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ABSTRACT 

This report documents and presents algorithms and procedure developed for extracting 
high-accuracy high-resolution trajectory data from roadside LiDAR sensors. The developed 
methods were evaluated with data from various traffic scenarios. Pilot applications of roadside 
LiDAR trajectory data for pedestrian-crossing-road prediction, animal-crossing-road detection, 
and near-crash events identification were also included in this report. The roadside-LiDAR data-
processing procedure includes new algorithms of LiDAR-data background filtering, LiDAR-
point clustering, cluster classification (vehicles and pedestrians), object tracking and trajectory 
calculation. The methods for processing roadside LiDAR and pilot applications of using LiDAR 
trajectory data will serve as a foundation for new connected/autonomous traffic infrastructure 
advanced by 360-degree edge LiDAR sensors. Road-side LiDAR is new technology to fill the 
data gap of unconnected multimodal traffic in connected and autonomous traffic systems and 
will innovate traffic engineering/research areas with all-traffic trajectory data that was not 
available in traditional traffic sensing systems. 
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EXECUTIVE SUMMARY 

Existing traffic data includes flow rates, occupancy, average speed, and spot speed. Yet 
new traffic systems and applications require traffic flow information with more detail and higher 
accuracy—specifically, multimodal, all-traffic trajectories. All-traffic trajectory data is critical 
to various traffic research/engineering areas: 
	 Connected and autonomous vehicles (CAVs): At present, independent onboard sensing 

systems do not provide enough information for safe operation in multimodal traffic. An 
autonomous vehicle with advanced sensors could still be hit by another car on a cross 
street that fails to stop. For advancing traffic safety, vehicles need to obtain trajectories of 
all traffic in extended distances so they can “detect” traffic changes and risks around 
corners. 

	 Near-crash analysis: Near-crash events provide essential data for proactive safety 
analysis and countermeasure recommendation, but this data is difficult to obtain. If all-
traffic trajectory data could be collected, we could study vehicle interactions at multiple 
scales, and define and extract near-crash events to identify traffic safety issues and 
recommend countermeasures.  

	 Traffic performance evaluation/adaptive traffic signal control: All-traffic trajectories 
provide comprehensive information to evaluate traffic performance. Trajectory data 
reports each road user’s stop location, stop time, speed change, and interaction with other 
road users in addition to conventional vehicle-traffic performance indices such as the 
number of stops, delay, travel time, and queue length. Optimizing signals along a road is 
challenging using conventional traffic sensors because system details cannot be accurately 
observed. Real-time, all-traffic trajectory data can make the traffic system completely 
observable, thus revolutionizing adaptive traffic control and outperforming conventional 
systems. 

	 Automatic pedestrian/wildlife-crossing warning signals: An important application of 
real-time, all-traffic trajectories is monitoring and predicting vehicle-pedestrian conflicts 
on urban roads or vehicle-wildlife collision risks on rural highways. Most conventional 
automatic pedestrian/wildlife warning systems rely on predefined detection areas. These 
systems trigger warning signals whenever an object is detected in the sensing area, but 
this has both caused false alarms and failed to identify risks outside the defined areas. 
Trajectory data tracks the continuous movement of each road user, so crossing detection 
and prediction can be based on historical trajectory and real-time direction/speed/location 
for superior accuracy and reliability. 

Existing Intelligent Transportation System (ITS) sensors such as loop detectors, video 
detectors, and Bluetooth sensors provide macro traffic data such as traffic flow rates, average 
speeds, and occupancy. Given that existing traffic sensors do not provide trajectory data, 360-
degree light detection and ranging (LiDAR) sensors are a new option because they detect 
surrounding objects with high accuracy and frequency and are not influenced by light 
conditions. The project team developed algorithms specifically for roadside LiDAR sensing 
systems. LiDAR data processing and high-resolution trajectory extraction are the base function 
of LiDAR-enhanced traffic infrastructure. Due to sensor installation and data characteristics, 
methodologies for roadside LiDAR data processing are different from the methods for 
autonomous vehicles (Figure 1).  
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Figure 0-1 Different densities of pedestrian LiDAR points for onboard CAV sensing (a) and roadside 
surveillance (b) based on detection range requirements. Roadside data processing is much more challenging in 

this regard. 

The project team has developed a procedure for roadside LiDAR data processing, 
including major steps of background, object clustering, identification of road user types, 
tracking road users in different data frames, and output of traffic trajectory data (Figure 2). 
Artificial neural network and support vector machine algorithms have also been applied by the 
research team to identify and track objects. The characteristics of different road users' LiDAR 
points are used to determine the types; the features for distinguishing different objects include 
distance to the sensor, the number of LiDAR points, and the spatial distribution of the cloud 
points. 

Figure 0-2 (a) Unprocessed LiDAR frame from a roadside Velodyne VLP-16 sensor, showing how resulting 

point-cloud data fix and can track objects precisely in three dimensions; (b) high-accuracy, multimodal traffic 

trajectories obtained using sequences of point cloud data from a roadside LiDAR sensor by the project team
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The developed background-filtering algorithm filtered more than 99% of background 
points when there were no pedestrians or vehicles (case study at N Virginia St and 15th St). 
Even at the site with a high pedestrian and vehicle volume (case study at N Virginia St and 10th 
St), the method still removed more than 97% of background points. The detection accuracy of 
object clustering was about 96%. The main reasons causing clustering failure included sparse 
points from objects at a far distance and occlusion. An approximate 96% classification accuracy 
can be guaranteed within the 30-meter-radius sensing range. The classification failure was found 
to be caused by vehicle occlusion. Tracking accuracy of approximately 95% can be achieved 
within about 30 meters detection range from the LiDAR sensor. Similar reasons have been 
found for tracking failure as those addressed in the clustering section. The effective distance was 
for VLP-16 LiDAR sensors; the project team achieved doubled effective-distance with VLP-32 
LiDAR sensors. The statistic results showed that 90% of the speed values had error lower than 
2.5 mph.  

For pilot applications, the average accuracy of pedestrian-crossing prediction was 97% 
and non-crossing prediction accuracy was 84%. The average detection range was 30.72 m from 
the VLP16 LiDAR sensor. The max effective detection range of the data processing procedure 
was 37.74 m. Though deer could be seen in the LiDAR data visualization at 37.74 m,, the 
developed algorithms could not successfully identify these points as deer. The near-crash 
identification method was successfully applied for extraction of near-crash events at two case-
study sites. 
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CHAPTER 1 INTRODUCTION 

New-generation transportation systems employ advanced sensing and communication 
technologies to sense the surrounding traffic environment and exchange real-time information 
between road users and traffic infrastructures, such as autonomous vehicles (AVs) and 
connected vehicles (CVs). Various sensors of an AV work together to sense surrounding 
objects including roads, other road users, and obstacles. The sensors' detection distances and 
occlusion scenarios limit an AV's sensing range, so CV technologies are needed to enhance an 
individual vehicle’s sensing capability. CV systems communicate real-time movement status 
between road users and broadcast real-time traffic information from traffic infrastructure. A CV 
can know location, speed, and direction of another CV if they communicate with each other. 
CV technologies allow extended distance for connected drivers or AVs to "see" around corners 
or through obstacles by shared information. Safety threats and traffic changes can be perceived 
in an extended range so that we can avoid collisions and reduce travel time. However, the full 
benefits of connected-vehicle applications need all road users to be equipped with 
communication devices and exchange information with others. The mixed traffic including both 
connected-vehicles and unconnected-vehicles will exist in the next decades or even longer, but 
existing CV systems cannot perceive unconnected road users that do not communicate. The 
data gap of unconnected road users will limit the actual benefits of CAVs, create public mistrust 
in connected-traffic systems, and hinder deployment of CAVs. Accuracy and reliability of 
exchanged information can also be influenced by communication reliability and security, so the 
data issue will persist even when all traffic components are connected. Sensing all-traffic 
trajectories, especially unconnected road users, is essential for connected-traffic applications 
that can also advance traffic safety and mobility. For example, trajectories of vehicles and 
pedestrians can be used to analyze near-crash events for safety improvement and to evaluate 
signal performance with much more traffic details than traditional data. 

High-resolution micro traffic data (trajectory data) can be obtained by conventional 
probe vehicles with Global Positioning System (GPS) devices. However, probe vehicles 
provide only sample trajectories, while CV applications require data of all road users. Existing 
infrastructure-mounted sensors such as inductive loop, cameras, Bluetooth sensors, and radar 
sensors provide macro traffic data of traffic flow rates, average speeds, and occupancy, which 
still do not meet the requirement of CV applications. Besides, the illumination condition has a 
significant effect on the video quality and performance of camera sensors (Mukhtar et al., 2015) 
and existing radar sensors mostly give the spot speed and traffic volume only. In this regard, 
application of road-edge light-detection-and-ranging (LiDAR) sensors can fill the data gap of 
multimodal trajectory data by shooting pulsed-laser beams to measure object positions 
accurately (Csanyi and Toth, 2007). 360-degree LiDAR sensors detect the surrounding 
environment at high accuracy and high resolution without an influence of light condition. 
During each 360-degree rotation, the sensor collects a cloud of surface points of surrounding 
objects at a centimeter-level accuracy and generates a LiDAR data frame as demonstrated in 
Figure 1-1. The cloud points from roadside LiDAR can be used to identify classifications, and 
locations of objects, so continuous LiDAR data frames offer an opportunity to monitor 
trajectories of all road users.   
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Figure 1-1 Demonstration of a 360-degree LiDAR data frame 

Although road-edge LiDAR sensors could offer trajectory data, roadside deployment of 
LiDAR had been economically infeasible until recently when LiDAR sensor prices dramatically 
dropped. LiDAR sensors have been widely used for surveying and mapping; recent applications 
are for robots and autonomous vehicles to sense the surrounding environment and objects 
(Reina et al., 2011). Existing data-processing algorithms for those applications could not 
directly be used to process roadside data because of different data characteristics, environment, 
and deployment requirements, so roadside LiDAR data processing methodologies and roadside-
LiDAR applications need to be researched for different traffic scenarios. Roadside LiDAR can 
serve CAV systems by generating all-traffic trajectories and broadcasting them through 
dedicated-short-range-communication (DSRC) (Zeng et al., 2009). Trajectory data from 
roadside LiDAR can also be used to revolutionize conventional traffic engineering areas of 
safety, mobility, and modeling. Both connected and unconnected road users will benefit from 
roadside LiDAR technologies. 

