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Background and Overview 

Tree crown mortality along highways in the Lake Tahoe Basin has been a concern for decades. 
Increased tree damage near roads is believed to be associated with de-icing compounds used to 
increase driving safety during winter. Several field studies have concluded that de-icing salts 
applied on the roads are a potential factor for roadside tree crown mortality, but monitoring 
approaches based solely on field sampling only provide information for a particular set of sample 
sites at discrete time intervals. An efficient large-scale approach is needed that can be repeatedly 
applied to retrieve historical dynamics, or to monitor future occurrence, of road-related tree 
crown mortality. Remote sensing provides a means for assessing potential road-related effects on 
tree crown mortality in a large-scale and long-term context.  

We thus conducted a study using remote sensing methods to quantify tree crown mortality, 
expressed as declines in leaf area index (LAI) at the scale of 4-m pixels for the Nevada portion of 
the Lake Tahoe Basin, and at the scale of 30-m pixels for the whole Basin. The mortality data 
together with data for salt application, precipitation, traffic, and topography (Figure 1) were 
statistically analyzed to reveal the component of crown mortality that was road-related.  

The study had two components: methodological development and application. The 
methodological component addressed remote sensing approaches for deriving tree crown 
mortality, whereas the application component investigated the influences of road-related effects 
on tree crown mortality by both spatial and temporal analyses. Specifically, we had the following 
four objectives: 

1) Investigate remote sensing methods for robust processing of remotely sensed data and 
efficient monitoring of tree crown mortality; 

2) Statistically model the effects of de-icing salt on tree crown mortality via two 
mechanisms: (a) aerial deposition and flow accumulation (uptake of dissolved salts from 
groundwater) at the fine-scale (6-m resolution), and (b) the interaction effect of distance 
from road and roadside topography on tree crown mortality over broad scales (30-m 
resolution); 

3) Evaluate how trends in road-related mortality have changed over the last two decades, 
with special attention to the effects of de-icing salt application and precipitation; 

4) Statistically isolate the component of tree crown mortality that is road-related (e.g. de-
icing salt damage) from other mortality agents through the complementary evidence from 
spatial analyses and temporal analyses. 

Several relatively novel remote sensing approaches were developed in this study. The Sun-
Crown-Sensor (+C) topographic correction model was developed to correct radiometric 
distortion caused by terrain variability in forest images. LiDAR data were utilized to aid in 
orthorectifying IKONOS images and extracting projected tree crown shapes from complex earth 
surface features. Several vegetation indices were compared and the normalized difference 
vegetation index (NDVI) was consistently found to be the best indicator for leaf area index 
(LAI), a proxy for the amount of green leaf mass in tree crowns. Interannual change in LAI was 
found to be appropriate sensitive measure of tree crown mortality, defined as the loss of 
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photosynthetic material in tree crowns. A field dataset of LAI was collected at 30 plots 
comprising 120 subplots of 30×30m, which was used to calibrate and transform remote sensing 
data into LAI that is physically meaningful. A dataset of yearly change detection results as 
measured by quantitative LAI change was generated using Landsat TM images from 1990 to 
2010 (e.g. Figure 2). A 4-year change in LAI from 2005 to 2009 was generated using a pair of 
IKONOS images (Figure 3). Mortality was defined based on LAI change thresholds. Remote 
sensing methodological details are available in Yuanchao Fan’s M.S. Thesis (Fan 2011). 

IKONOS derived mortality was used in fine-scale spatial analysis (Figure 4) to assess the effects 
of de-icing salt through aerial deposition and flow accumulation mechanisms, which were 
represented by two spatial proxy variables constructed using high-resolution topographical data. 
Landsat derived mortality was used in both broad-scale spatial analysis and long-term temporal 
analysis (Figure 5). The broad-scale spatial analysis was used to confirm IKONOS fine-scale 
spatial analysis results. The long-term temporal analysis was aimed to provide evidence of how 
roadside mortality was related to variation in de-icing salt application in the past two decades. 

This study demonstrated the utility of applying remote sensing techniques to detect road-related 
effects on tree crown mortality. Principal results are listed below, divided into the following 
categories: Remote Sensing Methodology for Monitoring Tree Crown Mortality; Spatial Patterns 
of Tree Crown Mortality Associated with De-icing Salt; Temporal Patterns of Tree Crown 
Mortality Associated with De-icing Salt and Precipitation; Implications for Monitoring and 
Management. For more detailed information about methods, results and discussions, including 
relevant tables, maps and figures, refer to Fan (2011). 

Remote Sensing Methodology for Monitoring Tree Crown Mortality 

1) A new topographic correction method was developed (i.e.the Sun-Crown-Sensor 
(+C) method). This is a refinement of existing methods, correcting radiometric 
distortions caused by terrain in high-resolution satellite images of landscapes dominated 
by forests, and where tree crowns are the key feature of interest.  

2) LiDAR proved its utility as important ancillary data in this study. The high 
resolution and geometric accuracy of LiDAR DEM data greatly improved the accuracy in 
orthorectifying IKONOS images. An approach was developed for creating a projected 
tree crown mask from LiDAR DEM and DSM data that helped focus the analyses on tree 
crowns.     

3) The recommended method for quantifying tree crown mortality in the Lake Tahoe 
Basin, using either Landsat or IKONOS imagery, is to first estimate leaf area index (LAI) 
from NDVI, and then to use the change in LAI among successive years as the tree crown 
mortality indicator (Figures 2 and 3). Quantitative change detection by LAI differencing 
using multispectral images was successful in quantifying tree crown mortality, which was 
then analyzed statistically to describe the likely effects of de-icing salts. 

4) Qualitative change detection by classifying multispectral images was not able to 
detect the spectral signature of de-icing salt damage on tree crowns directly. 
Hyperspectral remote sensing data are needed in future studies if the objective is to 
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directly classify tree crown mortality caused by de-icing salt. If successful, this would 
allow improved separation of de-icing salt effects from other tree mortality agents within 
the remote sensing context. 

Spatial Patterns of Tree Crown Mortality Associated with De-icing Salt 

1) The IKONOS analysis showed that tree crown mortality was positively associated 
with the proxy variable for aerial deposition (Figure 6, Table 1). This indicates that 
the effects of slope steepness, slope curvature and distance from road interact to 
influence the probability of de-icing salt mortality in a predictable manner. This 
effect was greatest within 30 m of the road edge, but was still present when considering 
all locations within 100 m of the road edge. Interpretation of aerial deposition effects can 
be partitioned into the relative influences of slope steepness, distance from road and path 
curvature, i.e., the three components of the aerial deposition proxy variable. For example, 
a tree on a 60° slope was 1.57 times (95% CI: 1.14 to 2.16) more likely to be damaged 
relative to a tree on a 30° slope, at 12m from the road. On a 45° slope, a tree at 12m 
distance from the road was 1.22 times (95% CI: 1.06 to 1.40) more likely to be damaged 
relative to a tree that was 24m from the road. At 24m from the road, a tree on a concave 
slope was 2.47 times (95% CI: 1.31 to 4.67) more likely to have mortality than an 
identical tree on a convex slope. These calculations refer to the particular geometry 
portrayed in Figure 6, but can be recalculated for any topographic configuration.  

2) Tree crown mortality was only weakly associated with the proxy variable for flow 
accumulation (Figure 7, Table 1), confirming results of earlier field studies that the 
primary mechanism for de-icing salt related tree crown mortality is due to airborne spray 
rather than plant uptake of salts from the soil solution.  

3) The spatial analysis using Landsat TM images revealed that a decreasing trend of 
mortality with increasing distance from roads mainly existed within 60m of the road 
and was greatest within 30m of the road (Figure 8). The odds of mortality for the 0–
30m zone where the trees are more likely to have de-icing salt contact was estimated to 
be 2.6 times the odds of mortality for the more distant 30–60m zone, although there was 
high variability around this relationship (95% CI: 1.1 times to 6.2 times). The effect of 
every 10-m increase in distance from the road edge was estimated to be a 26.5% (95% 
CI: 4.8% to 43.2%) decrease in probability of mortality, when considering the population 
of forested pixels within 60m of the road. 

Temporal Patterns of Tree Crown Mortality Associated with De-icing Salt and 
Precipitation 

1) A comparison between years with high salt application (1993 – 1999) and years with 
low salt application (2003 – 2009) using two pairs of Landsat TM images revealed 
strong effects of road proximity on tree crown mortality in the years of high salt 
application. This pattern was amplified because the time period of greater salt 
application generally experienced more favorable conditions for tree growth, due to 
favorable water balance associated with increased snowpack. This increased the contrast 
between areas of high tree crown mortality near roads and low tree crown mortality away 
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from roads. When de-icing salt application was low and its effects were negligible in dry 
years, other damaging agents more strongly influenced the spatial pattern of tree crown 
mortality throughout the Basin and road-related effects were less distinct (Figure 2). 

2) The long-term temporal analysis (1990 – 2010) using Landsat TM images provided 
convincing evidence of de-icing salt effects on the probability of mortality. Mortality 
increased with increasing amount of salt applied (Figure 9a). This effect was greatest 
when considering a lagged effect of one year: the previous year’s winter de-icing salt 
application was most strongly correlated with the subsequent year’s growing season tree 
crown mortality. The influence of salt application on tree crown mortality was dependent 
on precipitation, such that the probability of observing tree crown mortality for trees 
within 60m of the road increased with increasing salt application for wet years, but 
actually decreased slightly (or had negligible effect) with increasing salt application for 
dry years (Figure 9, Table 3). This modeled interaction effect suggests that wetter 
conditions may be needed for transport of de-icing salt to tree crowns through the 
mechanism of aerosol spray, although further studies are needed to better understand the 
details of how airborne spray from de-icing salts interacts with conifer foliage.  

3) The temporal analysis with salt application data complemented the spatial analysis 
in confirming that both the spatial pattern and temporal pattern of tree crown 
mortality near the roads were largely related to de-icing salt. 

Implications for Monitoring and Management  

Monitoring: 

1) Landsat TM images are a useful remote sensing data source for retrieving historical road-
related forest mortality and monitoring future tree health change in a broad-scale and 
long-term context. This has the advantage of being free, relatively easy to process, and 
collected at regular 16-day intervals, allowing for analysis of tree crown mortality across 
a continuous time series or an array of time periods. Disadvantages include a lack of 
spatial precision, and uncertainty concerning whether compatible imagery will be 
collected in the future once the Landsat satellite becomes no longer functional. 

2) Higher resolution imagery, such as IKONOS, is necessary for examining fine-scale 
patterns of de-icing salt effects, although it is more costly and requires considerable 
efforts in data preprocessing. However, Worldview-2 multispectral (8-band) satellite 
imagery has recently been acquired and processed for the Lake Tahoe Basin at 0.5-m 
resolution, with great potential for future analyses seeking to monitor the influences of 
roads and de-icing salt application on tree crown mortality and forest health.  

3) None of the remote sensing approaches utilized were able to distinguish tree crown 
mortality due to de-icing salts from tree crown mortality resulting from other causes, 
based solely on spectral characteristics from satellite imagery. However, there is potential 
for future studies to develop methods for classifying tree crown mortality due to de-icing 
salts using hyperspectral imagery from airborne or satellite platforms. 
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4) Effective remote sensing protocols for monitoring road-related tree crown mortality will 
adopt a multi-scale approach, adopting imagery from remote sensing platforms with 
varying spatial and temporal resolution. Our project demonstrates how results from one 
scale of investigation corroborate and help to explain results from another scale.  

