 

developed and described in this report. The software relies on vehicle path datasets generated during 

asset inventory surveys conducted along highways as part of existing NDOT internal business processes. 

These asset inventory surveys along highways are continuously conducted using an instrumented data 

collection vehicle and the vehicle path dataset that the software relies on is an indirect result of the 

process. The vehicle path dataset contains latitude, longitude, and elevation values that can be used as a 

surrogate to describe the geometry of the highway alignment. Using the dataset, the software creates a 

model of the highway that enables automating the identification of theoretical line of sight obstructions 

based on input parameters from the user.  

 The software developed provides Nevada DOT with a decision support system that allows 

identifying highway segments that are candidates for no-passing zones without the need for dedicated 

labor-intensive and field surveys. The software maximizes the use of Nevada DOT resources by leveraging 

the power of existing datasets to eliminate the field visits associated with a legacy process. As a result, 

the process of identifying potential safety issues caused by limited line of sight availability due to existing 

highway geometry, due to changes to the alignment, or due to changes in posted speed has been 

streamlined as a result of the project described in this report. 

5.3 TECHNOLOGY MAINTENANCE APPROACH 

During the development process of the software an effort was made to make the software a flexible tool 

for NDOT. As part of the project deliverables, NDOT received the source code of the software thus 

eliminating concerns about not having the ability to make changes to the analysis tool in the future and 

preventing a vendor lock-in scenario. Additionally, and as was shown in Section 4.6, the software analysis 

interface relies heavily on the use of configuration parameters that can be edited with a simple text editor 

to change how the software operates. As a result, users without computer programming skills are able to 

modify the analysis parameters used by the software as well as some of the interface components. By 

creating a flexible analysis interface that can be edited without the need for core code changes, the 
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technical debt associated with the use of the software is reduced thus providing NDOT with a solution 

that is both flexible and robust. 

5.4 IMPLEMENTATION GUIDANCE 

As shown throughout the report, analysis procedures presented that are implemented via the software 

developed rely on datasets already owned, or actively collected, by NDOT. As a result, the implementation 

of the underlying analysis procedures made possible by the software can be achieved without significant 

changes to internal NDOT processes. The sections ahead provide implementation guidance on several 

areas that are relevant to the analysis procedures that are now possible. 

5.4.1 Acquisition of Data 

Implementation of the analysis procedures made possible by the software does not require changes to 

the existing data collection system used by NDOT to conduct assets inventory surveys along highways. As 

previously mentioned, the minimum data required to implement the analysis procedures is the GPS file 

generated once a route is surveyed and prepared for compatibility with the RoadView™ software used by 

NDOT as part of existing asset inventory practices. As a result, when conducting a sight distance analysis 

on a highway route, the first step in the process should be to locate the newest GPS file that is available 

for the route. 

5.4.2 Integration of Results with Existing Datasets 

The results of the analysis procedures implemented by the software can be saved in two different ways: 

as a CSV file and as a KML file. If a sight distance analysis is conducted using required sight distance values 

associated with speeds that are higher than the estimated/measured speeds, a recommended approach, 

then the CSV file produced will contain an available sight distance value for each point that defines the 

vehicle path in the GPS file. Since each point is associated with a latitude and longitude value, as well as a 

cumulative mileage value, the reported available sight distance values can be integrated with existing 

NDOT databases. Another integration approach possible involves storing the KML files that result from 

the analysis process in the same network location as the GPS file. Saving the results on the same place as 

the GPS file will make the sight distance analysis procedure results easily available to numerous NDOT 

groups without the need for directly integrating the results into existing databases. 

5.4.3 Using an Existing Dataset or Collecting a New One 

If the route for which a sight distance evaluation is to be conducted undergo changes after the time when 

the last asset inventory survey of the highway was conducted, as part of the cyclical process, then a new 
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survey could be required. For results to be meaningful, the vehicle path data contained in a GPS file used 

for analysis needs to reflect the most recent alignment geometry. The decision on whether a new survey 

is needed to support the sight distance analysis procedures should be primarily based on two 

considerations. First, by considering changes made to the highway since the time of the last survey, and, 

second, by considering the specific goals of the available sight distance evaluation. 

 If geometric changes made to the route, since the time of the last survey, were significant enough 

that alignment improvements were made to the route it is likely that due to the use of CAD, no-passing 

zones were already identified as part of the design process and that appropriate markings were part of 

the corresponding highway improvement project deliverables. The second consideration, the specific 

goals of the available sight distance evaluation, is important because if only a particular segment of the 

entire route is of interest and that segment has not suffered changes since the last survey represented by 

the GPS file then the existing data could be used by limiting the analysis to the appropriate segment. 

5.4.4 Training Considerations 

The software developed as part of the project described in this report was designed, to the extent 

possible, to be intuitive and provide guidance to the user throughout the analysis process. For example, 

supplemental images are displayed when parameter values are changed/reviewed in the analysis 

interface. In addition to the built-in support tools, Chapter 4 of this report provides a user guide for the 

software. Additionally, supplemental guidance in the form of video was delivered to the NDOT project 

manager along with the software binaries and source. Therefore, prior to using the software, this report, 

as well as the supplemental video delivered should be treated as required training material. 

 In addition to the ability of users to learn the operation of the software from the training materials 

available, knowledge about highway design is important. Therefore, users of the software should be 

familiar with NDOT design policies and have a working knowledge of the type of input values used by the 

software. The aforementioned knowledge by the users should be treated as a key requirement since the 

use of inappropriate values could lead to incorrect results or to the incorrect interpretation of results.  
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