This project developed a procedure, including multiple algorithms, for generating high-
accuracy multimodal traffic trajectories with roadside 360-degree LiDAR sensors. The 
developed data-processing procedure first excludes points of background objects such as road 
surface, trees, and poles; then, it clusters left points into objects that are multimodal travelers; it 
further classifies those objects into pedestrians, vehicles and other road user types. The 
procedure calculates each road user’s location with x-y-z coordinates of clustered points and 
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estimates their speeds based on time difference and location change in continuous data frames. 
Finally, trajectories including road user type, location, speed and direction information are 
obtained. To demonstrate applications of roadside LiDAR, this project applied trajectories from 
roadside LiDAR for prediction of pedestrians crossing roads, pedestrian-vehicle near-crash 
analysis, and detection of wildlife animals crossing highways. The major achievements of this 
project are summarized in the following: 

1) Literature review on existing methodologies of detecting and tracking objects with 
LIDAR 

2) Development of an automatic LiDAR background filtering algorithm 
3) Development of an algorithm to extract trajectories of road users from roadside LiDAR 

data 
4) Development of an algorithm to identify different road users with roadside LiDAR data  
5) Development of an integrated procedure for processing high-resolution cloud points from 

roadside LiDAR and extracting multimodal traffic trajectories 
6) A pilot application of roadside LiDAR to detect and predict pedestrians crossing roads 

based on LiDAR trajectory data 
7) A pilot application of roadside LiDAR to define and extract near-crash events 
8) A pilot application of roadside LiDAR to detect wildlife animals crossing a highway 

This project report is structured as follows: Chapter 2 presents the literature review 
results on existing algorithms for processing LiDAR data and other sensor data. Chapter 3 
documents the sensor used in this project, the developed data processing procedure, algorithms 
for all data processing steps, and performance evaluation of the developed methods. Chapter 4 
introduces the pilot application of traffic trajectories from roadside LiDAR in the area of 
pedestrian-crossing prediction, wildlife-crossing detection, and near-crash analysis. Chapter 5 
summarized conclusions and recommendations based on findings of this project.  
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CHAPTER 2 LITERATURE REVIEW 

LiDAR has been widely used for remote sensing (Yang et al., 2013). For example, 
topographic LiDAR uses a near-infrared laser to map the land, and bathymetric LiDAR uses 
water-penetrating green light to measure seafloor and riverbed elevations. LiDAR technology is 
also used in sensing systems of AVs to detect road boundaries, pedestrians, vehicles, and 
obstacles, which is called on-board LiDAR(Li et al., 2004). LiDAR sensors can be classified 
into two major types: flash LiDAR and rotating LiDAR. Flash LiDAR sensors are also referred 
to as Time-of-Flight (ToF) camera sensors or ToF LiDAR that scan the scene by a single light 
pulse to provide high-density laser points in a narrow area. Rotating LiDAR sensors use 
rotating assemblies or rotating mirrors for laser beams to sweep around and scan surrounding 
objects in a 360-degree field. To date, there are many LiDAR products from various 
manufacturers on the market. Table 2-1 lists examples of LiDAR sensors and their 
manufacturers that were found in the sensor search of this project, while many other LiDAR 
manufactures and products are not included. The unit prices were received/found during this 
project, so readers are suggested to contact manufactures for the latest sensors and updated 
prices with knowing LiDAR prices drop quickly and features are advanced continuously. This 
project employed Velodyne VLP-16 LiDAR (rotating LiDAR with 16 laser beams) sensors for 
roadside LiDAR data collection for its relatively low cost and 360-degree lateral field of view.  

Although there are limited studies on roadside LiDAR data processing, many algorithms 
have been developed for airborne and vehicle/robot on-board LiDAR. This chapter reviews 
existing methodologies in three focused areas: background filtering, object detection (clustering 
and classification), and object tracking. These methodologies and findings from previous 
research helped the development of new methods for processing roadside LiDAR data in this 
project. The feasibility of using existing methods for roadside LiDAR processing was also 
discussed. 

2.1 Background Filtering 
In roadside LiDAR data, background objects can be ground surface, buildings, trees and 

infrastructure that are not road users and interfere object detection/classification. Background 
filtering removes LiDAR points of those background objects and keeps points of road users 
including stopped objects. Background filtering serves as the initial step of roadside LiDAR 
processing and can significantly enhance the accuracy and efficiency of the following steps – 
object clustering, identification of types and object tracking. Definition of background is 
different in various LiDAR applications, which is determined by the unique information of each 
specific application. 
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Table 2-1 Example LiDAR Sensors from Various Manufacturers
	

Name Manufacturer 
Detection 
range 

No. of 
Beams 

Frequency Field of view Type Unit price 

Vu8 Leddartech 700ft (215m) 8  Up  to  100  Hz  
20°, 48° and 

100° 
Flash LiDAR $650 

LeddarOne Leddartech 130ft (40m) 1 Up to 140 Hz 3° Flash LiDAR $115 

Leddar M16 Leddartech 325ft(100m) 16 Up to 50 Hz 
9º to 95º beam 

options 
Flash LiDAR $740 

Leddar IS16 Leddartech 165ft (50m) 16 Up to 50 Hz 45º Flash LiDAR $940 

HDL-32E Velodyne 
263-325ft (80-

100m) 
32 10 Hz 360º 

Rotating 
LiDAR 

HDL-64E Velodyne 394ft (120m) 64 5-20 Hz 360º 
Rotating 
LiDAR 

VLP-16 Velodyne 325ft(100m) 16 5-20 Hz 360º 
Rotating 
LiDAR 

Puck Lite Velodyne 325ft(100m) 16 5-20 Hz 360º 
Rotating 
LiDAR 

Puck Hi-Res Velodyne 325ft(100m) 16 5-20 Hz 360º 
Rotating 
LiDAR 

VUX-1UAV Riegl 1,150 ft (350m) 200 Hz 330° Flash LiDAR $55,000 

MiniVUX-
1UAV 

Riegl 920ft (250m) 100 Hz 360º 
Rotating 
LiDAR 

UAV 
LidarPod 

Routescene 325ft(100m) 32 10 Hz 360º 
Rotating 
LiDAR 

Vx Long 
Range Lidar 
Sensor 

YellowScan 100 kHz Flash LiDAR 
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Background Filtering for Airborne LiDAR 
The background in airborne LiDAR data is normally made up of points of ground 

surface (Yang et al., 2015). Methods of detecting and filtering background points process 
evenly-distributed high-density points from airborne LiDAR. Those methods can be grouped 
into four types: slope-based methods, surface-based methods, segment-based methods, and 
others. Slope-based methods (Vosselman, 2000) use the erosion-operator formulation of 
mathematical morphology to define a ground surface with consideration of slope constraints 
along scan lines. Surface-based ground filtering methods employ an active shape model to 
identify background surface by minimizing the internal energy (Elmqvist, 2001). Segment-
based methods (Yang et al., 2016) first classify laser points into segments (clustered points) and 
isolated points, then remove all isolated points, and identify the segments of ground surface 
points with morphological methods. Although methods for filtering ground points of airborne 
LiDAR data are pretty mature, those algorithms are for evenly-distributed high-density points 
(output of flash LiDAR rather than rotating LiDAR) and do not consider buildings and 
vegetation as background. Thus, existing background filtering algorithms for airborne LiDAR 
cannot be used for roadside LiDAR background filtering. 

Background Filtering for On-Board LiDAR 
In AV onboard sensing systems, background objects are similar to defined background 

in roadside sensing systems. However, background points are not directly identified in onboard 
systems because of background changes along with the movement of vehicles (Brackstone et 
al., 1999). Onboard LiDAR sensing systems typically use patch segmentation and classification 
to identify interest objects from the raw LiDAR data (Wang et al., 2012); then, they consider 
the remaining points as background/noise and exclude them from the following data processing. 
The segmentation and classification methods normally require more LiDAR points of an object 
than object points provided by roadside LiDAR sensors that are often cheaper, have fewer laser 
beams and need to work in an extensive range. Therefore, the existing background filtering 
methods for on-board sensing systems are not appropriate for roadside LiDAR data processing.  

Background Filtering for Roadside LiDAR 
Lee and Coifman (2012) developed a method for roadside LiDAR background filtering. 

It was the only roadside LiDAR background-filtering algorithm found by this literature review. 
By recognizing that roadside LiDAR sensors return nearly identical scans of the background 
when there is no vehicle, the authors aggregated multiple no-traffic data frames to identify 
background objects and removed them from LiDAR data frames. In the field test of this project, 
it was difficult to obtain enough frames without vehicles at busy traffic sites during the data 
collection period. Furthermore, the background can be moving objects such as waving trees and 
bushes. Indicating the location of dynamic background with Lee and Coifman’s method was not 
reliable in some tested scenarios, especially in windy weather. 

Background Filtering of Non-LiDAR Data 
Many methods were developed for background filtering of non-LiDAR data, especially 

video data. Typical methods analyze color values of pixels in continuous video/image frames to 
identify background objects. Background and non-background objects can be separated by the 
pre-identified pixel color values (mode or mean) (Zheng et al., 2006). These algorithms 
developed for vision-based data processing could not be used for LiDAR data directly because 
the roadside LiDAR data are discrete points rather than continuous raster pixels of information. 
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However, the ideas benefited background filtering of roadside LiDAR data. 

The literature review studied common background filtering methods for LiDAR data 
and non-LiDAR data, but only Lee and Coifman’s (2012) method was developed for roadside 
LiDAR with limitations found in some scenarios. Therefore, a more effective background 
filtering method is needed to serve roadside-LiDAR data processing in different road 
environments.  

2.2 LiDAR Point Clustering 
Various clustering methods were developed for object identification for onboard LiDAR 

sensing systems. These methods can be roughly divided into four types: centroid-based 
clustering, hierarchical clustering, distribution-based clustering, and density-based clustering. 
The representing method of centroid-based clustering is k-means clustering (Morsdorf et al., 
2004; Chehata et al., 2008). Hierarchical clustering is also known as connectivity-based 
clustering. It creates a new cluster with a point that is furthest from the current cluster centroid 
iteratively; it then merges clusters that are most similar according to chosen similarity or 
distance measures. Gupta et al. (Gupta et al. 2010) compared the performance of hierarchical 
tree and k-means using airborne LiDAR data. The results showed that when there were only 
two groups, the hierarchical method was better than k-means. However, the hierarchical tree 
failed where more clusters were formed. It needs to be noted that the k-means method requires a 
predefined number of objects as input. Distribution-based clustering produces complex models 
that can capture correlation and dependence between attributes. The Gaussian mixture model 
(GMM) is a typical distribution-based clustering method (Reynolds, 2008; Belton et al. 2013). 
A GMM describes the distribution of points in a feature space. Each of the generated Gaussian 
models represents a local cluster in the feature space. However, distribution-based algorithms 
put an extra burden on the user: concisely defined mathematical models that are not available 
for many. In density-based clustering, clusters are defined as point groups with higher density. 
Objects in sparse areas - that are required to separate clusters - are usually considered to be 
noise or border points. 

The most popular density-based clustering method is density-based spatial clustering of 
applications with noise DBSCAN (Ester, et al., 1996). It connects points within a certain 
distance-threshold; it only connects points that satisfy a density criterion. Clusters are defined 
according to the local-density pattern of points and based on the fact that each cluster is 
surrounded by an area of lower density (or even equal to zero) representing the noise. The 
DBSCAN algorithm requires two parameters – searching radius (ε) specifying the maximum 
distance between two points for them to be considered in a cluster, and a minimum number of 
points (MinPts) specifying how many neighbors a point should have for them to be considered 
as a cluster. The algorithm starts with an arbitrary starting point that has not been “visited” and 
retrieves this point's ε-neighborhood. If it contains sufficient points, a cluster is started; 
otherwise, the point is labeled as noise. The point that does not meet the criteria might later be 
found in a sufficiently sized ε-environment of a neighbor point and hence be made part of a 
cluster. If a point is found to be a dense part of a cluster, its ε-neighborhood is also part of the 
same cluster. This process continues until the density-connected cluster is completely found. 
Then, a new unvisited point is retrieved and processed to discover a new cluster or noise. The 
testing results indicated that an appropriate selection of MinPts and ε could improve the 
accuracy of object clustering. Because DBSCAN provides the required accuracy and efficiency 
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without asking predefined number of objects, it was selected as the base of object clustering in 
this project. 