Management 

1) Aerial deposition of de-icing salt onto tree crowns by moving vehicles appears to have a 
much stronger effect than does uptake of de-icing salts through surface runoff or the soil 
solution. Tree health is affected mostly within 30m of the road, but extending in some 
cases to within 60m. Therefore, tree species that are more resistant to de-icing salt 
damage (e.g. firs) could be planted as a barrier near the road to protect the forest beyond, 
particularly on concave or steeper slopes where the effects of de-icing salts extend to 
further distances from the road.  

2) De-icing salt application is a significant factor for roadside tree crown mortality. Road 
management should continue efforts to decrease the amount of de-icing salt used in 
winter or to use less deleterious alternative materials. 

3) Trees at the roadside are generally healthier, causing salt damage to be more distinct, in 
wet years than in dry years. Mitigation strategies should be focused on de-icing salt 
effects in wet years while paying more attention to other damaging factors in dry years, in 
order to maintain roadside tree health and the ecological and aesthetic values of the Lake 
Tahoe Basin. 

Scientific Products 

Fan, Y. 2011. Tree crown mortality associated with roads in the Lake Tahoe Basin: a remote sensing 
approach. M.S. Thesis, University of Nevada, Reno.  

Fan, Y., P. J. Weisberg, and R.S. Nowak. (In preparation). A multi-scale and multi-temporal remote 
sensing approach to assessing tree crown mortality associated with roads in the Lake Tahoe Basin. (To be 
submitted to Remote Sensing of Environment). 

Fan, Y. (In Preparation). The Sun-Crown-Sensor (+C) topographic correction model for forest imagery. 
(To be submitted to International Journal of Remote Sensing). 

Information Products 

• Radiometrically corrected Landsat TM images of late summer or early fall from 1988 to 
2011 (Table 4). Remote sensing estimated LAI data and annual LAI change (i.e. tree 
crown mortality) data at the scale of 30-m pixels for the whole Lake Tahoe Basin from 
1988 to 2011.  

• Geometrically and radiometrically corrected IKONOS images of 25 September 2005 and 
27 September 2009 (Table 4). Remote sensing estimated LAI data and LAI change (i.e. 
tree crown mortality) data between 2005 and 2009 at the scale of 4-m pixels for the 
Nevada portion of the Lake Tahoe Basin. 
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• High accuracy 1-m resolution digital maps of tree crowns either from nadir view angles 
or from the IKONOS non-nadir view angles produced from LiDAR data.   

• Field plot data (number=120, size=30×30m) for leaf area index of conifer forest stands. 
Precise GPS locations of these plots are included. 

• ArcGIS toolbox for radiometric calibration (DN to radiance or reflectance) of IKONOS 
imagery. 

• ArcGIS toolbox for topographic correction models (C-correction, Sun-Canopy-Sensor 
(+C) correction, and Sun-Crown-Sensor (+C) correction) 

• ArcGIS toolbox for calculating vegetation indices (NDVI, SAVI, MSAVI, MKT).  

• ArcGIS toolbox for transforming NDVI to LAI for IKONOS imagery and Landsat TM 
imagery. 
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Supporting Figures and Tables 

 
Figure 1. The Lake Tahoe Basin outline, remote sensing data coverage, field plots, weather 
stations, traffic stations, and the outline of major highways in the Nevada portion of the Basin. 
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(a)                                           (b) 

Figure 2. LAI change: (a) from 25 Sep. 1993 to 26 Sep. 1999 (wet years with high salt 
application), (b) from 21 Sep. 2003 to 21 Sep. 2009 (dry years with low salt application) for the 
whole Lake Tahoe Basin using Landsat TM images. Red represents decrease in LAI (i.e. net tree 
crown mortality) and green represents increase in LAI. 
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            (a)                                                   (b) 

Figure 3. LAI change from 25 Sep. 2005 to 27 Sep. 2009: (a) for the Nevada portion of the Lake 
Tahoe Basin using IKONOS images, (b) for the area around Mt. Rose highway near Incline 
Village. Red represents decrease in LAI (i.e. net tree crown mortality) and green represents 
increase in LAI. 
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Figure 4. Flow chart of IKONOS image preprocessing, remote sensing change detection, 
calibration, validation, mortality derivation, and statistical analysis processes. 

 

11 
 



Calibrate

2010-09-03~10-14 
LAI Ground 

Measurements  

2010-09-24 
Landsat TM 

Vegetation Index 

VI-LAI 
Relationships 

2006-09-29 
LAI 

2009-09-21 
LAI 

2006-09-29  
VI 

2009-09-21 
VI 

LAI Change 

Haze Removed 
Images 

Radiometrically 
Normalized Images 

IR-MAD radiometric 
normalization 

Preprocessing 

2006-2009 
Tree Health 
Survey Data 

Mortality 

Validate 

Raw DN Values to 
At-Sensor Reflectance 

Preliminary calibration 

Dark-object subtraction 
Create 

more LAI 
change 

images of 
other 
years 

Predict

More 
mortality 

maps   

Change 
detection 

Define mortality

Reuse the 
VI-LAI 

Relationship  

Landsat TM5  
Raw Images 

Broad-Scale Spatial Analysis &  
Long-Term Temporal Analysis 

on Road-Related Effects

 
Figure 5. Flow chart of Landsat TM image preprocessing, remote sensing change detection, 
calibration, validation, mortality derivation, and statistical analysis processes. 
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Figure 6. The spatial proxy variable for aerial deposition of de-icing salt, showing a pictorial 
representation and GIS algorithms. The Path Pixel Elevation refers to the elevation (m) of each 
pixel along the direct path from the focal pixel to the nearest point along the road.  
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(a) 

Figure 7. The spatial proxy variable for flow accumulation of de-icing salt, calculated in ArcGIS 
as the number of pixels expected to contribute surface or subsurface flow to each pixel in the 
landscape.  
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Figure 8. Fits of logistic regression models for probability of mortality at different distance zones 
and scatterplots of sample mortality probability using 1993–1999 change data.  
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(b) 

Figure 9. Interaction effects between salt and precipitation: (a) the odds ratio of mortality with 
every 10 yard3/mile increase in salt application; (b) the effects of salt application on the 
probability of mortality during dry, median and wet years. 
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Table 1. Logistic regression model to assess de-icing salt effects via two mechanisms on tree 
mortality within 0–100m downslope zone using 2005–2009 IKONOS data.  
Variable Coefficient Std. error z-statistic p-value 

Intercept -0.504 0.067 -7.555 0.000 

Aerial deposition 0.0094 0.0034 2.789 0.005 

Flow accumulation(log) 0.0223 0.0097 2.293 0.011 

Deviance = 9910.096 DF = 7293  

Table 2. Logistic regression model to assess the effects of distance (0–60m) and wet (salt=1)/dry 
(salt=0) years on tree mortality probability using 1993–1999 and 2003–2009 mortality data. 
Variable Coefficient Std. Error z-statistic p-value 

Intercept -2.299 0.255 -9.025 0.000 

distance 0.029 0.006 4.528 0.000 

salt -0.015 0.460 -0.033 0.974 

distance×salt -0.060 0.015 -4.085 0.000 

Deviance = 795.928 DF = 1196  

salt = 1     logit ( ) = -2.314 – 0.031distance     odds ratio: 0.74 (95% CI: 0.57 to 0.95) 

salt = 0     logit ( ) = -2.299 + 0.029distance     odds ratio: 1.34 (95% CI: 1.26 to 1.42) 

(odds ratio per 10m increase in distance)

Table 3. The best supported model to test the interaction effects of salt and precipitation in de-
icing salt effect prone area (0–60m) using 1990–2010 annual mortality data. 
Variable Coefficient Std. Error z-statistic p-value 

Intercept -1.326 0.216 -6.148 0.000 

salt -0.014296 0.010152 -1.408 0.159 

precipitation -0.012680 0.005432 -2.334 0.020 

salt×precipitation 0.000518 0.000227 2.280 0.023 

Deviance = 8378.506 DF = 9596 AIC = 8386.506 BIC = 8415.184 
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Table 4. All Landsat TM and IKONOS images used in this study. 

Image Date Scene Center 
Longitude/Latitude Satellite Sensor Image ID 

11-Sep-1988 120.1/38.9 Landsat 5 TM L5043033_03319880911 

03-Oct-1990 120.1/38.9 Landsat 5 TM L5043033_03319901003 

06-Oct-1991 120.1/38.9 Landsat 5 TM L5043033_03319911006 

22-Sep-1992 120.1/38.9 Landsat 5 TM L5043033_03319920922 

25-Sep-1993 120.1/38.9 Landsat 5 TM L5043033_03319930925 

15-Sep-1995 120.1/38.9 Landsat 5 TM L5043033_03319950915 

03-Oct-1996 120.1/38.9 Landsat 5 TM L5043033_03319961003 

09-Oct-1998 120.1/38.9 Landsat 5 TM L5043033_03319981009 

26-Sep-1999 120.1/38.9 Landsat 5 TM L5043033_03319990926 

12-Sep-2000 120.1/38.9 Landsat 5 TM L5043033_03320000912 

15-Sep-2001 120.1/38.9 Landsat 5 TM L5043033_03320010915 

02-Sep-2002 120.1/38.9 Landsat 5 TM L5043033_03320020902 

21-Sep-2003 120.1/38.9 Landsat 5 TM L5043033_03320030921 

23-Sep-2004 120.1/38.9 Landsat 5 TM L5043033_03320040923 

12-Oct-2005 120.1/38.9 Landsat 5 TM L5043033_03320051012 

29-Sep-2006 120.1/38.9 Landsat 5 TM L5043033_03320060929 

02-Oct-2007 120.1/38.9 Landsat 5 TM L5043033_03320071002 

18-Sep-2008 120.1/38.9 Landsat 5 TM L5043033_03320080918 

21-Sep-2009 120.1/38.9 Landsat 5 TM L5043033_03320090921 

24-Sep-2010 120.1/38.9 Landsat 5 TM L5043033_03320100924 

25-Sep-2005 -119.9/39.1 IKONOS IKONOS-2 2005092519042390000010110092 

27-Sep-2009 -119.9/39.1 IKONOS IKONOS-2 2009092718555930000011612413 
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Abstract 

Tree crown mortality along highways in the Lake Tahoe Basin has been a concern for 

decades. Increased tree damage near roads is believed to be associated with de-icing compounds 

used to increase driving safety during winter. Several field studies have concluded that de-icing 

salts applied on the roads are a potential factor for roadside tree crown mortality, but the spatial 

pattern and temporal trend of de-icing salt damage has not been quantitatively measured. 

Moreover, most previous studies were based on field observations at sampling sites and were 

limited by temporal and spatial scale. An efficient large-scale approach is needed that can be 

repeatedly applied to retrieve historical dynamics, or to monitor future occurrence, of road-

related tree crown mortality. Remote sensing provides a means for assessing potential road-

related effects on tree crown mortality in a large-scale and long-term context. This study used 

remote sensing methods to quantify tree crown mortality, expressed as declines in leaf area index 

(LAI) at the scale of 4-m pixels for the Nevada portion of the Lake Tahoe Basin, and at the scale 

of 30-m pixels for the whole basin. The mortality data together with data for salt application, 

precipitation, traffic, and topography were then statistically analyzed to reveal the component of 

crown mortality that is road-related.  

Several relatively novel approaches were developed in this study for processing remote 

sensing images and utilizing GIS data. The Sun-Crown-Sensor (+C) topographic correction 

approach was developed to correct radiometric distortion caused by terrain variability in forest 

images. LiDAR data were utilized to aid in orthorectifying IKONOS images and extracting 

projected tree crown shapes from complex earth surface features. Several vegetation indices 

were compared and the normalized difference vegetation index (NDVI) was consistently found 

to be the best indicator for LAI. Interannual change in LAI was also found to be an appropriate 

i 

 



measurement of tree crown mortality, defined as the loss of photosynthetic material in tree 

crowns. A field dataset of LAI was collected at 30 plots comprising 120 subplots of 30×30m, 

which was used to calibrate and transform remote sensing data into LAI that is physically 

meaningful. A dataset of yearly change detection results as measured by quantitative LAI change 

was generated using Landsat TM images from 1990 to 2010. A 4-year change in LAI from 2005 

to 2009 was generated using a pair of IKONOS images, for which mortality was also defined 

based on LAI change thresholds.  

IKONOS derived mortality was used in fine-scale spatial analysis to assess the effects of 

de-icing salt through aerial deposition and flow accumulation mechanisms, which were 

represented by two spatial proxy variables constructed using high-resolution topographical data. 

Landsat derived mortality was used in both broad-scale spatial analysis and long-term temporal 

analysis. The broad-scale spatial analysis confirmed IKONOS fine-scale spatial analysis results. 

The long-term temporal analysis provided concrete evidence of how roadside mortality was 

related to variation in de-icing salt application. 

A clear trend of increasing mortality with increasing aerial deposition of de-icing salt was 

revealed in the fine-scale spatial analysis. Aerial deposition played a major role in mortality 

within 30m of the road and its overall effect was much stronger than that of flow accumulation, 

although the effect zone of the latter had the potential to extend to 100m from road. The temporal 

analysis revealed that mortality was strongly correlated with salt application from 1990 to 2010. 

De-icing salt effects (as suggested by a trend of increased crown mortality closer to the roads) 

were most distinct in wet years when de-icing salt application was high and other damaging 

factors were weak. The spatial analysis and temporal analysis together provided convincing 

evidence that de-icing salt was a significant factor for roadside tree crown mortality. In order to 
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protect the roadside forests from degradation and preserve their aesthetic value to drivers, road 

management should decrease the amount of de-icing salt used as much as possible, plant salt-

resistant species within the 0–30m salt-susceptible zones, and plant taller trees on concave slopes 

in order to minimize the aerial deposition effect. 
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1 Introduction 

1.1 Background 

The scenic Lake Tahoe area attracts ever-increasing residential and recreational 

development, which in turn has the potential to impair its environmental quality. The expanding 

road network and traffic within the Lake Tahoe Basin has a significant impact on the ecosystem 

(Forney, 2001). Issues of road effects on forest health have been drawing attention in this region 

since 1974, when de-icing compounds such as sodium chloride (NaCl) were observed to cause 

damage to conifers in the Basin (Scharpf and Srago 1974). The application of de-icing salts on 

major roads by state highway agencies has a decades-long history. With rising awareness of the 

need for environmental protection, the managers must achieve a balance between ensuring safe 

roads during dangerous winter driving conditions and alleviating environmental degradation. 

Therefore, it is important to assess the potential effects of de-icing salts on forest health and to 

develop efficient methods for monitoring road-related tree crown mortality. 

Several studies have been conducted on de-icing salt effects on vegetation in the Lake 

Tahoe Basin (Scharpf and Srago 1974, Massoth 1978, Marshall 1984, Kliejunas et al. 1989, RCI 

1990, Munck et al. 2010), all based on field surveys. The 1990 study by Resource Concepts Inc. 

(RCI) was quite extensive, leading to the establishment of 206 permanent plots. They concluded 

that 15% of the observed trees were apparently affected by de-icing salts, but about one-third of 

those trees had evidence of other damaging agents including drought, mistletoe, insects, and 

fungal pathogens. The overall mean zone of influence from de-icing salt was 30.2 feet from the 

edge of highway pavement, but differed among downslope and upslope positions relative to the 

highway. The mean zone of salt influence on downslopes was 36.1 feet while that on upslopes 

was 21.9 feet. They also observed that the degree of salt influence becomes less as the distance 
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from road increases, with a maximum range of 102 feet. Furthermore, their soil chemical 

analyses indicated very low salt content, well below the threshold for salt damage to plants. 

However, their measurements were taken in June and July. Salt leaches rapidly from the soil 

during and after snowmelt, a factor which may account for the low salt contents when measured 

in summer.  

A follow-up study in 2006-2007 (Munck et al. 2010) re-established plots from the RCI 

study and added additional control plots, additional sampling of targeted soils and species, and 

quantitative measurements of all sources of crown damage, to increase statistical rigor and 

improve the ability to discern the damage due to de-icing salts. One important result from this 

study was in accordance with that of RCI study: the presence of high Na and Cl content in 

conifer foliage was symptomatic of salt damage, but the total amount of salts and other ions in 

soils, even in winter, was well below the threshold for salt damage to even the most sensitive 

plant species. They considered that aerial deposition of de-icing salts on foliage from salt spray 

generated by passing vehicle traffic might be the primary cause of tree crown mortality (Bryson 

and Barker 2002), although they could not rule out uptake of salts from soil. Other results from 

this study include: (1) a total of 53% of roadside trees in 2006 and 27% in 2007 had salt damage, 

with approximately 1/5 of these trees having other types of damage in each year, and 12% and 22 

% of roadside trees had no salt damage but some other types of damage in 2006 and 2007, 

respectively; (2) the extent of salt damage within an individual tree tended to be small although a 

significant proportion of trees displayed salt damage; (3) the presence of other diseases or insects 

did not appear to negatively interact with salt damage. Instead, salt damage may partially 

displace or mask disease or insect damage; and (4) distance from the roadside and slope 

steepness had strong influences on the extent of salt damage observed, while the impact of other 
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environmental variables such as soil type, elevation and aspect was small. Specifically, 50% of 

trees with salt damage were within 41 feet from roadside in 2006 and 21 feet in 2007; > 25% of 

trees in 2006 and ~5% of trees in 2007 had salt damage at distances >101 feet from roadside.  

Although previous studies provided important knowledge concerning effects of de-icing 

salts on forest health, there remained some unsolved questions and room for improvement. The 

severity and extent of salt damage within the Basin need to be examined in a more quantitative 

way and at a broader scale. Previous studies usually described salt damage in category or 

percentage and the results were based on limited field plots where the generalizability to the 

whole study area was not guaranteed. Also, the functional relationships between salt damage and 

its underlying causal factors were not modeled statistically. For example, the functional forms of 

the relationships (e.g. linear vs. non-linear) between road-related factors (e.g. distance from road, 

roadside topography, and salt application) and severity of salt damage are not yet known. 

Moreover, long-term changes in road-related tree crown mortality were not thoroughly examined. 

Although some studies (Scharpf and Srago 1974, Kliejunas et al. 1989, RCI 1990, Munck et al. 

2010) compared pairs of years with a long intervening time interval, these field methods did not 

allow detection of changes within a series of years. Moreover, an efficient monitoring approach 

that does not require extensive field surveys is still lacking. Studies based on field surveys are 

limited in their ability to answer these kinds of questions by expense, time and spatial extent.   

1.2 Remote Sensing Methodology for Monitoring Tree Crown Mortality 

Remote sensing methodology can complement and improve the ability of traditional 

field-based studies and is commonly used to investigate forest disturbance and tree mortality 

(Macomber and Woodcock 1994, Clark et al. 2004, Wulder et al. 2006, Guo et al. 2007). It has 
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the ability to generalize limited findings from field-based forest mortality studies to a much 

larger scale. Archival satellite imagery allows historical analysis of crown mortality due to road-

related and non-road-related factors, and various sources of future imagery can also provide an 

inexpensive, efficient and repeatable protocol for future monitoring. Remote sensing of forest 

mortality can be accomplished at different spatial resolutions, from coarse (e.g. >1-km SPOT 

VGT, MODIS TERRA) to moderate resolutions (e.g. 30-m Landsat TM), and to very fine 

resolutions such as 1-m or 4-m (IKONOS). In this study, both moderate and fine resolution 

images (30-m Landsat TM and 4-m IKONOS) were used.  

Vegetation indices, classification algorithms and digital change detection methods are 

generally involved in the remote sensing process of deriving forest mortality information. 

Normalized Difference Vegetation Index (NDVI) is the most well-known vegetation index used 

to detect living plant canopies (Rouse et al. 1974). The Kauth-Thomas (Tasseled Cap) 

transformation is also commonly used, which generates three orthogonal components 

representing scene features: brightness, greenness and wetness (Kauth and Thomas 1976, Crist 

and Cicone 1984a). Various other vegetation indices such as Soil-Adjusted Vegetation Index 

(SAVI, Huete 1988) and Modified Soil-Adjusted Vegetation Index (MSAVI, Qi et al. 1994) have 

been created to reduce the influence of external factors and to enhance accuracy. 

Change detection is the process of identifying differences in the state of an object or 

phenomenon from different points of time. Using satellite images from different dates, the 

change of forest canopy cover, greenness or health status can be measured and thus tree crown 

mortality can be derived. Change detection generally involves the use of vegetation indices or 

other transformations that are developed by combining two or more spectral bands and are 

capable of indicating relative abundance and activity of green vegetation. Digital change 
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detection using multi-temporal imagery can more effectively estimate forest mortality than 

single-date image analyses (Muchoney and Haack 1994, Coppin et al. 2004, Liu et al. 2006). 

Most commonly used change detection methods include image differencing (e.g. NDVI 

Differencing), multi-temporal linear data transformation (e.g. multi-temporal Kauth-Thomas 

transformation (MKT), multi-temporal principal component analysis (PCA)), multi-date 

composite image classification, post-classification comparison and spectral change vector 

analysis (CVA) (Chen et al. 2003). Singh (1989) indicated that the simple technique such as 

image differencing performed better than much more sophisticated methods such as principal 

components analysis for tropical deforestation monitoring using Landsat data. Collins and 

Woodcock (1996), studying forest mortality in the Lake Tahoe Basin (without consideration of 

road effects), compared three change detection methods: MKT, multi-temporal PCA, and 

Gramm-Schmidt orthogonalization. They found that MKT was the most efficient and reliable 

method. MKT is actually the normalized difference of the Tasseled Cap indices. In this study, I 

tested and compared quantitative change detection methods such as vegetation index differencing 

as well as qualitative methods such as post-classification comparison. 

Calibration and validation of change detection results using field data are a vital part of 

the remote sensing approach. They relate digital evidence to real vegetation status and generalize 

findings from limited field surveys (hampered by spatial, temporal and financial considerations) 

to a much larger scale. The extent of satellite imagery can easily cover the whole study area and 

archival images permit a long-term analysis. 

The remote sensing component of this study was designed to use satellite imagery at 

multiple scales of spectral, spatial, and temporal resolution to examine road-related tree crown 

mortality in a multi-scale and long-term context, with a focus on the Nevada portion of the Lake 
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Tahoe Basin. Tree crown mortality refers to the loss of photosynthetic material in tree crowns, and 

does not necessarily imply tree death. Photosynthetic material was measured by healthy leaf area 

index (LAI) in this study. In addition, what I examined was “net mortality” which included 

mortality and re-growth of photosynthetic material at the tree level (fine-scale) or mortality in 

some trees and natural growth in other trees at the plot level (broad-scale). A remote sensing 

methodology for monitoring tree crown mortality was established, including the design and 

comparison of different image preprocessing methods, vegetation indices, change detection 

methods, and the calibration and validation of remote sensing results using field data (e.g. leaf 

area index, tree health surveys). I estimated and spatially modeled tree crown mortality, expressed 

as declines in leaf area index (quantitative change detection) or changes in tree health status 

(qualitative post-classification change detection), at the scale of 30-m pixels for the whole Lake 

Tahoe Basin using Landsat TM imagery, or at the scale of 4-m pixels for the Nevada portion of the 

Basin using IKONOS imagery. The remote sensing evidence of mortality was used together with 

road-related information and other datasets in statistical analyses to examine road-related effects.  