2.3 Vehicle and Pedestrian Classification 
In the past decade, researchers have used LiDAR and vision-based approaches for 

pedestrian and vehicle detection and tracking (Premebida et al., 2007; Premebida et al., 2009; 
Ismail et al., 2009; Sivaraman and Trivedi, 2013). Numerous algorithms were developed to 
improve detection accuracy and reduce computational expense for reliable onboard sensing 
systems. For onboard systems, the major approach to identifying pedestrians and vehicles is 
feature-based machine learning classification (Wojke and Haselich, 2012; Azim and Aycard, 
2012; Cheng et al., 2014). Existing feature-based methods/algorithms heavily depend on the 
high density of laser points that provide detailed descriptions or specific characteristics of the 
objects. Due to the required detection distance and the low number of laser beams, roadside 
LiDAR sensors can only provide limited and sparse laser points of objects on the road. The 
detection accuracy of feature-based machine learning algorithms was observed to be 
significantly low when being tested with roadside LiDAR data in this project. In addition, most 
existing onboard-sensing systems (Premebida et al., 2007; Himmelsbach et al., 2008; 
Premebida et al., 2009) combine data from multiple sensors such as LiDAR and cameras, but 
the roadside LiDAR system relies on LiDAR sensors only in the current deployment that is 
limited by edge-computer configuration, mainteNAce resource, and space for additional 
cameras. Support vector machine (SVM) (Kidono, et al., 2011), neural network (NN) (Szarvas, 
et al., 2006), and Naive Bayes (NB) (Spinello and Siegwart, 2008) were also used by onboard 
sensing systems for vehicle and pedestrian classification. The computational demand of NN 
classifier is lower than that of SVM and NB, so NN was selected for object identification with 
roadside LiDAR data. 

2.5 Object Tracking 
Tracking is to associate clusters representing the same vehicle/pedestrian of different 

frames. Common methods used for object tracking in LiDAR data include nearest neighbor 
(NN), Kalman filter (KF), multiple hypothesis tracking (MHT), and other algorithms. Azim and 
Aycard (2012) built object association by finding the nearest clusters of continuous frames, so 
their method was called Global Nearest Neighbor (GNN). While finding a possible nearest 
neighbor association between a track and an observation, the algorithm ignores associations in 
different classes. For instance, if the nearest neighbor of a vehicle observation classified as a 
pedestrian, the algorithm ignores this nearest neighbor and searches for the next nearest point 
within the specified range. Miyasaka et al. (2009) used an extended Kalman filter (EKF) to 
estimate the non-linear states of objects and to predict their locations in the next frame. 
Himmelsbach et al. (2008) combined the Kalman Filtering and nearest neighbor for vehicle 
tracking. Mortion and Underwood (2011) developed a dynamic object tracking algorithm that 
uses a motion model to predict the likely location of future observations then associates these 
observations with the current set of tracks. Multiple hypothesis tracking (MHT) algorithm 
effectively mitigates association errors by retaining multiple data association hypotheses until 
enough evidence is accumulated to resolve past assignment ambiguities. Variations on both the 
implementation and the ordering of these steps resulted in different tracking methods. Most of 
the methods mentioned above were developed for processing on-board LiDAR data.  

2.6 Literature Review Conclusion 
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Results of the literature review showed that there is a lack of data-processing algorithms 
for a complete procedure although a great amount of research has been performed for 
processing onboard LiDAR data. It is necessary for this project to develop the required methods 
and procedure, so roadside LiDAR data can be processed accurately and efficiently to extract 
multimodal traffic trajectories. This project will provide the foundation for data-processing 
methods to apply roadside LiDAR sensors in various traffic scenarios.  
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CHAPTER 3 ROADSIDE LIDAR DATA PROCESSING 

3.1 LiDAR Sensor and Data 
Velodyne VLP-16 LiDAR sensors were used in this project to collect roadside LiDAR 

data and test deployment methods. The sensor unit is composed of 16 laser/detector pairs and 
an inner motor that rotates lasers horizontally to generate a 360-degree three-dimensional (3D) 
point cloud (600,000 points per second) in a 100-meter radius. The rotation frequency can be 
customized from 5 Hz to 20 Hz. One data frame is generated after the sensor finishes a 360-
degree scan and is stored in the packet capture (pcap) format. The sensor covers a 30-degree 
vertical field with the 16 laser beams evenly distributed in the range of 15-degree up and 15-
degree down, which means a 2-degree interval between adjacent laser beams. The VLP-16 
sensor reports spherical coordinates (r, ω, α) that can be converted into Cartesian coordinates 
(x, y, z). The LiDAR data include point location (x, y, z), intensity, laser ID, azimuth, the 
distance between a data point and the sensor, adjusted time, and timestamp (Velodyne, 2016). 
By knowing LiDAR coordinates and GPS locations of the LiDAR sensor and a reference point, 
all LiDAR points can be projected to a geography coordinate expressed by longitude, latitude, 
and elevation. A LiDAR sensor can be temporarily installed on a portable platform (like a 
tripod) for short-term data collection or permanently installed on roadside infrastructure for 
long-term data collection and monitoring. This study showed that 6-7 ft height is optimal for 
roadside LiDAR deployment, which provides expected detection range and capability of 
overcoming occlusion caused by passenger vehicles because the sensor location is higher than 
passenger cars. The data can be viewed in the open-source software VeloView 
(https://www.paraview.org/veloview/ ). Velodyne was in the process of manufacturing new 16-
channel LiDAR with a narrower interval when the project team was preparing this report, so  
the new sensors were not tested in this project. It is important to test the new sensors and 
validate the influence of the changed sensor intervals in future research. 

3.2 Background Filtering 
An automatic background filtering method named 3D-density-statistic-filtering (3D-

DSF) was developed in this project to filter both static (buildings) and dynamic background 
objects (shaking trees and bushes) in roadside LiDAR data. The 3D-DSF considers the 
aggregated-density distribution of LiDAR points in the 3D space. The 3D-DSF method includes 
four major steps: frame aggregation, point density statistics, threshold (TD) learning, and real-
time filtering. A 3D matrix representing the 3D sensing space is generated in the third step, and 
each cell is labeled as background or non-background based on its number of points. In real-
time background filtering, the LiDAR points in the background cells are excluded from LiDAR 
data before being processed in the following steps. It can be used to process roadside-LiDAR 
data regardless of brand or number/angle of laser beams. Figure 3-1 shows the 3D-DSF 
flowchart. 
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Figure 3-1 Flow chart of the developed 3D-DSF algorithm 

Frame Aggregation 
3D-DSF aggregates LiDAR data frames collected in a period as initial input for 

background learning. Theoretically, the more frames used for background identification, the 
better accuracy can be achieved. However, more frames require more computer memory and 
increase the time for background identification. In contrast, the algorithm is unable to identify 
vibrating background points accurately with a low number of aggregated frames. This research 
compared the performance of different amounts of frames to determine the optimum number for 
aggregation. When the number of aggregated frames was higher than 3000, increased frames 
did not significantly improve the accuracy of background identification. Therefore, the 
recommended number of aggregated frames is 3000. 

Points Statistics 
After frame aggregation, the algorithm divides the LiDAR sensing space into 

continuous 3D cubes. Each cube is a background space or non-background space. A 3D matrix 
is built to represent the whole space so that each matrix element represents a cube and its value 
is the number of aggregated points in it. A critical parameter of this algorithm step is the cube 
side length that determines the resolution of background identification and size of the 3D 
matrix. A short side length provides higher resolution but can significantly increase the size of 
the 3D matrix and requirement of computer memory; long side length requires lower computer 
memory but may report non-background points as background because of the reduced 
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resolution. Influence of side length on the performance of the algorithm was explored in this 
project. Time for generating the 3D matrix also changes along with the selected side length. 
When the side length was changed from 0.1m to 0.05m, the accuracy of background filtering 
was not improved significantly but the time cost increased by almost 40 minutes. Therefore, the 
recommended cube-side length is 0.1m.   

Threshold Learning 
The algorithm calculates the density of aggregated 3D points in each cube in this step. 

In general, the density of a cube with background should be higher than the density of a cube in 
traffic lanes with moving vehicles or pedestrians. A threshold of cube density (TD) is needed to 
distinguish background and non-background cubes. A low TD may misidentify roadway space 
as background because of slow-moving or high-volume vehicles or pedestrians; a high TD may 
not correctly identify the background cubes that are far away from the LiDAR sensor with 
relative low point density. The point density of the same object scanned by the same LiDAR 
varies with its distance from the sensor. In general, the density is lower when the object is 
further away from the sensor. Figure 3-2 shows an example of the point density change of a 
vehicle when it is at different distances from a sensor.  
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Figure 3-3-2 Distribution of vehicle points in LiDAR data 

When background objects are at different distances from a LiDAR sensor, the point 
densities in background cubes are also different, which means the TD should vary in different 
detection ranges. The algorithm divides the whole sensing range into six areas, based on 
experience, for background identification and filtering: 0-5m, 5-10m, 10-20m, 20-30m, 30-
40m, and longer than 40m from the LiDAR sensor. The TD threshold is determined for each 
subarea by Equation 1: 

            𝑆𝑙𝑜𝑝𝑒 ൌ ிିிషభ (1)
ேିேషభ 
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where Ni is the ith number of points per cubic (from lowest to highest) and 
F is the frequency of the ith number of points per cube. 

When the slope firstly becomes 0 or positive, the frequency of number of points per 
cube in Equation 1 (F) is used as TD. After identifying the background cubes with the 
determined thresholds, the background space is labeled in the 3D matrix. For real-time data 
processing, any LiDAR point in the background cubes is identified as a background point and 
excluded from the following process. 

Background Filtering Case Study 
For testing the background-filtering algorithm, it was applied to process roadside 

LiDAR data collected at six sites in Reno, Nevada, as summarized in Table 3-1. 

Table 3-1 Sites for Background Filtering Evaluation 

Location Frames aggregated 
for background 
identification 

Sensor 
rotating 

frequency 
(Hz) 

AADT Speed 
limit 

(mph) 

Time of Data 
Collection 

N Virginia St. 
at15th St 

3000 10 11000 25 Night time: no 
pedestrians or 
vehicles 

N Virginia St. 
at10th St 

1500 5 11000 25 Peak hour: high 
pedestrian and 
vehicle volume  

Evans Ave at 
Enterprise Rd 

2500 10 3500 25 Non-peak hour 

Parking Lot 3000 10 5 Non-peak hour 
Kietzke Lane 3000 10 22000 45 Peak hour: high 

vehicle volume 
I80 in Elko, 
NV 

3500 10 11800 80 Non-peak hour 

A LiDAR sensor was permanently installed on top of a pedestrian-signal head at the 
intersection of N. Virginia St. and 15th St., as shown in Figure 3-3(a). Data at other sites were 
collected using a VLP-16 LiDAR mounted on a tripod for short-term data collection, as shown 
in Figure 3-3(b). 
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Figure 3-3 Different installation methods of roadside LiDAR sensors 

Two examples of frames before and after background-filtering are presented in Figure 
3-4 with the raw data collected at the parking lot and the intersection of N. Virginia St. and10th 

St. 
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Figure 3-4 Examples of before and after background-filtering 

Background space cubes were accurately identified, and background points were 
successfully removed when there was no traffic (Figure 3-5 (a) and (b)) in aggregated frames. 
The noise points left in Figure 3-4 (b) were not background objects but random noise in LiDAR 
data. When many vehicles and pedestrians existed during data collection, some low-density 
background points were left after background-filtering (Figure 3-5 (c) and (d)). The left 
background points and noise points discretely distributed in the sensing space, so they were 
further filtered in the following step – clustering. However, it is still recommended to use 
LiDAR data frames with low/no traffic for background identification. Table 3-2 presents the 
evaluation results of filtering background points from data collected at the various sites.  

As shown in Table 3-2, the developed method filtered more than 99% of background 
points when there were no pedestrians or vehicles (N. Virginia St. at15th St.). Even at the site 
with high pedestrian and vehicle volume (N. Virginia St. at 10th St.), the method still removed 
more than 97% of background points. For the data frames with pedestrians and vehicles, the 
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background-filtering process needs to keep LiDAR points of pedestrian and vehicle as much as 
possible so that shapes of point clusters are not changed. In this evaluation, the vehicle length 
was calculated by manually selecting the front point and back point of each vehicle in data 
frames before and after background filtering. The results in Table 3-2 show that vehicle shapes 
were only minorly changed after background filtering because of loss of sparse edge points. The 
sites included traffic environments with different function classes, geometries, and speed limits 
(from 5mph to 80mph). The results show that the 3D-DSF can effectively filter background 
points at all those sites. Though there were noise points left after the background filtering, the 
following data-clustering step, using k-means clustering or density-based clustering methods, 
was not influenced. 