1.3 Development of Statistical Approaches for Assessing Road-Related 

Mortality 

After retrieving tree crown mortality by remote sensing, I employed statistical approaches 

to isolate road-related effects on tree crown mortality from non-road-related effects and to 

analyze the mechanisms of spatial and temporal variations in tree crown mortality associated 

with roads at different scales.  

Road-related effects mainly refer to the de-icing salt effects, taking into account salt 

application, distance from road edge, roadside topography, and traffic volume. Other potential 
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road-related effects include automobile emissions, especially ozone. Previous studies showed that a 

significant proportion (15 – 53%) of observed roadside trees in the Lake Tahoe Basin had de-icing 

salt damage, and that approximately 20 – 30% of these trees had other types of damage at the same 

time (RCI 1990, Munck et al. 2010). Isolating de-icing salt effects from other tree mortality factors 

(climate change, drought, pathogens, insects, parasites, wildfire and fuel reduction treatment) was 

an important task of this study and it was dealt with primarily by statistical methods. In addition, 

the previous studies revealed that distance from roadside and topography had strong influences on 

the extent of salt damage, while other environmental variables such as soil type, elevation and 

aspect were less important. The influences of these two important variables and their interaction 

were further modeled statistically, for which the remote sensing component of this study provided 

abundant and well-distributed statistical data. Moreover, the remote sensing results for the Lake 

Tahoe area from 1988 to 2010 provided the opportunity to examine long-term dynamics of 

roadside tree crown mortality associated with de-icing salt application, climate and traffic. 

1.4 Objectives 

This study had two components: methodological development and application. The 

methodological component of my study addressed remote sensing approaches for deriving tree 

crown mortality, whereas the application component investigated the influences of road-related 

effects on tree crown mortality by both spatial and temporal analyses. Specifically, I had the 

following four objectives: 

(1) Investigate remote sensing methods for robust processing of remotely sensed data and 

efficient monitoring of tree crown mortality. 
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(2) Statistically isolate the component of crown mortality that is road-related (e.g. de-icing salt 

damage) from other mortality agents (e.g. climate change, drought, pathogens, insects, 

parasites, wildfire and fuel reduction treatment); 

(3) Statistically model the interaction effect of distance from road and roadside topography 

(e.g. steep upslope, gradual upslope, flat, gradual downslope, and steep downslope) on de-

icing salt damage;   

(4) Evaluate how trends in road-related mortality may have changed over the last two decades, 

with special attention to the effect of snowfall/drought and road de-icing salt management.  

From the results of previous studies (RCI 1990, Munck et al. 2010), I hypothesized that: 

(H1) De-icing salt plays a major role in roadside tree crown mortality. Therefore, there should be 

clear statistical relationships between remote sensing derived tree crown mortality and 

distance from road, given the two possible salt damage mechanisms: soil uptake and aerial 

deposition. A decreasing trend of tree crown mortality should be observed with increasing 

distance from roads. 

(H2) Distance from road and roadside topography (e.g. slope steepness and downslope versus 

upslope) codetermine the degree of salt damage to tree crowns, no matter whether the 

mechanism is salt uptake from soil or direct aerial deposition on foliage. Down slopes 

should be exposed to salt damage, whereas up slopes should have less or no de-icing salt 

effects. A broader zone of salt influence should be observed on a steeper down slope than 

flatter ones. 
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(H3) Road effects on tree crown mortality have spatial limits. The above relationships will no 

longer exist beyond a certain distance from road. 

(H4) Temporal variation in road-related tree crown mortality is best explained by the 

combination of de-icing salt application, traffic, and climate variables. An increasing trend 

of roadside tree crown mortality should be associated with increasing amount of salt 

applied, after accounting for climate and traffic. 

2 Methods 

2.1 Study Area 

The Lake Tahoe Basin is located in the Sierra Nevada Mountains, along the border 

between California and Nevada (Figure 1). Elevation ranges from 1897 m at lake level to 3320 m 

at Freel Peak in the south end of the watershed. The Basin was formed by geologic block faulting 

about 2 million years ago, with uplifted blocks creating the Carson Range on the east and the 

Sierra Nevada on the west and down-dropped blocks creating the basin in between. This geologic 

history determines its complicated topography that has to be considered in understanding. My 

study focused on the Nevada portion of the Basin (east side). 

Mean annual precipitation ranges from about 660 mm near the lake on the east side of the 

basin to over 1,400 mm in watersheds on the west side of the basin. Most precipitation falls as 

snow between November and April. Snowpack often persists more than 200 days at higher 

elevation and more than 130 days at lake level. Maximum temperatures exceed 90 °F (32.2 °C) 

on an average of 2.0 days annually. Minimum temperatures of 32 °F (0 °C) or lower occur on an 

average of 231.8 days annually, and minimum temperatures of 0 °F (-17.8 °C) or lower occur on 

an average of 7.6 days annually (WRCC 2008). 
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Figure 1. The Lake Tahoe Basin outline, remote sensing data coverage, field plots, weather 

stations, traffic stations, and the outline of major highways in the Nevada portion of the Basin. 
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Climate change such as global warming has changed the precipitation pattern in the 

region. Less snowfall in recent winters (2000–2004 and 2007–2009) has the potential to reduce 

forest water reserves and impact forest ecosystem dynamics. Snowfall directly influences the 

amount of de-icing salt applied on the highways, whose potential effects on roadside tree crown 

mortality are of major concern in this study. Drier years have significantly less salt application 

(2000–2009) relative to wet years (1993–1999).  

Vegetation in the Lake Tahoe Basin is dominated by different types of coniferous forests 

at different elevation levels, which are described in detail by Manley et al. (2000). Most common 

species are Jeffrey pine, lodgepole pine, ponderosa pine, white fir, red fir, and incense cedar. 

Other conifers include western white pine, sugar pine, whitebark pine, singleleaf pinyon pine, 

limber pine, hemlocks, and junipers. Hardwood species such as aspen and alder occur more 

locally in moist environments. In addition, the Basin contains significant areas of wet meadows 

and riparian wetlands, dry meadows, brush fields of sagebrush and chaparral species such as 

Manzanita, and rock outcrop areas, especially at higher elevations. In recent decades, drought, 

pathogens, insects, parasites, fuel reduction treatments, wildfires and de-icing salt effects have 

caused high levels of tree damage and mortality throughout the Basin (Walker et al. 2007). 

However, little quantitative data are available on the incidence and severity of such damaging 

agents. 

Residential development and recreational use (i.e. winter sports, water sports, hiking, 

bicycling, and gambling) within the Basin have experienced dramatic increases since the 

construction of gambling casinos in the Nevada part of the Basin during the mid-1950s and the 

completion of the interstate highway links for the 1960 Winter Olympics held at Squaw Valley. 

Since the 1980s, development has slowed down due to controls on land use. The overall 
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residential population of the Tahoe Region increased gradually from 46,887 in 1987 to 62,894 in 

2000. Although the year-round population between 2000 and 2005 decreased by 7,662, in 

consequence of a dramatic increase in residential home price starting in 2001, prediction models 

still incorporate assumptions for long-term population growth in the Basin (TRPA 2008).  

The transportation network in the Nevada portion of the Lake Tahoe Basin mainly 

consists of four highways: Nevada Highway 431 (SR-431), Nevada Highway 28 (SR-28), US 

Highway 50 (US-50), and Nevada State Route 207 (SR-207). They are divided into six sections 

by Washoe, Carson City and Douglas counties. De-icing salt application is maintained separately 

on these six route sections. Traffic is monitored by four continuous Automatic Traffic Recorder 

(ATR) count stations on highways SR-431, SR-28 and US-50 in the Nevada portion of the Basin. 

Demographic and economic changes have caused dynamic shifts in winter traffic, which 

influence the amount of de-icing salts applied and the extent of de-icing salt spray onto roadside 

tree crowns. 

2.2 Data Collection 

2.2.1 Field Data 

2.2.1.1 Tree morphologic and pathological survey 

A recent project (Munck et al. 2010) provided detailed field survey data (216 plots) from 

2006 and 2007 on tree crown severity of salt damage and other agents such as insects and 

pathogens. My study used these data in conjunction with newly collected field data to validate 

remote sensing change detection analyses. The field plots were 100ft × 100ft (30.48m × 30.48m) 

squares, which are very close to the 30m × 30m pixels of Landsat TM5 images. The locations of 

the corners of these plots were recorded by Garmin GPSMAP 60CSx GPS. By overlapping those 
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coordinates on Landsat images, 70 of the 216 plots were observed to have more than 80% overlap 

with Landsat pixels. These plots were chosen to be re-surveyed in 2009. 

From Aug. 15, 2008 to Sep. 10, 2008, we additionally surveyed 35 field plots, including 

1347 trees. Each plot is a 30m × 30m square, exactly representing a single pixel on Landsat TM 

image. Each square was located on the field by the coordinates of four corners of corresponding 

pixel using sub-meter precision GPS (Trimble GeoXT GPS). All trees with DBH>10 cm within the 

square were surveyed and tagged. We recorded plot center coordinates, elevation, slope, number of 

trees, and canopy cover (by densiometer) for each plot, and tree species, DBH, salt damage rating, 

needle damage rating, pathogen ID, disease severity, insect ID, insect severity, dieback, and overall 

tree health rating for each tree. Detailed field survey methods were described in Munck et al. 

(2010). 

From Sep. to Oct., 2009, the 35 plots sampled in 2008 were resurveyed using the same 

methods. In addition, 42 plots of 2006 and 29 plots of 2007 from Munck et al. (2010) which have 

more than 80% overlap with Landsat pixels were re-located by Trimble GeoXT GPS and were 

adjusted to correspond to those 30m×30m pixels. Trees outside of the pixel were excluded and 

only those inside the pixel were re-surveyed. 

These ground reference data including tree DBH and health status were compiled and 

transformed to healthy canopy cover or foliage biomass for each plot (Section 2.3.7), which were 

then used to validate remote sensing change detection results. 
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2.2.1.2 Ground-based leaf area index (LAI) measurements   

In order to collect more accurate tree crown information, additional field measurements 

of leaf area index (LAI) were collected from Sep. 3 to Oct 14, 2010 using LI-COR LAI-2000 

Plant Canopy Analyzer (LI-COR Inc., Lincoln, Nebraska). This equipment calculates leaf area 

index and other canopy structure attributes from diffuse radiation measurements made with a 

“fish eye” optical sensor. Its optical sensor is filtered to reject radiation above 490 nm, which 

minimizes the influence of radiation scattered by the foliage. Measurements made above and 

below the canopy are used to determine canopy light interception in five angular bands about the 

zenith (0.0 – 12.3°; 16.7 – 28.6°; 32.4 – 43.4°; 47.3 – 58.1°; 62.3 – 74.1°). The light interception 

information is then used to compute LAI with a model of radiative transfer in vegetative 

canopies (LI-COR 1992). The measured LAI directly represents the actual abundance and status 

of live vegetation on a per-plot basis. Thus it is more closely related to vegetation indices derived 

from remote sensing than is canopy cover. 

Sampling plots were selected based on the criteria described in Appendix A. Thirty 

60m×60m plots were located and surveyed. Each plot contains 4 sub-plots, corresponding to 4 

Landsat TM pixels. Pixel corners and centers were marked by flags. A 90 degree azimuth view 

cap was used, so that unwanted objects including the surveyor were blocked from the sensor. The 

90 degree view also facilitated the sampling design as follows. Ten measurements were made for 

each pixel, including 2 reference readings at the open site, 4 below canopy measurements at four 

pixel corners, and 4 at the center of pixel facing four corners. The estimated view distance of 

LAI-2000 is approximately 20m. So, 8 below canopy readings should fully comprise the pixel 

and allow some overlap for minimizing noise (Figure 2). These multiple measurements were 

integrated into a single LAI for the pixel using the software FV2200 (LI-COR Inc., Lincoln, 
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Nebraska) designed for processing data generated by LAI-2000 Plant Canopy Analyzer. The field 

LAI data were used to calibrate vegetation indices from satellite imagery (Section 2.3.4). 

30m 

  

 

Figure 2. LAI sampling design for each pixel. The square is a 30m×30m pixel. Four below 

canopy measurements are made at the four pixel corners (the four green 90° fan-shaped sectors). 

At the pixel center, four below canopy measurements are made facing four corners (the four 

different color 90 degree fan-shaped sectors starting from the center). 

2.2.2 Remote Sensing Data 

a) Landsat TM 

Landsat TM images for each year from 1988 to 2010 were acquired from the USGS Earth 

Resources Observation and Science Center (EROS) website (http://landsat.usgs.gov/, October, 

2008). In order to minimize potentially confounding spectral influences from understory 

vegetation, images were selected from late summer or early fall (before first snowfall), at which 

season deciduous trees (primarily aspen), herbs and shrubs are dormant, but conifers are still 
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photosynthetically active. Mid-September was the preferred acquisition date and near anniversary 

images were selected to minimize confounding effects from plant phenological change or other 

unmeasured factors (Appendix B). Images of 1989, 1994, and 1997 were excluded because no 

suitable acquisitions were available due to cloud or snow cover. Landsat TM imagery consists of 

seven spectral bands with a spatial resolution of 30 meters for band 1 (0.45 – 0.52 µm), band 2 

(0.52 – 0.60 µm), band 3 (0.63 – 0.69 µm), band 4 (0.76 – 0.90 µm), band 5 (1.55 – 1.75 µm), 

and band 7 (2.08 – 2.35 µm). Band 6 (thermal infrared, 120-m resolution) was not used. The 

images have been processed as Level 1T, which provides systematic radiometric and geometric 

accuracy by incorporating ground control points, while also employing a Digital Elevation 

Model (DEM) for topographic accuracy (USGS 2008). 

b) IKONOS 

A pair of IKONOS images with similar solar angles and satellite collection angles for 25 

September 2005 and 27 September 2009 was used in this study (Appendix B). The near-

anniversary dates minimize variation in plant phenology and focus the analysis on between-year 

tree physiological changes. The similar sun angles ensure similar shadows cast by tree crowns 

and other tall objects. This is important because IKONOS data are prone to shadow effects 

(Asner 2003). Satellite collection angles for these two dates are also similar but not identical. The 

effects of difference in collection angles are discussed in the later sections. The IKONOS images 

encompass a buffer of approximately 2 – 4km adjacent to the main highway traversing the east 

shore of Lake Tahoe, with a total coverage of 102 km2. The imagery consists of blue (445 – 516 

nm), green (506 – 595 nm), red (632 – 698 nm) and near-infrared (757 – 853 nm) bands with 

spatial resolution of 4 meters and a panchromatic band (526 – 929 nm) with 1-meter resolution. 

The 1-meter resolution of the panchromatic band enables visual recognition of single tree 
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crowns. The 11-bit data depth of IKONOS imagery provides higher radiometric resolution than 

Landsat (8-bit) for change detection and classification.     

2.2.3 GIS Data 

a) LiDAR 

Light Detection and Ranging (LiDAR) data for the lands surrounding Lake Tahoe were 

collected by Watershed Sciences, Inc. (WSI) from August 11th to August 24th, 2010. The 

LiDAR survey used two Leica ALS50 Phase II laser systems mounted in a Cessna Caravan 

208B. The Leica systems were set to acquire ≥ 83,000 – 105,900 laser pulses per second (i.e., 83 

– 105.9 kHz pulse rate) and flown at 900 – 1300 meters above ground level (AGL) depending on 

weather and terrain, capturing a scan angle of ±14° from nadir. These settings were developed to 

yield points with an average native pulse density of >8 pulses per square meter over terrestrial 

surfaces. The resulting average first-return density of delivered dataset is 11.82 points per square 

meter with an average ground point density of 2.26 points per square meter. The vertical 

accuracy was estimated at 3.5 cm RMSE (OpenTopography Facility 2011).  

LiDAR data were generated and downloaded from the NSF OpenTopography Facility 

website (http://www.opentopography.org/index.php, April, 2011). All return point classes: 

Ground, Water, and Unclassified (Vegetation & Structures) were chosen so that both the first 

return surface (i.e. Digital Surface Model (DSM) including tree crown surface) and ground 

surface (i.e. Digital Elevation Model (DEM)) were more accurately generated. These two data 

sources were utilized to generate several useful datasets for multiple purposes as discussed in the 

remote sensing methodology section (2.3). 

b) NED 

17 

 



18 

 

The National Elevation Dataset (NED) for the Lake Tahoe Basin was obtained from the 

USGS website (http://ned.usgs.gov/, September, 2009). The resolution is 1 arc second (i.e. 30 

m). NED is developed by merging the highest-resolution and best-quality elevation data (e.g. 

DEM) available across the United States into a seamless raster format (USGS 2009a). 

Topographic and hydrological variables used for road effect analysis were initially derived from 

NED. After LiDAR data became available from April, 2011, NED was used as the 

supplementary elevation dataset for the locations outside of LiDAR data coverage.   

c) DOQ 

Digital Orthophoto Quadrangle (DOQ) imagery of 1998 with 1-meter resolution from 

Lake Tahoe Data Clearinghouse (http://tahoe.usgs.gov/, August, 2008) was acquired for auxiliary 

uses, such as checking the quality of IKONOS orthorectification. 

d) Vegetation Data 

A digital map of vegetation composition and structure with 30-meter resolution in GRID 

format for the Lake Tahoe Basin was downloaded from USGS National Map LANDFIRE website 

(http://landfire.cr.usgs.gov/viewer/, December, 2009). Every pixel contains detailed information 

about vegetation species, structure and classification (USGS 2009b). 

e) Road Data 

A detailed transportation shapefile including roads of all levels for the whole Basin was 

downloaded from Lake Tahoe Data Clearinghouse (http://tahoe.usgs.gov/, December, 2009). 

However, for fine-scale analyses, I digitized a high-precision road shapefile based on 

orthorectified IKONOS panchromatic images, on which the central lines and edges of roads are 

resolved. Different widths of roads were considered. Up and down slopes along the major roads 
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were also delineated in detail with the aid of topographic data (e.g. slope and aspect images) and 

hydrological data (drainage basin, stream lines and range lines maps) derived from LiDAR DEM. 

Buffer zones of 0 to 500 meters from road edge with 10-m interval were generated and the 

intersections with the up-and-down slope shapefiles were used for road effects analysis.   

2.2.4 Salt Application Data 

I acquired de-icing salt application data from 1988 to 2010 per fiscal year (from July 1st 

to June 30th of the following year) from the Nevada Department of Transportation (NDOT) 

(Appendix C). Data include the amount of salts and sand applied in cubic yards at a ratio of 5:1 

(this ratio was recently changed to 3:1 in fall 2006), straight salt applied in cubic yards, salt brine 

applied in gallons, and total amount of salt applied in cubic yards. The average amount of salt 

applied per mile on six major route sections (SR-431 WA, SR-28 WA, SR-28 CC, SR-28 DO, 

US-50 DO, SR-207 DO) was used as a predictor variable. 

2.2.5 Traffic Data 

Traffic count information was obtained from NDOT (Appendix D) (NDOT 2010). There 

are four continuous Automatic Traffic Recorder (ATR) count locations on highways SR-431, SR-

28, and US-50 in the Nevada portion of the Lake Tahoe Basin. Monthly Average Daily Traffic 

(MADT) data in the winter snow season were obtained from these ATR stations. Unfortunately, 

the ATR locations are not representative of the traffic in the major route sections in the forested 

area. Therefore, only the basin-wide mean MADT in the winter snow season was used. Specific 

traffic speed information on snow-covered roads or at the time of de-icing salt application was 

not available, and therefore was not considered. 



2.2.6 Climate data 

Historical precipitation (including snowfall) data (Appendix E) for the Nevada side of 

Lake Tahoe were obtained from archives of three weather stations (SNOTEL sites) maintained 

by the USDA Natural Resource and Conservation Service (NRCS) National Water and Climate 

Center. The three SNOTEL sites are: (1) Marlette Lake, Nevada, latitude: 39°10'N, longitude: 

119°54'W, elevation: 7880 feet; (2) Mt. Rose Ski Area, Nevada, latitude: 39°19'N, longitude: 

119°54'W, elevation: 8801 feet; and (3) Heavenly Valley, California (very close to the state line 

of Nevada and California), latitude: 38°55'N, longitude 119°55'W, elevation: 8582 feet. These 

sites nearly represent the northernmost, middle and southernmost locations in the study area.  

2.3 Remote Sensing Methodology 

Remote sensing data were thoroughly preprocessed and then used to derive tree crown 

mortality information according to the flow of operations outlined in Figures 3 and 4. Remote 

sensing derived mortality provided the data source for statistical analyses on road-related effects. 

LiDAR data were processed to be used for several purposes including IKONOS 

orthorectification, topographic and hydrological variables generation, tree crown projection and 

delineation, and estimation of tree height. For IKONOS images, a full preprocessing procedure 

was conducted including orthorectification, preliminary radiometric calibration, the SCnS+C 

topographic correction and the IR-MAD radiometric normalization (Figure 3). These processes 

will be described in detail in the following sections. For Landsat TM images, the preprocessing 

was simpler because geometric correction had already been completed to a high level by USGS. 

The preliminary calibration tool for Landsat TM imagery was also available in ENVI software. 

Dark-object subtraction was performed to minimize haze effects and IR-MAD method was used 
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to radiometrically normalize the whole stack of Landsat TM images (from 1990 to 2009) to the 

reference image of 2010 (Figure 4). After the satellite data were preprocessed, different 

vegetation indices were calculated using the multispectral bands and were compared based on 

their ability to predict field-measured LAI. The most suitable vegetation index (VI) was selected 

to calibrate a VI-LAI relationship, which was used to transform remote sensing VI values to LAI 

data. Tree crown mortality was derived by the change in LAI of different years in quantitative 

change detection or by the “from-to” change class in post-classification change detection. A 

separate dataset of field surveyed mortality was finally used to validate the remote sensing 

derived mortality, which was then analyzed statistically in the application component of this 

study to assess road-related effects on tree crown mortality in the Lake Tahoe Basin. 
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Figure 3. Flow chart of IKONOS image preprocessing, remote sensing change detection, 

calibration, validation, mortality derivation, and statistical analysis processes. 