Table 3-2 Evaluation of Background-Filtering Performance at Different Sites 

UNR 
Parking 
lot 

N .Virginia 
St. at 10th 

St. 

Evans 
Ave at 
Enterprise 
Rd. 

N. 
Virginia 
St. at 
15th St. 

Kietzke 
Lane 

I80 in 
Elko, 
NV 

Before 
Background 
& noise 
points 

18316 45132 18621 18035 18217 17162 

After 
Background 
and noise 
points 

21 1362 176 25 46 20 

Filtering Percentage 99.8% 97.0% 99.1% 99.9% 99.7% 99.9% 

Before 
Vehicle 
points 

NA 507 451 NA 531 651 

After 
Vehicle 
points 

NA 493 411 NA 506 606 

Vehicle-point lost 
percentage 

NA 2.8% 8.9% NA 4.7% 6.9% 

Before 
Detected 
Vehicle 
Length (ft) 

NA 46.1 44.8 NA 43.2 51.6 

After 
Detected 
Vehicle 
Length(ft) 

NA 40.1 42.5 NA 40.0 49.1 

Before 
Pedestrian 
points 

NA 209 553 NA NA NA 

After 
Pedestrian 
points 

NA 196 532 NA NA NA 

Pedestrian-point lost 
percentage 

NA 6.2% 3.8% NA NA NA 

Note: the detected vehicle length is not exactly the real vehicle length subject to the vehicle 
location. 

3.3 Detection and Tracking of Pedestrians and Vehicles 
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Background filtering is followed by object identification that contains two sub-steps: 
clustering and classification. Clustering groups of LiDAR points belonging to a same object and 
classification is used to identify a road user’s type – vehicle, pedestrian or others. This project 
developed a clustering algorithm based on the traditional DBSCAN method (Ester et al., 1996) 
with consideration of spatial distribution and density difference of LiDAR points. A new 
vehicle-pedestrian-classification method was also developed for the roadside-LiDAR sensing 
system to identify the type of each LiDAR point cluster. 

3.3.1 Objects Clustering
DBSCAN is one of the most popular density-based clustering algorithms (Ester et al., 

1996; Aggarwal and Reddy, 2013). Two parameters of the traditional DBSCAN algorithm are 
Minimal Points (MinPts) and the searching radius (ɛ) that determine the performance of 
clustering. If the number of data points within a searching area (the predefined searching radius) 
is greater than or equal to the predefined MinPts value, those data points are clustered to form a 
group. By the end of DBSCAN, laser points are divided into three categories – core points, 
border points, and noise points. Core points and border points are grouped to describe the shape 
of each object. An advantage of the DBSCAN method is that it does not need a predefined 
number of clusters. This is especially useful when clustering road user points because the 
number of objects on roads is unknown before clustering. 

Due to the angles of LiDAR laser beams and shape/size of pedestrians and vehicles, the 
number of LiDAR points reflected by a pedestrian is different from the number of points from a 
vehicle at the same distance from the sensor. The number of LiDAR points from the same 
object also changes at different distances from a LiDAR sensor. As an example, Figure 3-5 (a) 
and Figure 3-5 (b) show 3D points of pedestrians at different distances from a VLP-16 LiDAR 
sensor. There were only 12 points from a pedestrian standing 26 meters away from the sensor, 
while 484 and 512 points are available for two pedestrians three meters away from the same 
sensor. 

Figure 3-5 Comparison of obtained points from pedestrians at different distances from a VLP-16 sensor 

Therefore, it is difficult for the traditional DBSCAN algorithm to cluster roadside-
LiDAR points accurately with a fixed MinPts value and a fixed searching radius. The MinPts 
value and searching radius need to be adjusted at different distances from the sensor, so a 
DBSCAN-based clustering algorithm was developed to implement adaptive MinPts values and 
searching radiuses. When the MinPts values and searching radiuses (vertical and horizontal) 
change at different distances from a sensor, the calculation for each LiDAR point leads to a 
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heavy computation requirement. Therefore, the proposed procedure divides the LiDAR 
detection range into three sub-areas (I, II, III) based on the distances from the sensor (as shown 
in Figure 3-6). Each subarea uses the same searching radius and MinPts values determined by 
the outer edge (farthest to the sensor) of the subarea. The developed clustering method uses 
different radiuses in the vertical direction (longer radius) and the horizontal plane (shorter 
radius), and generates an ellipsoid searching space rather than a sphere. The vertical and 
horizontal searching radiuses were determined by the vertical LiDAR point resolution 
(determined by the vertical angle of adjacent laser beams) and the horizontal LiDAR point 
resolution (determined by the shooting frequency of a laser beam).  Therefore, the new method 
can separate points of two pedestrians close to each other. For example, the vertical distance 
between two adjacent laser beams needs to be shorter than the height of a road user to avoid the 
object falling between two laser beams and not being detected. The vertical angle between two 
adjacent laser channels of VLP-16 sensors is 2 degrees and the vertical height between two 
adjacent laser beams is about 1 meter at a 30-meter distance from the sensor, so a pedestrian 
higher than 1 meter can be detected (scanned by at least one laser beam) in this range. 

Figure 3-6 Clustering area division for using different parameters 

3.3.2 Pedestrian and Vehicle Classification 
It is critical to distinguish pedestrians and vehicles in point clusters. The classification 

method developed in this project extracts three features from point clusters as listed in the 
following: 

1) Total number of points 
A cluster is a maximal set of density-connected points. Although occlusion could affect 

the total number of points in clusters, in general, a vehicle cluster includes more points than a 
pedestrian cluster when they are at the same distance to the sensor.  

2) Cluster-sensor distance 
The distance to the LiDAR sensor influences the number of points in a cluster. The 

mean of all point-sensor-distances in a cluster is used as the cluster-sensor distance. 
3) Point-distribution direction 
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Space distribution of points belonging to a pedestrian cluster is mainly along the vertical 
direction (z-axis), while the distribution of points in a vehicle cluster is primarily along the 
horizontal direction (parallel to the x-y plane) in general. With the least-square linear regression 
method, a linear function can be generated to describe the point-distribution direction of each 
cluster. 

Figure 3-7 shows the difference between the three extracted features between vehicles 
and pedestrians. In Figure 3-7 (a), the number of points in a cluster decreases along with the 
increase of cluster-sensor distance, and a vehicle cluster contains more points than a pedestrian 
cluster at the same cluster-sensor distance. The difference between point-distribution directions 
between pedestrian clusters and vehicle clusters is shown in Figure 3-7 (b). When the angle 
between a cluster’s point-distribution direction and the x-y plane is less than 20 degrees, this 
cluster has a high possibility of being a vehicle. It needs to be noted that the first two features, 
number of points and distance, are related. The distribution direction does not have a direct 
connection with the number of points and distance. These three features were used as inputs of 
object classification. 
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 Figure 3-7 Difference of classification features between vehicles and pedestrians 

In this project, a classification model based on the backpropagation artificial neural 
network (BP-ANN) was developed to distinguish pedestrians and vehicles in clusters. The BP-
ANN (as in Figure 3-8) is a multilayer feed-forward neural network composed of an input layer, 
a hidden layer (or layers), an output layer, and neurons in each layer. The number of hidden 
layers can be more than one. The input data is fed to the input layer; inputs and weights 
between nodes in different layers determine the output. The BP-ANN model can be trained by 
adjusting the weight values between nodes with a dataset that has known input (the three cluster 
features in this project) and output (road user type in this project) information. When the 
minimal error is reached, or the number of iterations is beyond the predefined value, the 
training process ends and provides a trained neural network that can estimate the cluster type of 
the new input. It is found that the selected features are critical for the performance of traveler 
type classification, so the simple BP-ANN classification method can provide high accuracy 
with the features showing a clear difference between different types.  In contrast, an advanced 
classification method is not necessary to provide better accuracy if selected features are not 
appropriate. 
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Figure 3-8 Structure of BP-ANN model 

3.3.3 Tracking
In order to obtain each road user’s trajectory and speed, object tracking was performed 

after clustering and classification. Tracking identifies the same object in continuous data frames 
(Coifman et al., 1998; Allodi et al., 2016; Wang et al., 2017). Two factors are considered for 
object association: distances between an object in a previous frame to all objects in the current 
frame and the time difference between two considered frames. An object in the current frame is 
matched to an object in the previous frame if the distance between them is the shortest among 
all candidate objects and time difference between the two data frames is within a certain period. 
The candidate objects are selected by the area within a distance threshold that is determined by 
the historical object speed and the time difference between frames.  Each tracked object uses 
the same object ID in different frames. When an object in the current frame cannot find a 
matched object in its previous frame, a new tracking ID is assigned. Figure 3-9 shows two cases 
of tracking. In Figure 3-9 (a), objects O1-O4 in the searching region (radius R was determined 
by the historical speed) are considered as candidates. Among the four candidate objects, O4 is 
the nearest object to object A, so O4 is the updated location of object A. In Figure 3-9 (b), O4 is 
the searching area of object A and object B. In this case, O4 is matched to the object with the 
shortest distance (min{d14 and d24}) and used as that object’s updated location. For some frames 
where clusters cannot be detected (occlusion or failure of clustering), the Kalman filter can be 
used to predict the status of the missing object, thus improving the tracking continuity. After 
successful object tracking, a discrete Kalman filter model is updated with the 
position/speed/acceleration information of the object in the previous frame and the 
position/speed/acceleration information of the matched object in the current frame.  
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 Figure 3-9 Demonstration of object tracking 

With each road user’s trajectory identified, position, velocity, and direction can be 
determined. Velocity is the distance between the same object’s locations in two frames divided 
by the time difference. When a vehicle is approaching the LiDAR, the position reference point 
is the front corner point. When a vehicle is leaving the LiDAR, the position reference point is 
the back corner point. An analysis was performed to justify that the vehicle travel distance 
between adjacent frames (at 10 Hz) is much shorter than the distance between adjacent vehicles 
in a road lane, so object association based on the shortest distance works in this process. Figure 
3-10 presents a comparison of a vehicle’s frame-to-frame travel distance and the distance 
between different vehicles in the same lane. The curves of 1-second headway, 2-second 
headway, and 3-second headway describe the closest vehicle distance in one lane with the 
various headways at different speeds. The curve of frame-to-frame distance at 10 Hz presents 
the travel distance of the same vehicle in adjacent frames (recorded every 0.1 second) at 
different speeds. The comparison shows that the vehicle travel distance between adjacent 
frames is much shorter than the distance between vehicles in the same lane, so the shortest 
distance method will connect the same object’s clusters in adjacent frames rather than 
mismatching different objects’ clusters. 
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Figure 3-10 Comparison of frame-to-frame travel distance and distances between adjacent vehicles in the same 
lane. 

3.4 Validation of Detection and Tracking Methods 
Three field tests were conducted at three intersections (shown in Figure 3-11) in Reno, 


Nevada to evaluate the proposed procedure and methods for detecting and tracking road users 

with a roadside LiDAR sensor. The intersection of North Virginia Street and 15th Street (Site 1) 

is a signalized intersection with permanently installed LiDAR sensors. Site 2 was the 

intersection of Sierra Street and 11th Street that is a two-way-stop-sign controlled intersection 

with Rectangular Rapid Flash Beacon (RRFB) pedestrian signals.  A 16-channel LiDAR sensor 

with 10Hz rotation frequency was mounted on a tripod (approximately 6ft above the ground) 

for data collection. Site 3 was the T intersection of North Virginia Street and 10th Street where 

the LiDAR sensor was also installed on a tripod (approximate 6ft height above the ground) with 

5Hz frequency. Speed limits of the three sites were 25 mph. Table 3-3 summarizes the data 

used in this validation from the three sites.
	