Change 

detection 

Calibrate 

LAI Ground 

Measurements  

Predict 

IKONOS 

Vegetation Index (VI) 

VI-LAI 

Relationships 

2005-09-25 

LAI 

2009-09-27 

LAI 

2005-09-25 VI 2009-09-27 VI 

LAI Change 

Fine-Scale Spatial Analysis 

on Road-Related Effects 

IKONOS  

Raw Images 

Ortho Images 

Topographically 

Corrected Images 

Geometrically & 

Radiometrically 

Normalized Images 

IR-MAD radiometric 

normalization 

2006-2009 

Tree Health 

Survey Data 

 

Mortality 

Define mortality Validate 

Raw DN Values to 

At-Sensor Reflectance 

Full Preprocessing 

Orthorectification 

Preliminary calibration 

SCnS+C topographic 

correction 

 

 

 

22 

 



 

Figure 4. Flow chart of Landsat TM image preprocessing, remote sensing change detection, 

calibration, validation, mortality derivation, and statistical analysis processes. 
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2.3.1 LiDAR Data Processing 

A novel method in the utilization of LiDAR data was to create binary raster images of 

tree crown shapes as viewed from different positions of the IKONOS sensor. These images were 

used as masks in many steps involving distinguishing tree crowns from other, potentially 

confounding land cover types. A simple image of tree crowns can be derived from LiDAR data 

by differencing its DSM and DEM. A lower threshold of 3 m difference in height was used to 

differentiate tree crowns from other land cover types on this DSM-DEM difference image. Yet 

there was an average of 6 m offset between the tree crowns on LiDAR derived image and the 

corresponding tree crowns on IKONOS image, because LiDAR records true spatial locations of 

round-shaped tree crowns by laser pulses whereas IKONOS records optically projected oval-

shaped crowns given its non-nadir view angles. Therefore, a projection method using the 

Hillshade tool of ArcGIS and LiDAR DSM (including tree crown height) was employed to create 

an image of tree crown shapes that match those on IKONOS images. In this projection, the 

inputs of sun elevation angle and sun azimuth angle, as typically used in applications of the 

Hillshade tool, were substituted by IKONOS satellite collection angles so that the modeled tree 

“shadows” were actually the projected tree crowns on the IKONOS image plane (Figure 5).   
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Figure 5. LiDAR tree crown mask that matches 2005-09-25 and 2009-09-27 IKONOS image 

projection. 

2.3.2 Satellite Imagery Processing 

2.3.2.1 Geometric Correction 

Geometric correction of multi-temporal satellite images is necessary for remote sensing 

change detection. This study related remote sensing-derived information to field survey data and 

other thematic information in a geographic information system (GIS). Therefore, high geometric 

accuracy within image and between images was needed. Orthorectification and image-to-image 

registration are two common geometric correction procedures. Landsat TM5 images from USGS 

were collected with near nadir view angles and have already been processed to Level 1T, which 

provides systematic radiometric and geometric accuracy by incorporating ground control points 

(GCP), while also employing a Digital Elevation Model (DEM) for topographic accuracy. After 

comparison with a DOQ image, most of the archive Landsat TM5 images were found to have 
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high geometric accuracy and were consistent with each other (within half-pixel uncertainty). The 

geometric accuracy was further validated by GCPs collected with high precision Trimble GeoXT 

GPS and LiDAR. Thus, no further geometric correction was performed on Landsat images. 

IKONOS raw images purchased from GeoEye were collected with non-nadir view angles 

and were preprocessed only to the Geo level (GeoEye 2011), which provides standard geometric 

correction with 15 meter CE90 accuracy. Geometric distortion caused by the terrain was apparent 

in these images. Objects (e.g. tree crowns) on different images were not matched. In order to 

perform pixel-based change detection and co-register tree crowns (with a similar size to a 4-m 

pixel) on different images, as well as to relate individual trees from the field plots to the images, 

further geometric correction by orthorectification was necessary. The IKONOS images were 

accompanied by Rational Polynomial Coefficients (RPC) files that enabled orthorectification 

using an RPC model with a DEM and additional GCPs (Lutes 2004).  

To achieve high accuracy, two orthorectification approaches were compared: 1) a two-

step approach combining generic RPC orthorectification and image-to-image registration using 

ENVI, and 2) a one-step approach using ERDAS IMAGINE, in which the original RPC correction 

model was refined with a 0 order polynomial adjustment using GCPs and then the refined model 

was applied to orthorectify the image in one step. In the two-step approach, terrain effects were 

first eliminated in the resulting RPC-orthorectified image, but there was still horizontal offset in the 

X and Y dimensions relative to the standard DOQ, due to a lower degree of accuracy of the rational 

polynomial camera model than the physical camera model. A 0 order polynomial correction in 

image-to-image registration was then applied to eliminate this offset using GCPs from reference 

image. Comparing these two approaches, it was discovered that even though the two-step approach 

26 

 



had similar results to that of the one-step approach, they were not identical. The one-step approach 

is theoretically more reasonable and accurate. The following graph illustrates their difference. 

 

Figure 6. Difference between two orthorectification approaches. D refers to distance. GCP is the 

ground control point. P is the uncorrected image point. 
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On the above graph, assuming a 0 order polynomial adjustment (i.e. a simple shift to 

image x and y coordinates), RPC is used in two ways in the orthorectification process of method 

II. First, RPC is used to compute the model solution by projecting the 3D reference GCPs (i.e. X, 

Y, Z coordinates of GCP) onto a 2D image surface (i.e. x, y coordinates of GCP’) and 

determining polynomial adjustment (i.e. value of D1) by relating the transformed 2D coordinates 

of GCP’ to the coordinates of image tie-point gcp (i.e. uncorrected pixel position corresponding 

to the GCP). The D1 adjustment is then applied to adjust all image points (e.g. from p to 

approximately P’, D1≈D2). Another role of RPC is to transform in the final stage, in an opposite 

27 

 

 

 

 

 



direction, all the image coordinates (p) after polynomial adjustment (P’) into orthorectified 

locations (P) using elevation information from the DEM.  

Method I works by transforming gcp to GCP’’ and p to P’’ using RPC and DEM in the 

first step, and then adjusting GCP’’ to GCP by d1 (d1 ≠ D1) in the second step, image-to-image 

registration. The d1 adjustment derived from GCPs is finally applied to register all image points. 

P’’ cannot be adjusted to P by the d1 adjustment (d1 ≠ d2) due to the variation in topography. 

Moreover, for method II the effect of GCP location on the correction of other pixels depends 

only on the elevation (bias = |D2 - D1|; D1 and D2 are proportional to elevation) because RPC bias 

angle θ is the same for small ground region and the image surface is level. This effect is 

minimized when multiple GCPs with different elevations are used; whereas for method I, the 

bias in correcting other pixels depends on the slope as well as the elevation around GCPs and 

other pixels (bias = |d2 - d1|; d1 and d2 are determined by both elevation and slope) because of the 

uneven ground surface, even though θ keeps the same. In the situation shown in the above graph, 

the bias of method I (|d2 - d1|) is larger than that of method II (|D2 - D1|). They can only be equal 

to each other when the terrain is flat. Therefore, in rugged terrain, method II has less random 

error than method I and thus can generate more accurate orthoimages. 

Based on the above findings, the one-step approach was taken to orthorectifying 

IKONOS images, with the aid of the high accuracy LiDAR DEM and GCPs collected from the 

field using sub-meter precision Trimble GPS. LiDAR first return surface DSM provides accurate 

elevation information of tree crowns, instead of bare terrain elevation. If this DSM is used in the 

orthorectication of IKONOS images, tree crowns can be orthorectified to the true spatial position. 

However, resampling the projected oval-shaped tree crowns (because of non-nadir satellite view 

angles) into round-shaped crowns (because LiDAR records true spatial locations by laser pulses) 
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causes drop of tree crown pixels, because the orthorectified round-shaped crowns generally have 

less area compared to the projected oval-shaped crowns. Tree crown pixels in the IKONOS image 

can be considered as tree crowns projected together with their below canopy ground surface along 

the viewing direction onto the image surface. In other words, since all the materials within the 

sensor’s instantaneous field of view (IFOV) are finally projected onto a single surface, the tree 

crowns can be considered as lying on the ground along the sensor’s viewing direction. Therefore, 

in order to achieve high geometric accuracy as well as preserve the shape and original pixels of 

tree crowns, the LiDAR DEM of continuous and smooth bare terrain surface was used to 

orthorectify IKONOS images. As long as the DEM surface is continuous and smooth, the tree 

crown geometry on raw image will be preserved. The accuracy and smoothness of LiDAR DEM 

surface can minimize the errors of duplication (on terrain surfaces facing away from the sensor) 

and omission (on terrain surfaces facing the sensor) of tree crown pixels.  

In order to achieve accurate co-registration between different images and between 

panchromatic and multispectral images of the same imagery, several guidelines were followed:  

(1) Choose GCPs with accuracy < 1m, whose tie points are clearly identifiable on the 

image;  

(2) Once the GCP tie points on the image were located with confidence, they should not 

be moved in order to decrease the RMS error;  

(3) Locate each GCP tie point for all the images at the identical pixel (by carefully 

comparing the pixel patterns around each tie point on different images) and always at 

the pixel center/corner or pixel edge center on the panchromatic image by precise 

coordinates, so that it has the effect of bundle adjustment to ensure co-registration 

between images. 
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(4) Preserve the co-registration between panchromatic and multispectral images of the 

same imagery, by setting correct upper-left origin X and Y coordinates of the 4-m 

multispectral image in the output resampling configuration, according to those of the 1-

m panchromatic image. If using the calculated defaults by the program, the original co-

registration between raw panchromatic and multispectral images will be lost.  

(5) Choose 0 order polynomial adjustment which is adequate for the images within 

100km and requires only a few precise GCPs.  

The 2005-09-25 and 2009-09-27 images were the only pair selected for change detection 

for their closest collection angles and sun angles. The overall RMS errors were 0.1502 and 0.2077 

pixel for 2005-09-25 and 2009-09-27 panchromatic images, and 0.0376 and 0.0519 pixel for their 

multispectral images, respectively. Pixels of 2005-09-25 and 2009-09-27 panchromatic images 

were precisely matched after orthorectification. Their panchromatic and multispectral images were 

kept matched as well. But unfortunately, the multispectral images have 2-m offset, because the 

original multispectral images of these two dates were scanned and sampled from different origins 

which have 2-m difference in latitude. This 2-m offset was a true offset during image collection 

and remained after orthorectification if the same pixel size (4m) was used as resampling size. 

Considerations of different resampling methods and resampling sizes in the output configuration in 

order to deal with this offset are discussed in the following section.  

2.3.2.2 Resampling 

Two resampling methods were employed in the orthorectification, nearest neighbor and 

cubic convolution. Nearest neighbor resampling was used in orthorectifying each IKONOS 

multispectral image with reference to the respective true origin. This maintained the spectral 
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characteristics of the data without smoothing across extreme values, which is important for 

deriving the relationship between LAI and vegetation index and for image classification. 

Cubic convolution resampling was used to match the 2005 multispectral image with the 

2009 reference multispectral image. Because of the 2-m (half-pixel) difference in their original 

scan and sample origins, this resampling using the same grid origin (upper left corner X and Y 

coordinates) was necessary for co-registering pixels for pixel-based change detection between 

2005 and 2009. However, it alters the original radiometric information in the pixels and thus can 

be problematic for image classification (Meyer 1992). 

Another reason to use cubic convolution was that due to the slight difference in view 

angles between 2005-09-25 and 2009-09-27 images (2.44° in zenith and 17.31° in azimuth), 

there was a shift of 1.6 m Easting and 1 m Northing in projected tree crown top position between 

these two images for trees with average height of 14.7 m (derived from LiDAR) in the Nevada 

portion of Lake Tahoe Basin. A downgrading of resolution to 6 m was used to accommodate this 

spatial difference in tree crown projection on the images, which also corresponds to the default 

resampling pixel size suggested by ERDAS software as the optimum resolution that neither 

oversamples nor undersamples the input image space (ERDAS 2010). The IKONOS images 

resampled in this way were used in the quantitative change detection method (Section 2.3.6).  

2.3.2.3 Preliminary Radiometric Calibration 

Raw DN values were initially calibrated to at-sensor reflectance for each image band. 

Calibrated reflectance is recommended for any analysis that involves quantitative comparison of 

different scenes. It standardizes the bands, accounts for drift in the multispectral scanner, and 
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normalizes daily variation in sunlight (Key and Benson 2004). Calibrated at-sensor radiance and 

at-sensor reflectance are defined as 

  
       

,                       (1) 
                   

    
    

  ,                           (2) 
           

where, 

L
2

λ = at-sensor radiance (W/m /μm/sr), 

ρλ = at-sensor reflectance, 

DNλ = raw digital number, 

d = earth-sun distance in astronomical units, 

2
CalCoefλ = radiometric calibration coefficient [DN/(mW/cm -sr)], 

Bandwidthλ = Bandwidth of spectral band λ (µm), 

2
ESUNλ = band-dependant mean solar exoatmospheric irradiance (W/m /µm), 

θz = solar zenith angle. 

For Landsat images, ENVI provides all the parameters and can automatically transform 

raw DN values to at-sensor reflectance. 

For IKONOS images, there was no software available for the transformation. A 

transformation model was constructed in ArcMap model builder using the above equation. The 

values for parameters CalCoefλ, Bandwidthλ, and ESUNλ were from Taylor (2011). Earth-sun distance 

was calculated using the Sun-Earth Distance Applet developed by Giesen (2011). At the center of 

image: Latitude: 39.13, Longitude: -119.93, d=1.0021016 AU for 2009-09-27 18:55 GMT; 

d=1.0026352 AU for 2005-09-25 19:04 GMT. 
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This transformation is necessary for the following steps of topographic correction and 

radiometric normalization. In Key and Benson (2004), the “reflectance incorporating topography” 

is actually the Cosine Correction method using at-sensor reflectance values instead of raw DN 

values. Collins and Woodcock (1996) apparently used at-sensor radiance as input for 

normalization and then transformed matched radiance to reflectance, which involved potential 

error because what should be normalized is the stable reflectance of invariant features, but not 

their radiance which is not constant even for the most invariant features because of solar 

variation. At-sensor radiance is the spectral radiance recorded by the sensor. At-sensor 

reflectance is calculated using at-sensor radiance and accounts for the variance caused by 

differences in exoatmospheric solar irradiance arising from spectral band differences, the cosine 

effect of different solar zenith angles, the approximate cosine effect of different view angles and 

small differences in the sun-earth distance. Calibrated reflectance standardizes the spectral bands 

within a scene as well as normalizes variation in sunlight and viewing geometry between scenes. 

This allows the bands to be compared directly and allows more accurate vegetation indices to be 

derived.  

Compared to Landsat TM data, retrieving at-sensor reflectance for multitemporal IKONOS 

imagery is complicated by its off-nadir view angle. The magnitude of radiance recorded by the 

IKONOS sensor is dependent on several factors (Mather 1999): (1) reflectance of the target; (2) 

atmospheric effects; (3) topographic (terrain slope and aspect) effects; (4) solar zenith angle and 

exoatmospheric solar irradiance; and (5) view angle (zenith and azimuth) of the sensor.   

Vegetation indices and change detection are based on examining the target reflectance 

(factor 1) and its change at different points of time. Therefore, factors 2-5 have to be corrected or 

normalized in order to derive unbiased reflectance. Since I took separate steps for atmospheric 
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correction and topographic correction, I can assume the absence of an atmosphere and a flat 

terrain. In addition, the terms: d2, ESUNλ, and cosθz in equation (2) already normalize incoming solar 

irradiance received at a pixel. The magnitude of at-sensor radiance still varies with sensor view 

angle (zenith and azimuth), given that vegetated land cover is not Lambertian. The effect of off-

nadir viewing geometry on observed radiance is termed the Bidirectional Reflectance Distribution 

Function (BRDF) (Mather 1999, Jenson 2000). For forested land, this issue is complicated by 

many factors such as tree species, canopy structure, and understory background.   

The variation associated with BRDF due to slight difference in view angles between the 

2005-09-25 and 2009-09-27 images (2.44° in zenith and 17.31° in azimuth) can be further 

normalized in the following topographic correction and radiometric normalization processes but it 

cannot be completely eliminated. Different change thresholds were set in the later steps in order to 

exclude this effect and other unexplained variation from statistical analyses.   

2.3.2.4 Radiometric Correction of Topographic Effect  

Because of the complex topography (steep slopes and various aspects) in the study area, 

topographic distortions on the radiometric property of the imagery (both Landsat TM and IKONOS) 

are evident. The same canopies on different slopes will have different radiometric information 

recorded by the raw imagery. Topographic correction is necessary to normalize sloped pixels to 

horizontal pixels so that they have equivalent radiance on the image if there are equivalent actual 

materials of interest on the ground within their instantaneous fields of view (IFOVs) (Colby 1991). 

Many topographic correction methods have been created. This study developed a new Sun-Crown-

Sensor (+C) model for correcting topographic effects in forest imagery. The derivation of this 

model and comparison with other models are presented as follows.  
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(1) Previous methods 

Through comparison of two common topographic correction methods: Cosine Correction 

and C-Correction (Jensen 2005), I found the latter to be a significant improvement over the former 

one which showed obvious overcorrection. The C-Correction algorithm is defined as: 

       
                                ,                               (3) 

      

where ρ0 is the topographically corrected reflectance as if on horizontal terrain; ρ is the 

uncorrected reflectance; i is the solar incidence angle defined as the angle between the normal to 

the pixel surface and the solar zenith direction;    is the solar zenith angle; and C is a parameter 

analogous to the general additive effects of diffusive sky irradiance (Teillet 1982). Without C, 

equation (3) is the Cosine Correction. C is calculated from an empirical-statistical regression model 

                                       ,                              (4) 

        ,                                 (5) 

where ρ is the raw image reflectance, m and b are the slope and intercept of the regression line, and 

the subscript k specifies band k. If the whole image is used to derive Ck, the method is called 

general C-Correction; if a specific land cover type is used to derive Ck, the method is called 

specific C-Correction (Kobayashi and Sanga-Ngoie, 2009). Specific C-Correction can 

significantly enhance the accuracy of topographic correction for forested pixels. My method was to 

use the tree crown mask created by LiDAR data (Figure 3) in the above regression to derive 

specific Ck for forest land cover type.  

The Sun-Canopy-Sensor (SCS) model was developed by Gu and Gillespie (1998) using 

the following formula 
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     .                                      (6)        

    

where all the parameters are the same as in equation (3), with the addition that α is the terrain 

slope. This equation normalizes sun-canopy-sensor geometry instead of Sun-Terrain-Sensor 

(STS) geometry on which many traditional topographic correction methods such as Cosine 

Correction and C-Correction are based. The SCS method normalizes the sunlit area within a 

pixel without changing the sun and sensor positions or the orientation, geometry, and structure of 

the canopy. It is thought to be a more appropriate framework for topographic correction in 

forested areas. However, even the SCS model overcorrects the radiance for certain terrain 

features, because it does not characterize diffuse radiation properly, a problem in common with 

the other methods. Soenen et al. (2005) made a modification to the SCS model to better 

characterize diffuse irradiance by introducing a semi-empirical moderator C to account for 

diffuse radiation. This is very similar to the way in which C-Correction improves upon the 

Cosine Correction. The formula for the SCS+C correction is 

             
       .                              (7) 

      

(2) Modified method of deriving C parameter for SCS+C model 

Deriving C from equation              (4) is suitable only for C-correction, which 

is based on the STS model and assumes a significant correlation between incoming illumination 

(i.e. cosine of incidence angle) and observed radiance or reflectance. Equation (4) can be 

 
transformed to          , where the denominator    normalizes the image data DN, 

  

radiance or reflectance, and then obviously      is the single controlling factor of pixel values 

with a constant slope 1. The constant          is analogous to the general additive effect of 

indirect illumination from the sky. 
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However, for SCS+C, the understanding of the relationship between incoming solar 

illumination and observed signal is based on the SCS model but not the STS model. C parameter, 

therefore, should be derived using another equation representing the correct correlation of observed 

signal to Sun-Canopy-Sensor geometry. As found by Gu and Gillespie (1998), both the average 

irradiance hitting on and the average radiant exitance from the sunlit part of the canopy are largely 

independent of topography because of the geotropic character of trees, and the total radiance from 

the sunlit part of the canopy is proportional to its area: 

       
    .                          (8) 

                 

Given a fixed solar zenith angle θz, sensor recorded radiance is further influenced by terrain 

    
factor . Therefore, the following equation describes the correlation between the terrain-

    

controlled incoming illumination on forest canopy and observed radiance in each band. 

    
        , or 

    

      
    .                             (9)  

      

Equation (9) should be used instead of equation (4) to derive the C parameter in the context 

of the forest canopy and Sun-Canopy-Sensor model. The equation          still holds and 

emulates the general additive effect of diffusive sky irradiance on tree canopies, but the 

    
independent variable changes from      to  in the regression. This new method of deriving 

    

the C parameter should be used in equation (7) for Sun-Canopy-Sensor + C topographic 

correction. 

(3) Sun-Crown-Sensor model 
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For IKONOS imagery, the topographic effects are not likely to correlate well with the Sun-

Terrain-Sensor geometry (Gu and Gillespie 1998), because IKONOS has 4-m spatial resolution, 

whereas the mean diameter of tree crowns in the Lake Tahoe Basin is 10 to 15 m. Moreover, the 

Sun-Canopy-Sensor topographic correction model by Gu and Gillespie (1998) should be further 

modified to characterize the tree crown’s, instead of canopy’s, sunlit area within IKONOS sensor’s 

non-nadir instantaneous field of view (IFOV) as a function of sun, crown and sensor geometry 

(Sun-Crown-Sensor). Topography takes on a different importance from the Sun-Canopy-Sensor 

model to the Sun-Crown-Sensor model. According to Gu and Gillespie (1998), topography 

controls the relative positioning of trees that are geotropic and thereby regulates mutual shadowing 

and the total area of sunlit portions of canopy within Landsat TM’s IFOV, which is viewed from 

near-nadir. For IKONOS, topography does not affect either the irradiance or exitance related to 

direct illumination on sunlit portions of individual tree crowns, but it does affect mutual shadowing 

and thus the total area of sunlit portions of crown in each pixel/IFOV in continuous canopy.  