Table 3-3 Data collection site information 

Location LiDAR rotation Data collection Speed limit 
frequency (Hz) period (mph) 

N. Virginia St. at 15th St. 10 19860 frames 25 
(Site 1) (33min) 
Sierra St. at 11th St. 10 18000 frames 25 
(Site 2) (30min) 
N. Virginia St. at 10th St. 5 18000 frames 25 
(Site 3) (60min) 
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Figure 3-11 Google map of data collection sites 

For the clustering process, all road users were clustered by the modified DBSCAN 
algorithm. An example of clustered points in a data frame is shown in Figure 3-12 with three 
vehicles and three pedestrians. Two pedestrians (represented by red and black dots) with a 
distance of 0.5 meter were clustered accurately. Table 3-4 presents evaluation results that 
compare the number of extracted clusters from LiDAR data and identified road users from 
recorded videos. The detection accuracy of object clustering was about 96%. The main reason 
for clustering failure was that only sparse points were collected from objects at a far distance, 
and occlusion is another issue. 
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Figure 3-12 Demonstration of clustering results 

Table 3-4 Summary of clustering evaluation results 

Location Total Clusters from the Objects from Detection 
frames proposed the video Accuracy 

algorithms 
N. Virginia St. at 100 315 305 96.8% 
15th St. 
Sierra St. at 11th St.  100 356 338 95.0% 
N. Virginia St. 
at10th St. 100 243 234 96.2% 

After clustering, the next step is to classify clusters into vehicles and pedestrians using 
the BP-ANN model and the three extracted cluster features: number of points, distance to the 
sensor and point-distribution direction. LiDAR data were recorded and reviewed to train the 
ANN model. The training dataset was further divided into three categories for Training (70%), 
Validation (15%), and Testing (15%) steps. An evaluation dataset that has not been seen by the 
trained model was used to evaluate the performance of the trained network. Different training 
clusters might be the same pedestrian or vehicle in different data frames. With the training data, 
the project team first determined the number of neurons in the hidden layer. Because there is no 
common approach to determining the number of neurons, ten neurons are selected. Then, the 
number of neurons can be changed and evaluated to identify the optimum one. After the 
determination of the number of neurons, the research team tested various training functions and 
transfer functions. It was found that the performance of the ANN model was not obviously 
influenced by the difference of training functions and transfer functions. Scaled conjugate 
gradient backpropagation for training function, softmax transfer function and mean squared 
error performance function were selected as functions of the ANN model. The classification 
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results are listed in Table 3-5. An approximate 96% classification accuracy can be guaranteed 
within the 30-meter-radius sensing range. The classification failure was found to be caused by 
vehicle occlusion. 

Table 3-5 Evaluation of cluster classification 

Locations Observed pedestrians 
and vehicles 

Recognized clusters 

Total Pedestrian Vehicle Pedestrian Vehicle Classification 
frames clusters clusters clusters clusters rate 

N. Virginia 
St. at 15th 
St. 

1000 403 597 385 581 96.6% 

Sierra St. at 
11th St. 

1000 389 611 370 593 96.3% 

N. Virginia 
St. at 10th 

1000 284 716 275 690 96.5% 

St. 

For the tracking procedure, a total of 1,023 vehicles and 48 pedestrians were detected 
and tracked from 18000-frame data collected at Site 1. Figure 3-13 presents part of the 
extracted vehicle and pedestrian trajectories. The red and blue dots represent trajectories of 
vehicles and pedestrians at 10 Hz frequency. Table 3-6 shows the tracking results from 1000 
data sample frames at three sites. Tracking accuracy of approximately 95% can be achieved 
within about 30 meters detection range from the LiDAR sensor. Similar reasons have been 
found for tracking failure as those addressed in the clustering section. 
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Figure 3-13 Example of extracted vehicle and pedestrian trajectories 

Table 3-6 Evaluation of object tracking 

Location 
Total 
frames 

Trajectories from 
the proposed 
algorithm 

Trajectories 
from the video 

Tracking 
accuracy 

N Virginia 
St@15th 

1000 40 42 95.2% 

Sierra St@11th 
St 

1000 35 37 94.6% 

N Virginia 
St@10th St 

1000 34 35 97.1% 

Evaluation of detection/tracking performance also included speed validation that 
compares speed extracted from roadside LiDAR data and speed logged through the OBD-II 
vehicle interface. The OBD-II speed was from the vehicle speedometer and was considered as 
accurate speed. Vehicle speed was calculated every 0.1 second (10 HZ) using the LiDAR data, 
while the OBD logger provided the speed every 0.5 seconds. So, the validation process was to 
compare the space mean speed from the LiDAR sensor (in every 0.5 seconds) with speed 
measured by the onboard system. Figure 3-14 shows the statistical testing results of speed 
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validation. The orange bars show speeds obtained from the speedometer of a testing car running 
between 25 to 35 mph; the blue points depict the calculated speeds from LiDAR data. The 
statistic results show that 90% of the speed difference is lower than 2.5mph. The minor speed 
difference was caused by the timestamp and point position offsets between frames. 

Figure 3-14 Validation of speed information extracted from roadside LiDAR 

Occlusion is the major challenge of LiDAR-point clustering, classification and object 
tracking. The LiDAR location is suggested to be 7-ft high from the ground, so the sensor is 
higher than most light-weight vehicles (passenger cars) and can at least scan the top of vehicles 
if they are blocked by passenger cars. Complete occlusion is normally caused by trucks and 
buses. A recommended solution is to install multiple LiDAR sensors at different corners of 
intersections and along both sides of roads, thus providing detection coverage from various 
sensors in different directions. Figure 3-15 shows an example of partial and full occlusion 
cases. After integration LiDAR points from two LiDAR sensors, the second pedestrians in 
Figure 3-15 (a) can be identified with more points and better shape information. In Figure 3-
15(b), the second vehicle was totally blocked by the first vehicle when using one LiDAR 
sensor, but it can be detected by the second LiDAR sensor at a different location. Therefore, the 
LiDAR sensor network will extend the detection range and reduce the possibility of occlusion. 
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Figure 3-15 Demonstration of multiple-LiDAR overcoming occlusion 

3.5 LiDAR Data in Inclement Weather  
This project also tested the performance of roadside LiDAR sensors and the developed 

data processing methods in inclement weather conditions. This test applied a dataset of 27,000 
frames under different weather conditions (9000 frames in good weather, 9000 frames in rainy 
weather, 9000 frames in snowy weather). The results were compared and illustrated in Table 3-
5. The results showed that during good weather, the cluster method provided a low false rate of 
0.14%. Those vehicles that were not successfully detected were mainly caused by vehicle 
occlusion, which can be solved by deploying multiple LiDAR sensors on both sides of the road. 
The average detection range in good weather was 38 meters. In rainy weather, the false rate 
went a litter higher than that in good weather, but it was still in a low range. When it was 
snowing, the clustering accuracy was 98.13%. There were 35 false vehicle detections caused by 
snowflakes. The average detection range was 35.4m, which was a little shorter than that under 
good weather and rainy weather. The false vehicles could be excluded by comparing the 
identified vehicles in continuous frames, which was not included in this study. It needs to be 
noted that data used for the evaluation of weather influence was different from the dataset used 
in Section 3.4. The clustering accuracy was higher than the accuracy documented in Section 3.4 
because the traffic volume in the weather influence evaluation is lower and fewer occlusion 
events occurred. 

29 



 

 
   

 

 

 

 
 
 


	




Table 3-7 Evaluation of Roadside LiDAR and Developed Data Processing Methods in Inclement Weather
	

Good Weather Rainy Weather Snowy Weather 

The actual number 
of vehicles extracted 
from LiDAR videos 

(AV) 

35,405 23,642 5,413 

Detected number of 
vehicles (DV) 

35,354 23,410 5,382 

Number of false 
vehicles created by 

snowflakes/raindrops 
(SV) 

NA 3 35 

Undeteted vehicles 
(UV) 

51 235 66 

False Rate 0.14% 1.01% 1.87% 

Average detection 
range (m) 

38.1 37.5 37.4 
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CHAPTER 4 APPLICATIONS OF LIDAR TRAJECTORIES 

All-traffic trajectory data is critical to various traffic research/engineering areas, 
including but not limited to: 

 Connected and autonomous vehicles (CAVs): At present, independent onboard 
sensing systems do not provide enough information for safe operation in multimodal 
traffic. An autonomous vehicle with advanced sensors could still be hit by another 
car on a cross street that fails to stop. To advance safety, vehicles need to obtain the 
trajectories of all traffic in extended distances, so they can “detect” traffic changes 
and risks around corners. 

	 Near-crash analysis: Near-crash events provide essential data for proactive safety 
analysis and countermeasure recommendation, but this data is difficult to obtain. If 
all-traffic trajectory data could be collected, we could study vehicle interactions at 
multiple scales, and define and extract near-crash events to identify traffic safety 
issues and recommend countermeasures.  

	 Traffic performance evaluation/adaptive traffic signal control: All-traffic trajectories 
provide comprehensive information to evaluate traffic performance. Trajectory data 
reports each road user’s stop location, stop time, speed change, and interaction with 
other road users in addition to conventional vehicle-traffic performance indices such 
as a number of stops, delay, travel time, and queue length. Optimizing signals along 
a road is challenging using conventional traffic sensors because system details 
cannot be accurately observed. Real-time, all-traffic trajectory data can make the 
traffic system completely observable, thus revolutionizing adaptive traffic control 
and outperforming conventional systems. 

	 Automatic pedestrian/wildlife-crossing warning signals: An important application of 
real-time, all-traffic trajectories is monitoring and predicting vehicle-pedestrian 
conflicts on urban roads or vehicle-wildlife collision risks on rural highways. Most 
conventional automatic pedestrian/wildlife warning systems rely on predefined 
detection areas. These systems trigger warning signals whenever an object is 
detected in the sensing area, but this has both caused false alarms and failed to 
identify risks outside the defined areas. Trajectory data tracks the continuous 
movement of each road user, so crossing detection and prediction can be based on 
historical trajectory and real-time direction/speed/location for superior accuracy and 
reliability. 

This project studied applications of roadside LiDAR data for pedestrian crossing 
prediction, detection of animals crossing highways and near-crash identification. 

4.1 Detection and prediction of pedestrians crossing roads 
In this project, the research team developed a model for pedestrian crossing prediction 

with the roadside LiDAR sensing system. The developed model provides real-time quantitative 
confidence-levels of pedestrians crossing roads based on the pedestrian’s current and historical 
trajectories. The prediction employs a modified Naïve Bayes method that was first trained with 
field LiDAR data (pedestrian movement features and crossing/non-crossing status) and then 
evaluated with a testing dataset that is different from the training data. In the training stage, the 
values of each feature were segmented into ranges, and the combination of the features was 
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used as the input of the Naïve Bayes method.  

The Naïve Bayes sequence classifier is a basic generative model (Lewis, 1998) that can 
be trained efficiently in a supervised learning setting, even with a small dataset (Caruana and 
Niculescu-Mizil, 2006) so it is suitable for predicting pedestrian crossing behaviors in a real-
time way. It requires a strong (naïve) assumption that the features of the sequence data are 
independent of each other. Velocity and direction features of pedestrian trajectories are discrete 
and used as the input of the Naïve Bayes classifier. In order to apply the Naïve Bayes algorithm, 
the value of each feature needs to be segmented into different ranges, and the optimal 
combination of features was used as the input of the Naïve Bayes model. The training data with 
labels were divided into several ranges first and checked if the data in each range satisfied the 
requirement of defined minimum-record. If not, the algorithm reduced the number of 
segmentations (increases each segmentation’s range) and checked the requirement again. The 
output of the training process is a prediction model that includes the probability information for 
all the allowable segmentations.  

For the prediction process, the inputs are pedestrian trajectories, trained prediction 
model and probability threshold for predicting pedestrian crossing. The probability threshold is 
determined by the model user and can be adjusted based on the actual needs. A lower value 
means higher detection accuracy of pedestrians crossing roads but also a higher probability of 
misidentifying a non-crossing event as a crossing. A higher threshold value leads to lower 
detection accuracy of pedestrians crossing roads but also a lower probability of misidentifying a 
non-crossing event as a crossing. Given a pedestrian’s status (a record of the trajectory), the 
status values can be fitted into one appropriate interval based on the trained model. Since the 
features are independent of each other, the corresponding probabilities can be multiplied 
directly. Considering the different segmentations, two maximal probabilities for crossing and 
non-crossing labels are chosen, and the corresponding segmentations are considered as the 
optimal segmentations. It cannot be guaranteed that the sum of the two probabilities is equal to 
one since the chosen segmentations may be different for crossing and non-crossing cases. 
Therefore, the next step is to normalize two selected maximal probabilities so that the sum of 
normalized probability values is 1. If the normalized maximal crossing probability is greater 
than the predefined threshold value, the data point will be assigned a crossing label. Otherwise, 
the data will be classified into the non-crossing case. In addition, the normalized probabilities 
are used for providing quantitative confidence level information for crossing and non-crossing 
predictions. 

In this project, 18,000-frame data, streamed from a LiDAR sensor at the intersection of 
11th Street and Sierra Street, were processed with the procedures of background filtering, lane 
identification, road user clustering, pedestrian/vehicle classification, and tracking. Pedestrian 
trajectory data include XYZ position, total number of points, distance to the LiDAR, tracking 
ID, frame ID, velocity, direction, and timestamp, and pedestrian/vehicle label information were 
obtained. Figure 4-1 shows the data collection site on Google Map. The case study only 
analyzed the pedestrian trajectories on the east side of North Sierra Street. The selected 
crosswalk is marked with a red rectangle. Three main pedestrian approaching directions were 
from southbound, northbound, and westbound. Figure 4-2 demonstrates the sample trajectory 
data from previous research. The LiDAR sensor is located at the origin (0,0) and not showed in 
the plot. 
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Figure 4-1 Intersection for studying pedestrian crossing prediction
	

Figure 4-2 Sample trajectories for evaluating pedestrian crossing prediction 

The requirement for using Naïve Bayes algorithm is that features in the sequences 
should be independent of each other. Based on obtained pedestrians’ trajectory data, four 
features – X position (X), Y position (Y), Velocity (V), and Direction (D), were selected for 
model training. The correlation coefficients between each pair of the above four features are 
listed in Table 4-1. If the correlation coefficient is less than or equal to 0.2, it means that two 
variables have no relation or weak relation. The values in the table prove that the selected four 
features are independent of each other. 
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Table 4-1 Correlation Coefficients for Selected Features 


Features (X,Y) (X,V) (X,D) (Y,V) (Y,D) (V,D) 
Correlation 0.0101 0.1074 0.0211 0.0125 0.0681 0.1167 
Coefficients 

According to the trajectory data, 29 non-crossing trajectories and 21 crossing 
trajectories were used for model training. The trajectories recorded each pedestrian’s walking 
path and status in 8 seconds before actual crossing/non-crossing at the crossing facilities. Four 
extracted features were X position, Y position, Velocity, and Direction. Based on the proposed 
modified Naïve Bayes algorithm, a minimal number of segmentation and a maximal number of 
segmentations were set to one and 10, respectively. The required minimum number of data 
points in each segmentation was five. Finally, a pedestrian crossing prediction model was 
trained. 

For validating and evaluating the performance of the trained pedestrian crossing 
prediction model, a testing dataset collected from the same intersection but not seen by the 
trained model was applied to the trained model. The testing dataset included 10 non-crossing 
trajectories and 10 crossing trajectories. The probability threshold for crossing warning was 
40%. The trained prediction model was directly applied to the testing dataset, and prediction 
results of a crossing trajectory are demonstrated in Figure 4-3, Figure 4-4, and Table 4-2 as an 
example. In Figure 4-3, the trajectory shows the pedestrian’s walking path from 3 to 0 seconds 
before the actual crossing. The blue and red dots represent the crossing prediction correctly and 
incorrectly. Figure 4-4 presents the trend of normalized probability for crossing prediction in 
terms of time from the start (t). If the total predicted time length is T, then the Time-to-Cross is 
equal to T - t (e.g., the time before actual crossing). The normalized probability of crossing 
prediction became increasingly higher as the pedestrian was approaching the crossing facilities. 
At 3 seconds before crossing, the predicted probability of the pedestrian crossing the road was 
only 39.9%, while the probability increased to 86.5% at 1 second before crossing. At the 
moment of actual crossing, the predicted probability for the crossing was 100%, which 
conforms to common sense. 
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Figure 4-3 Example of crossing-prediction along a pedestrian’s trajectory 


Figure 4-4 Demonstration of predicted-crossing probability changing along a pedestrian's trajectory 


Table 4-2 Normalized Probability for Crossing Prediction 


Time-to-Cross (second) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 

Normalized Probability 
for Crossing Prediction 

39.9% 47.7% 63.7% 82.5% 86.5% 92.6% 100.0% 

For all the 10 crossing (label=1) and 10 non-crossing (label=0) trajectories, prediction 
results are listed in Table 4-3 and Table 4-4. Note that since the crossing warning threshold was 
set to 40%, there was a higher probability to predict crossing behaviors correctly. The average 
accuracy for crossing prediction was 97%, and non-crossing prediction accuracy was 84%.  
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Table 4-3 Prediction accuracy of Ten Crossing Trajectories 


Time-to-
Cross 
(second)  

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Prediction 
Accuracy 

3.0 0 1 1 1 1 1 1 1 1 1 90% 
2.5 1 1 1 1 1 1 1 1 1 1 100% 
2.0 1 1 1 1 1 1 1 1 1 1 100% 
1.5 1 1 1 1 1 1 1 1 0 1 90% 
1.0 1 1 1 1 1 1 1 1 1 1 100% 
0.5 1 1 1 1 1 1 1 1 1 1 100% 
0.0 1 1 1 1 1 1 1 1 1 1 100% 
Total 
Average 
Accuracy

 97%  

Table 4-4 Prediction Accuracy of Ten Non-Crossing Trajectories
	

Time Before Crossing 
(second) 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
Prediction 

Accuracy 

3 0 0 0 1 0 0 0 0 0 1 80% 

2.5 0 0 0 0 0 0 1 0 1 1 70% 

2 0 1 0 0 0 0 1 0 0 0 80% 

1.5 1 1 0 0 0 0 0 1 0 0 70% 

1 0 0 0 0 0 0 0 0 0 0 90% 

0.5 0 0 0 0 0 0 0 0 0 0 100% 

0 0 0 0 0 0 0 0 0 0 0 100% 

Total Average Accuracy 84% 

In order to improve prediction accuracy against the influence of random status change 
among the whole trajectory, three continuous trajectory records (0.3 seconds) were used for 
aggregated prediction. The final crossing/non-crossing label was determined by combining 
current prediction and prediction of previous two data-frames. If the goal is to ensure the 
accuracy of crossing prediction as much as possible, the crossing warning threshold should be 
decreased. If prediction accuracy for both crossing and non-crossing are sought, the crossing 
warning threshold should be increased to a relatively high value. The prediction model based on 
roadside LiDAR trajectories is valuable for unsignalized intersections or mid-block crosswalks. 
The pedestrian crossing signals, like Rectangular Rapid Flashing Beacon (RRFB), can be 
triggered automatically based on prediction results and confidence level information. In the 
future, pedestrian trajectory data in better quality can be obtained by integrating data from 
multiple LiDAR sensors which are installed at the different locations of the intersection and 
improved tracking algorithms.  
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4.2 Detection and Tracking Wildlife Animals Crossing Highway 
The testing site for roadside LiDAR detecting and tracking animals crossing a highway 

is a wildlife overpass (latitude: 40.907406°, Longitude: -114.305021°) on I-80 in Eastern 
Nevada. The historical data of wildlife animals crossing I-80 through this overpass was used to 
identify the case study date so that the study could capture wildlife animals crossing the 
highway in a few days instead of a few weeks. This overpass structure is 200’ long and 200’ 
wide over the four I-80 lanes and the median. The exclusionary fence was built on both sides of 
I-80 to funnel wildlife into the entrance of the overpass. Figure 4-5 shows the wildlife overpass.  
There is a fence deployed in the middle of the south end of the overpass, which is used to block 
cows and allow deer to pass. 

Figure 4-5 Wildlife overpass on 80 in eastern Nevada 

The LiDAR sensor was installed at the south end (near the middle of the fence) of the 
overpass and was mounted on a tripod for temporary data collection and powered by one deep 
cycle RV battery, as illustrated in Figure 4-6(a).  The rotation speed of the LiDAR sensor was 
set at 10Hz. The data collection time was from 5:00 p.m. on 3/2/2017 to 9:00 a.m. on 3/4/2017 
as historical data showed that the frequency of deer using this structure was high in early March 
every year. A laptop was connected to the LiDAR sensor and used to process the data collected 
by the sensor. For evaluating the results of LiDAR data processing, a 360-degree camera was 
also set up near the sensor to help collect the movement of wildlife. Figure 4-7(b) shows an 
example of a data frame collected by the LiDAR sensor. 
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Figure 4-6 Animal-crossing data collection site and sample LiDAR data 

The collected data showed that eight deer crossed the road using the overpass in the 
morning of 3/3/2017, from 6:45:36 a.m. to 6:47:46 a.m., as shown in Figure 4-7. 

Figure 4-7 Recorded LiDAR frame showing deer crossing I80 
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In some frames, only six or seven deer can be detected as some deer may be blocked by 
the other deer or the middle fence, which may not be successfully captured by the LiDAR 
sensor. After collecting all the position of wildlife, the trajectories and moving direction of 
these deer can be generated, as illustrated in Figure 4-8. 

Figure 4-8 Extracted deer trajectories 

It can be seen in Figure 4-8, deer changed their direction slightly as they approached the 
middle fence in order to find a lower section to jump over, which can also be seen in the video 
uploaded into YouTube: https://www.youtube.com/watch?v=qnvdSN6iusI&feature=youtu.be 
by the authors. As the deer were gathered near the fence waiting to jump one by one, some deer 
were blocked by the others or the middle fence. As a result, the beam of the LiDAR sensor 
could not reach all deer in some frames. The detection range of each deer and average speed 
calculated are demonstrated in Table 4-5. 

Table 4-5 Range of Deer Detection 

Deer Deer Deer Deer Deer Deer Deer Deer 
#1 #2 #3 #4 #5 #6 #7 #8 

Max Detection Distance (m) 31.76 37.74 32.83 29.60 27.74 27.51 32.28 26.28 
Average Detection Range of 
All Deer (m) 30.72 
Average Speed of Each Deer 
(m/s) 5.37 2.77 4.28 4.97 3.65 1.53 4.62 1.97 
Average Speed of All Deer 
(m/s) 3.65 

The average detection range was 30.72 m from the LiDAR sensor. The max effective 
detection range of the data processing procedure was 37.74 m. Though out of 37.74 m, deer 
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could be seen in the LiDAR data visualization, the developed algorithms could not successfully 
identify these points as deer.  The average speed of each deer varies from 1.53 m/s to 5.37 m/s, 
with a total average of 3.65m/s. Since there is a middle fence blocking the overpass, the deer 
had to slow down to jump the fence and wait for the rest of the herd. Therefore, the total 
average speed is not high. The wildlife detection in this project provided the method to 
distinguish wildlife from vehicles; the speed can also be used to distinguish deer and vehicles as 
the speed limit on the rural area is much higher compared to the speed of deer crossing the road. 
So, data collection using LiDAR with a longer period is expected to be conducted to capture 
wildlife crossing the road, which can be used to evaluate the effectiveness of the wildlife and 
vehicle division method. 

4.3 Near-Crash Analysis with Roadside LiDAR Data 
Historical crash records are important data sources for safety evaluation on roads. 

However, a crash is random, and only a small percent of conflicts are actually crashes. 
Therefore, historical crash data may not accurately reflect the risk of conflicts between road 
users. Furthermore, delay in safety evaluation is unavoidable since it takes time to collect and 
process historical crash records. Therefore, researchers and engineers are looking for surrogate 
data for safety evaluation. Near-crashes are then selected as a surrogate dataset to assess road 
safety management. Near-crashes refer to cases where drivers execute rapid evasive maneuvers 
(i.e., emergency braking and/or steering operation) when facing a potential driving risk or a 
potential threat (Wu and Jovanis, 2013). The major challenge for risk assessment using near-
crash data is a data collection method. The data collection method can be roughly divided into 
three major parts: driving simulation, naturalistic driving studies (NDS) and intelligent 
transportation systems (ITS). Driving simulation and naturalistic driving data are widely used 
for near-crash collection in previous studies. Although driving simulators can provide details 
about near-crashes with low-cost, the driving behavior in simulated environments still differs 
from a real situation (Wu and Xu, 2017). NDS can collect driver observation and driving 
operation unobtrusively, which provides a good opportunity to extract near-crashes in the real 
situation (Wu and Xu, 2018). Near-crashes in NDS were usually identified by detecting unusual 
vehicle kinematics using accelerometers and gyroscopic sensors installed in the experimental 
vehicle (Wu and Jovanis, 2013). Although the NDS data have several advantages, those studies 
still suffered from a major drawback: the NDS data only provide information about the 
equipped vehicles and their immediate surroundings. For one specific road segment, if there are 
no vehicles installed with the required NDS devices or the number of vehicles installed with 
those devices is limited, the near-crashes will be under-reported. Furthermore, the near-crash 
identification using NDS data is costly since the device installation and data reduction usually 
require a lot of effort (Xu and Wu 2018). The current strategy for safety analysis can be 
improved through the fast development of ITS technologies, especially connected-vehicle (CV) 
technology. In the CV network, the real-time traffic data of all road users can be collected and 
shared with each other through wireless communication. Currently, there are still limited 
connected-vehicles on roads, most of which are mainly used for pilot programs. It will take time 
to equip connected-vehicle devices into all vehicles, especially older models. It was estimated 
that mixed traffic (i.e. connected vehicles and unconnected vehicles) would exist for the next 
decade. As a result, not all near-crashes can be detected as only partial vehicle movement 
information can be obtained. It is necessary to find a solution to fill the data gap during the 
transition period from unconnected vehicles to connected vehicles. The trajectories of road 
users provided by roadside LiDAR are considered as the good data source for near-crash 
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identification. 

Different road users may be involved in near-crashes. The major types of near-crashes 
include vehicle-vehicle near-crash, vehicle-pedestrian near-crash, vehicle-bicycle near-crash, 
bicycle-pedestrian near-crash, vehicle-animal near-crash, and other types. Previous studies 
mainly focused on vehicle-vehicle near-crash analysis, especially on rear-end near-crash 
analysis (Gelso and Sjoberg, 2017). Vehicle-pedestrian near-crash was not well analyzed in 
previous research, mostly due to the difficulty of vehicle-pedestrian near-crash data collection 
(Wu and Xu, 2017). Considering the advantages of roadside LiDAR data, this project 
developed an innovative approach to vehicle-pedestrian near-crash identification using 
trajectories of vehicles and pedestrians extracted from roadside LiDAR sensors. Detailed 
thresholds were recommended to define the risk of vehicle-pedestrian conflicts. 

A novel method that considers the time difference of reaching the same point between 
vehicles and pedestrians, the distance between stopped vehicles and pedestrians, as well as the 
speed-distance profile of vehicles, was developed in this project.  

Time Difference to the Point of Intersection 
The point of intersection (PI) between trajectories of vehicles and pedestrians can be the 

potential conflicting point. By comparing the trajectories of vehicles and pedestrians, the 
location of the PI can be easily extracted. The timestamps when vehicles and pedestrians reach 
the PI should be different under normal maneuvers. If the timestamps are same, this indicates 
that a crash happens. Therefore, the time difference to the point of intersection (TDPI) was 
developed for near-crash identification. TDPI was defined as “the time difference between one 
vehicle and one pedestrian reaching the same point in their trajectories” in this paper. The TDPI 
can be calculated through Equation 1: 

𝑇𝐷𝑃𝐼 ൌ 𝐴𝐵𝑆 ൬
𝑇௩ െ 𝑇൰ ሺ1ሻ
𝐹 

Where 
TDPI is the time difference between vehicle and pedestrian to the point of intersection 

(PI), unit: second (s),
𝑇௩ is the timestamp when the vehicle reaches the point of intersection (PI), 
𝑇 is the timestamp when the pedestrian reaches the point of intersection (PI), and 
F is the frequency of data collection, unit: HZ. 
ABS should also be noted 
The TDPI is obtained from the real trajectories without any assumption about speed. A 

shorter TDPI is noted as more dangerous than a longer one. Figure 4-9 illustrates two examples 
of different TDPIs. 
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Figure 4-9 Examples of TDPI 

The frequency of data collection in Figure 4-9 is 10 HZ. In Figure 4-9 (a), one 
pedestrian reached the PI at the timestamp-3880, and one vehicle reached the PI at the 
timestamp-3913.  In Figure 4-9 (b), one pedestrian reached the PI at the timestamp-3880, and 
one vehicle reached the PI at the timestamp-4901. The TDPI in Figure 4-9 can be calculated 
through Equation 1. TDPI in Figure 4-9 (a) is 2.3s, and Figure 4-9 (b) is 148.8s. As can be seen, 
the situation in Figure 4-9 (a) is more dangerous than that in Figure 4-9 (b) since TDPI in 
Figure 4-9 (a) is much shorter and closer to driver reaction time. A controlled study in 2000 
found the average driver reaction time to brake was 2.3 seconds. A few states, including 
California, have adopted a standard driver reaction time of 2.5 seconds.  Therefore, any event 
having TDPI less than 2.5 seconds is recommended to be considered as a near-crash incident 
since the driver reaction time may not be enough to avoid emergency situations. Therefore, the 
case in Figure 4-9 (a) can be considered as a near-crash. When 2.5s≤TDPI≤3.5s, the crash risk 
is not as high as those cases when TDPI is less than 2.5 seconds, but pedestrians may feel 
uncomfortable under the short TDPI. Those cases are considered as crash-relevant, which can 
still be used for safety assessment when the near-crash events are also limited. If TDPI is higher 
than 3.5 seconds, the time left for driver reaction is enough, so those cases are considered as 
normal maneuvers. The thresholds provided in this part are only recommendations based on the 
authors’ best knowledge. Engineers can define their own thresholds for risk assessment.  

 The distance between Stop Position and Pedestrian 
The TDPI may not identify all near-crashes in some cases, such as the driver using the 

emergency brake and therefore stopping before reaching the PI. Drivers may wait until the 
pedestrian passes the PI. In that case, the TDPI may be still normal since the conflict occurred 
before the PI. To address this situation, the distance between the vehicle’s stopped position and 
pedestrian (DSPP) is developed. The DSPP is defined as “the distance between one vehicle and 
one pedestrian when the vehicle firstly stopped before reaching the pedestrian.” Considering the 
variance in the speed calculation, we select the timestamp when the speed of the vehicle is less 
than 1.0mph for DSPP calculation. Figure 4-10 shows two examples of different DSPPs with 
similar TDPIs. 
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	Figure 4-10 Two Different DSPP with Similar TDPI
	

The DSPP can be then calculated using Equation 2: 


𝐷𝑆𝑃𝑃 ൌ ඥሺ𝑋𝑣 െ 𝑋𝑝ሻଶ  ሺ𝑌𝑣  െ 𝑌𝑝ሻ^2  (2) 


Where DSPP is the distance between vehicle and pedestrian when vehicle firstly 

reduced speed to less than 1.0 mph, unit: m; 
𝑋𝑣 is the X-axis of vehicle, unit: meter (s); 
𝑌𝑣 is the Y-axis of vehicle, unit: meter (s); 
𝑋𝑝 is the X-axis of pedestrian, unit: meter (s); 
𝑌𝑝 is the Y-axis of pedestrian, unit: meter (s). 
 
The DSPP in Figure 4-10 (a) is 11.86 m  (38.91 ft) and Figure 4-10 (b) is 4.21 m  (13.81 

ft). The corresponding videos of Figure 4-10 (a) and Figure 4-10 (b) can be reviewed through 
the following links: https://youtu.be/QObqni4UaSI and https://youtu.be/ovmX6ERaoII, 
respectively. Though the TDPIs (5.7 s and 5.9 s) in these two cases were similar, the crash risks 
in those two situations were completely different. Figure 4-10 (a) shows an example that one 
pedestrian crossed the intersection while drivers stopped far away from  the pedestrian. The 
DSPP was 11.86 m  (38.91 ft), which was far enough and safe for the pedestrian. But in Figure 
4-10 (b), the left-turn driver did not see the pedestrian crossing the road in advance and stopped 
in the middle of the intersection when the vehicle was close to the pedestrian. The distance 
when the drivers stopped at the intersection was only 4.21 m (13.81 ft) away from  the 
pedestrians, which was more dangerous for the pedestrian compared to the case in Figure 4-10 
(a). Drivers should stop before the yield line or stop line to give a safe distance to pedestrians. 
The Manual on Uniform Traffic Control Devices (MUTCD) specified that the distance between 
the yield/stop line to crosswalk (LTC) should be placed a minimum of 1.2 m  (4 ft) in advance 
of the nearest crosswalk line at the controlled intersection.  Stop lines at midblock signalized 
locations should be placed at least 12 m (40 ft) in advance of the nearest signal indication. If 
yield or stop lines are used at a crosswalk located at an uncontrolled multi-lane approach, the 
yield lines or stop lines should be placed 6.1 to 15 m  (20 to 50 ft) in advance of the nearest 
crosswalk line. For normal maneuvers, DSPP should be no shorter than LTC. The 
recommended thresholds for near-crash identification at different sites are shown in Table 4-6. 
Engineers can also define their own thresholds based on the features of different sites.  
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Table 4-6 Near-Crash Identification with DSPP 

 Near-Crash Normal Maneuver 
Intersection DSPP<1.2m (4ft) DSPP≥1.2m (4ft) 

Signalized midblock crosswalk DSPP<12m (40ft) DSPP≥12m (40ft) 

Uncontrolled midblock 
 DSPP<6.1m (20ft) DSPP≥6.1m (20ft) 

crosswalk 

 
Speed-Distance Profile 

The DSPP did not show the impact of different speeds of vehicles on crash risk. For 

example, two vehicles may have the same DSPPs, indicating they stopped at the same location 
before the pedestrian. However, they may decrease with different decelerations before the stop. 
Abrupt stops are noted as more dangerous to pedestrians. The speed-distance profile is used to 
address this situation. Figure 4-11 shows an example of the speed distribution of vehicles with a 
different distance of the vehicle to pedestrian (within 100 ft).  
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Figure 4-11 Speed-Distance Profile of Vehicles 

 
Most points in Figure 4-11 were located in the area with a distance longer than 20 ft to 

pedestrians. The distribution of the points was dispersed at the same distance, indicating 
different vehicles had different speeds. The 85th percentile speed was calculated. In this specific 
site, the 85th percentile speed was about 15 mph before vehicles dramatically slowed down. The 
total stopping distance can be estimated by summing the perception-reaction distance and the 
braking distance. For a vehicle going 15 mph, the estimated stopping distance is 44 ft. The area 
in Figure 4-11 can be further divided into four subareas using the 85th percentile speed line and 
the stopping distance, as shown in Figure 4-12. In area A, vehicles had higher speeds within the 
stopping distance, which were more dangerous to pedestrians compared to those in other areas. 
Events located in area A can be considered as near-crashes. An example of an event in area A 
can be found through the link: https://youtu.be/TeEERfWOgzo. In this event, when the distance 
between the pedestrian and the vehicle was 8 m (26.2 ft), the speed of the vehicle was 20.6 
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mph. The vehicle did not stop before the pedestrian and passed the pedestrian before the 
pedestrian finished crossing. For the cases in area B, the vehicles had lower speeds within 
stopping distance or had higher speeds out of stopping distance, which were considered as 
crash-relevant. Crash risk in area B was lower than that in area A.  An example of an event in 
area B can be found through the link: https://youtu.be/e9jhlbuk8uw. In this event, the vehicle 
tried to pass the crossing with high speed when the pedestrian already reached the midblock 
crosswalk. Though this event may not have the high crash risk like those in area A, the driver’s 
aggressive behavior may leave the pedestrian feeling uncomfortable. In area C, vehicles had 
lower speeds out of stopping distance, which were considered as safe events to pedestrians. The 
trajectory of the same vehicle may be located in different subareas in Figure 4-12; the area with 
the highest crash risk should be used for risk assessment. It should be noted that it is better to 
check the records in area A manually to make sure they are near-crashes since some points may 
be the outliers from area B or area C. 

Figure 4-12 An Example of Near-Crash Identification with Speed-Distance Profile 

Thresholds of Near-Crash Identification 
The TDPI, DSPP and Speed-Distance profile can all be used for near-crash 

identification. The final thresholds were determined by combining these three factors. All 
events can be divided into three parts based on their risks: near-crash, crash-relevant, and low 
risk. Table 4-7 shows the final recommended thresholds for near-crash identification. This 
algorithm has been coded into an automatic procedure in Matlab for near-crash identification. 
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Table 4-7  Near-Crash Identification
	

Risk Thresholds 
Near-crash TDPI<2.5s or 0<DSPP<LTC or vehicle speed within area A in 

speed-distance profile 
Crash Relevant 2.5s≤TDPI≤3.5s or vehicle speed within area B in speed-distance 

profile 
Low risk TDPI>3.5s or DSPP≥LTC or vehicle speed within the area (a) in 

speed-distance profile within area C in speed-distance profile 

For evaluating the applicability of the new algorithm, two case studies were conducted. 
The following criteria are recommended to select the strategic sites for installing LiDAR: 1) 
The sites with high historical pedestrian-involved crash frequency. 2) The sites where the public 
has concern or complainst about pedestrian safety. 3) New opened intersections (need design 
and operation evaluation). In this project, the roadside LiDAR data were collected at two sites 
in Reno, Nevada. 

One site was selected at one midblock on 15th St. by the campus of the University of 
Nevada, Reno (UNR). There is a steep slope at this site. Many students and faculties at the 
university have a safety concern about this midblock. The other site, N. Virginia St. and10th St., 
is an intersection with Rectangular Rapid Flash Beacon (RRFB). A vehicle-pedestrian crash 
happened at this intersection on July 19th, 2017, which was reported in the following link:  
http://mynews4.com/news/local/reno-police-investigate-vehicle-pedestrian-crash-near-unr-
campus. Further examination was required to evaluate pedestrian safety at this site. The peak 
hour data were collected on the same weekday. The collection time was 25 minutes (15000 
frames) at both sites. Figure 4-13 and Figure 4-14 show the results of TDPI, DSPP and speed-
distance profile at the two sites.    

46 


http://mynews4.com/news/local/reno-police-investigate-vehicle-pedestrian-crash-near-unr


 

 
   

 


Figure 4-13 Near-Crash identification at One Midblock on 15th Street 
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Figure 4-14 Near-Crash identification at N. Virginia St. and 10th St. 

An example of a near-crash (the event with a 2.1-seconds of TDPI in Figure 4-13 (a)) 
incident that occurred at the second site was shown in the following video: https://youtu.be/-3-
tgqeQsHE. The video showed that the driver failed to yield to the pedestrian. By checking the 
videos, the near-crash events can be confirmed. The results of case studies show that the 
vehicle-pedestrian near-crash events can be identified using roadside LiDAR trajectory data.  
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 

This project developed methodologies for obtaining high-accuracy all-traffic trajectories 
with 360-degree LiDAR sensors deployed at the roadside. The data processing procedure 
provides trajectory-level movement status of all road users in the sensing range that can be an 
intersection, an arterial or a city road network with roadside LiDAR sensors deployed. The all-
traffic trajectory data are essential to connected and autonomous vehicles to perceive traffic 
situations or threats outside the “sight of view” of onboard sensing systems. The data could also 
bring revolutions to conventional traffic engineering areas.  For example, accurate pedestrian 
trajectories can be used for pedestrian behavior studies to improve pedestrian safety; Roadside 
LiDAR can trigger pedestrian signals automatically according to real-time location, speed, and 
direction information. Conclusions and recommendations related to the project findings were 
summarized as follows. 

Background filtering 

The 3D-DSF method developed in this study filters both static background and vibrating 
background efficiently. This algorithm learns the threshold of cube-point-density (TD) 
automatically with only two required inputs: the number of aggregated frames and the side 
length of cubes. Recommended values for these two parameters were suggested in this project 
based on sensitivity analysis. Case study results proved that the 3D-DSF method well served 
background-filtering under different road situations (high traffic volume; night time; different 
speed limits). After obtaining the 3D matrix that labels background areas, real-time 
background-filtering can exclude uninterested data points so that the accuracy and efficiency of 
the following steps can be significantly improved. 

Though there were still noise laser points left after applying 3D-DSF, the clustering 
results showed that the scattered noise points did not reduce the accuracy of object 
identification. In future research, it is expected to test other machine learning or artificial 
intelligence methods to improve the accuracy further. For redressing the background, it is 
recommended to run the algorithm in the backstage every several hours to update any changes 
of environment, which can also improve background-filtering results.  

Clustering, classification and tracking 

The case studies of LiDAR data processing showed that detection accuracy of object 
clustering was about 96%. The main reason for clustering failure was that low-density points 
from objects at a far distance. Occlusion was another issue. An approximate 96% classification 
accuracy can be achieved within the 30-meter-radius sensing range. The classification failure was 
also found to be caused by vehicle occlusion. Tracking accuracy of approximately 95% can be 
realized within about 30 m detection radius from the LiDAR sensor. The effective distance was 
done by VLP-16 LiDAR sensors, while the project team achieved doubled effective-distance with 
VLP-32 LiDAR sensors. The statistic results showed that 90% of the speed values were with an 
offset lower than 2.5mph.  

For future work, methods of object detection and tracking can be extended to bicycles in 
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urban areas and wildlife in rural areas. Algorithms will be further validated and improved for 
accuracy and reliability of different traffic scenarios. Multiple LiDAR sensors will be deployed 
at intersections and along roads to cover a larger area and reduce the possibility of occlusion. The 
extracted data will be applied and tested in connected-vehicle applications and other practices for 
traffic safety, mobility, and efficiency. 

Pedestrian-crossing prediction 

This project developed a modified Naïve Bayes crossing prediction model to predict 
pedestrian crossing roads (at a crosswalk or not) by using the trajectory data from roadside 
LiDAR. This model provides real-time quantitative confidence level information for predicting 
pedestrian crossing behaviors using trajectory-level movement features. The major steps 
include pedestrian tracking, pedestrian feature extraction, prediction model training, and 
evaluation. A comprehensive case study showed the effectiveness of the proposed algorithm 
using the real data, and the trained modified Naïve Bayes prediction model has a higher 
accuracy in crossing prediction than the basic ANN model. Besides, the confidence level 
information with adjustable key parameters makes it possible to use the proposed prediction 
model for real-world applications. The proposed prediction method provides an innovative way 
to understand pedestrians’ crossing behaviors. The prediction model is valuable for detection of 
unsignalized intersections or mid-block crossing. The pedestrian crossing signals like 
Rectangular Rapid Flashing Beacon (RRFB), can be automatically triggered by roadside 
LiDAR after the trajectories are processed and predicted. It can also advance connected and 
autonomous vehicle fields by providing real-time warning/alert messages to vehicles and 
pedestrians, thus reducing the probabilities of vehicle-to-pedestrian crashes. 

In the future, pedestrian trajectory data in better quality can be obtained by integrating 
data from multiple LiDAR sensors and improved algorithms.  Advanced prediction models with 
higher accuracy and lower computational expense still need to be explored. Warning of wildlife 
crossings may also be an application of crossing predictions. 

Detection of animal crossing 

The field test shows that the methods (using VLP-16) could detect wildlife with a max 
radius of 37.74 m (124 ft) around the LiDAR sensor. The detection range varies from deer 
subject to different distances and angles from the LiDAR. The detection range can be extended 
by using sensors with more laser beams or deploying and integrating multiple LiDAR sensors 
in the detection area. The developed technology can provide real-time position, moving 
direction and speed information of animals, which can be used to trigger flashing warning signs 
to warn approaching drivers. This innovative sensing approach can also be used to analyze 
wildlife behavior, such as what is the peak time used by wildlife to cross the road and which 
route was preferred. The system can also be deployed along different crossing structures to 
evaluate the effect of crossing structures and understand wildlife-crossing patterns. The same 
sensors and methods can also be used to detect and track rural vehicle traffic. The wildlife 
information and vehicle trajectories can be integrated and broadcasted through the connected 
vehicle communication system to support future autonomous and connected vehicles. 

Application of roadside LiDAR for detecting and tracking wildlife animals crossing 
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highways can be improved by enhancing current data processing algorithms. In this pilot study, 
the sensor was powered by batteries that need to be charged every day. In the future, it is 
recommended to power the roadside sensor and computer with solar power devices and 
batteries. As mentioned before, this pilot application detected deer that were crossing I-80 
through a wildlife overpass instead of crossing the road surface, so a data collection with a more 
extended period is expected to be conducted to capture animals walking on the road surface. 

Near-crash analysis 

This project developed a novel method for vehicle-pedestrian near-crash identification 
using the trajectories of vehicles and pedestrians extracted from roadside LiDAR data. Three 
factors: TDPI, DSSP, and speed-distance profile were combined for vehicle-pedestrian near-
crash identification. The proposed method was coded into an automatic procedure to release the 
heavy labor work for near-crash identification. The case studies showed that the crash risk 
could be measured by analyzing trajectories from LiDAR without waiting for historical crash 
records. Though this paper provided recommended parameters for vehicle-pedestrian near-crash 
identification, method users can select their thresholds based on different features of specific 
sites. The proposed method could be a critical safety performance measure for before-and-after 
pedestrian safety assessment or can be used to identify a site with the highest pedestrian-crash 
risk from the site pool.  

Improvement of near-crash event analysis is expected in further studies. Bicycle-
involved near-crash was not considered in this paper since the bicycle data were limited. Videos 
were not recorded in the two case studies. In the next step, videos will be used to validate the 
near-crashes. The two case studies provided preliminary validation of identifying near-crashes 
using roadside LiDAR data. More data are expected to be collected to ensure the systematic 
validation of the near-crashes in further studies. The implementation of the proposed method 
relies on the accurate trajectories of vehicles and pedestrians. The previous sections mentioned 
that object occlusion was a primary reason for this error. Setting up multiple LiDARs in 
different directions are expected to solve this issue.   
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