The aim of topographic correction is to normalize sloped pixels to horizontal pixels so that 

they have equivalent radiance information on the image as well as equivalent actual materials of 

interest on the ground within their IFOVs. For this study, the materials of interest are green leaves, 

in terms of LAI. This was measured from a base area parallel to the slope surface, instead of from 

horizontal. In theory, a pixel on slope and a pixel on flat ground, having the same LAI 

(dimensionless), should contain the same amount of radiance after topographic correction, free 

from the effects of varying sun-crown-sensor geometry and varying IFOV area on the ground, so 

that they are comparable both on the ground and on the image. 
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Figure 7. The Sun-Crown-Sensor topographic correction model. 
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Based on the above understanding, considering a continuous canopy with area S and mean 

LAI on sloped terrain consisting of n pixels, and ignoring the complication of varying tree species, 

tree density, tree height and tree crown shape, the total sunlit canopy area in these pixels is 

 
        

,                                  (10) 
 

where Es is the incoming solar irradiance, and i is the solar incidence angle over the terrain surface 

(Figure 7). The numerator of equation (10) is the total solar radiation energy intercepted by the 

surface element covered by canopy S. The denominator I is the average irradiance on the sunlit 

part of the canopy that is largely topography-independent. Assume an equivalent canopy S0 on 
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horizontal terrain, which has the same mean and standard deviation of LAI within its pixels. Tree 

crown properties of this canopy are unchanged except that the relative distance and position 

between the upright (geotropic) tree crowns changes from sloped to horizontal terrain. Therefore, 

S0 should approximate but not be identical to S, given the same frequency distribution of LAI. Then 

the total sunlit area of the canopy becomes 

    
       

 ,                               (11) 
 

where θz is the solar zenith angle. The number of pixels to cover this canopy becomes n0, and 

         
  ,                                (12) 

       

where θs is the sensor zenith angle and is is the angle between the normal to the pixel surface and 

the sensor zenith direction. Therefore, in each canopy pixel the average sunlit crown area on sloped 

terrain Ap and on horizontal terrain Ap0 are related to each other through 

  
      

       
  .                         (13) 

                
 

If I neglect the BRDF effect and given the same LAI, the average radiance reflected from 

the sunlit part of the crown in a pixel is also largely independent of topography. If I further ignore 

the relatively small amount of radiance from the shadowed portion of the crown, the average total 

radiance L, and the reflectance ρ, recorded by each pixel is proportional to the average sunlit area 

of crown within each pixel’s IFOV, that is, 

           
     , or                       (14) 

                 

         
     ,                            (15) 
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where ρ is the uncorrected reflectance value on any terrain and ρ0 is the topographically corrected 

reflectance value as if on horizontal terrain. I refer to equation (15) as the Sun-Crown-Sensor 

(SCnS) topographic correction model (Figure 7). Although it is derived for the average of pixels of 

a canopy, it can be used to topographically correct every specific pixel of canopy S on sloped 

terrain. Since the numbers of pixels covering canopy S and S0 are different and there are varying 

mutual shadowing effects among adjacent pixels, I cannot identify an equivalent pixel from canopy 

S0 for every specific pixel of canopy S. So I can only assess the mean and standard deviation of 

pixels of canopy S and S0 before and after correction. After this model is applied to all pixels, not 

only the mean reflectance of canopy S is adjusted to the same as canopy S0 but the standard 

deviation of reflectance of corrected pixels of canopy S also matches that of canopy S0. This meets 

the objective of topographic correction (Civco 1989, Riano et al. 2003).  

The method of deriving Sun-Canopy-Sensor model based on coarse-resolution pixels from 

Gu and Gillespie (1998) cannot be directly applied to a high-resolution image especially with 

continuous canopy, because the total solar radiation energy intercepted by a pixel surface element 

is not only controlled by the pixel’s area projected in the direction of sun radiation but also affected 

by shadowing from adjacent pixels when the pixel is smaller than a tree crown. Thus, the equation 

used in Gu and Gillespie (1998),           , where    is the area of a pixel on slope, does not 

hold for continuous forest pixels on IKONOS image. Therefore, the logical flow presented above 

beginning with the consideration of a canopy consisting of n pixels is theoretically well-founded 

and is necessary for deriving the Sun-Crown-Sensor model in this study. It also allows the 

derivation and consideration of other models and factors as in the following sections (4) and (5). 
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As for isolated tree crowns or sparse canopy, the corresponding individual pixels 

(containing mainly tree crowns in their IFOV) are free from shadows and the equation   

         largely holds. Equations (10) and (11) can be adopted and modified to 

        
   ,                                 (16) 

 

         
     

,                               (17) 
 

  where      and      . Therefore,           

   
           

  ,                          (18) 
                 

which is the same as equation (14). This means, the Sun-Crown-Sensor model is generally 

applicable to both continuous and sparse canopies, as long as the pixels are covered mainly by tree 

crowns. 

Compared to the Sun-Canopy-Sensor model in Gu and Gillespie (1998) which does not 

consider varying sensor geometry, this Sun-Crown-Sensor model can be considered as a full model 

involving all aspects of the Sun-Crown/Canopy-Sensor geometry. It is developed in the context of 

high resolution (sub-crown) imagery with non-nadir view angles, but it is also applicable to other 

forest imagery with different resolutions and different view angles (including nadir). For example, 

for Landsat TM5 imagery, the sensor has nadir view and thus      and      (terrain slope). 

Therefore, equation (15) becomes equivalent to equation (6) in this situation.  

To further incorporate the function of C-correction into this newly derived Sun-Crown-

Sensor model, I follow the same theory in previous section (2). From equation (14), I know that 

    
sensor recorded radiance is controlled by terrain factor , when the solar zenith angle θz and 

     

42 

 



sensor zenith angle θs are fixed. Therefore, the following equation describes the correlation 

between the terrain-regulated incoming illumination on tree crowns and the observed radiance in 

each band. 

    
                                     (19) 

     

Equation (19) should be used instead of equations (4) and (9) to derive the C parameter in the 

context of forest image and Sun-Crown-Sensor model.          still holds and emulates the 

general additive effect of diffusive sky irradiance on tree crowns. Therefore, the Sun-Crown-

Sensor + C topographic correction model is formulated as: 

    
            

.                            (20) 
           

(4) Normalize solar angle and sensor angle effects  

Equations (15) and (20) normalize topographic effects of varying terrain slopes and aspects 

within a scene. Following the same theory and procedure in deriving equation (15), I can devise 

another formula to normalize between-scene variance caused by different solar angles and sensor 

view angles. After topographic correction, all pixels can be considered as if on horizontal terrain. 

Therefore, equations (10), (12), (13), (14) and (15) can be written as follows: 

     
        

  ,                            (21) 
 

    
           

  ,                         (22) 
                 

            
          

        
  ,                   (23) 
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   ,                       (24) 
                 

    
   

                                 (25) 
     

where subscripts 0’, s’ and z’ specify the pixels on horizontal terrain (topographically corrected) of 

the image to be normalized and 0, s and z specify those of the reference image. Es is the incoming 

    
solar irradiance at-sensor (    ) which has already accounted for variation in d the earth-sun 

  

distance in astronomical units. ρ0 in equation (25) is the normalized reflectance. Comparing 

equation (23) and (24), it is more convenient to normalize at-sensor reflectance ρ than at-sensor 

radiance L, because the between-scene variance in incoming solar irradiance has already been 

normalized in the preliminary radiometric calibration. Although equation (23) is developed to 

normalize both the sensor view angle and solar angle effects, equations (24) and (25) are sufficient 

to minimize the remaining portion of image-to-image variance in at-sensor reflectance caused only 

by different sensor zenith angles, after the previous steps of preliminary radiometric calibration and 

topographic correction have been performed.  

(5) Sun-Crown-Sensor model incorporating orthorectification 

After orthorectification and resampling have been accounted for, it remains to reconsider 

the formulation of the Sun-Crown-Sensor model. The orthorectification process transforms an 

image with terrain distortion from an off-nadir-viewing system into an orthoimage with relief 

displacements removed as if viewed from nadir. However, orthorectification can only correct for 

geometric distortion caused by terrain and view angle effects, while the Sun-Crown-Sensor (+ C) 

topographic correction normalizes the radiometric distortion caused by terrain, canopy, sun angle 
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and sensor view angle effects. It can, therefore, be labeled a radiometric-topographic correction to 

be distinguished from geometric corrections.  

I used two resampling methods: Nearest Neighbor and Cubic Convolution. Nearest 

Neighbor resampling alters the number of pixels to cover the canopy S or S0, because of 

duplication of pixels (e.g. same pixel size) on slopes facing away from the sensor and dropping of 

pixels on slopes facing the sensor after orthorectification, as illustrated in Figure 7. Nevertheless, 

the radiance recorded by each pixel is unaltered. Therefore, the Sun-Crown-Sensor model as 

expressed by equations (13), (14), and (15) should be maintained. 

Cubic Convolution interpolates pixel values based on a 4 × 4 window of neighbors. It has 

an effect analogous to averaging out the radiance of pixels covering the canopy S or S0. The 

number and values of pixels covering the canopy are altered after orthorectification. However, the 

mean and standard deviation of the output pixels match the mean and standard deviation of the 

input pixels closely with this resampling method (ERDAS 2010). Therefore, the average radiance 

in pixels of either canopy S or S0 is unchanged after orthorectification. Equations (13), (14), and 

(15) still hold. 

(6) Model evaluation 

First, the alternative approaches were performed to derive the C parameter using equation 

(4), (9) and (19). The correlation between observed radiance from the tree crowns and terrain-

        
controlled illumination on the tree crowns, that is,     , , or  based on the understanding 

         

of STS, SCS, and SCnS models respectively, was an indicator of the performance of these models.   
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Second, following the same procedure as Gu and Gillespie (1998), the Sun-Crown-Sensor 

model, Sun-Canopy-Sensor model and Sun-Terrain-Sensor model were applied to the test site and 

statistically evaluated by comparing four parameters:  

1. The modeling efficiency (EF) statistic represents the proportion of data variance 

explained the line of perfect fit (Y = X) when plotting Y against X. The EF is similar to 

2
the r  statistic but was proposed by Mayer and Butler (1993) as a better overall measure 

of fit between observed and model simulated values.    

2. 2
The squared correlation coefficient (r ) indicates the proportion of data variance 

explained by the fitted regression line (Y = α + βX). 

3. The root-mean-square error (RMSE) is a measure of the differences between modeled 

values (X) and observed values (Y). The smaller the RMSE, the better the model fit.  

4. δρ is the relative error of model-predicted reflectance on horizontal terrain,           

      , which directly measures the accuracy of the models.    is the observed 

reflectance on horizontal terrain as estimated by the mean reflectance of the selected flat 

pixels.     is the topographically corrected reflectance using each correction model.  

I used an IKONOS image from 27 September 2009 and its Band 3 (red), which is less 

affected by atmospheric scattering than Bands 1 and 2 and less affected by soil background than 

the near-infrared Band 4, was selected for the evaluation. The image was orthorectified and 

transformed to at-sensor reflectance. The test sites are located in the east side of Lake Tahoe Basin, 

and comprise 7 relatively uniform conifer stands including 12899 pixels, with a sufficiently large 

range of terrain relief for examining topographic effects and testing the topographic correction 

models. Some flat pixels (α <= 5°) were selected as control points and the average reflectance (ρ0 = 
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0.048) of these pixels was used to normalize the reflectance at each pixel of the test site on the 

image. Normalized reflectance was used for testing the topographic correction models using the 

above equations. 

2.3.2.5 Radiometric Normalization 

After preliminary radiometric calibration and radiometric correction of topographic effects, 

there remain radiometric distortions caused by other factors, especially the atmospheric effects. 

Atmosphere absorbs and scatters radiation reflected from the ground before it reaches the satellite 

sensor, and the variation in atmospheric conditions across years affects multitemporal remote 

sensing data (Jensen 2005). Further radiometric correction is necessary for change detection using 

multitemporal images (e.g. IKONOS and Landsat TM) (Song et al. 2001, Du et al. 2002). 

I took a relative radiometric normalization approach which requires neither atmospheric 

properties nor ground spectral measurements and is often more operational to minimize 

atmospheric effects for change detection purposes (Collins and Woodcock 1996). Canty and 

Nielsen (2008) proposed an automatic relative radiometric normalization method based on the 

iteratively re-weighted multivariate alteration detection (IR-MAD) transformation theory. 

Computer programs for IR-MAD (Nielsen 2007) and for automatic relative radiometric 

normalization (Canty and Nielsen 2008) in the form of IDL extensions to ENVI were used in this 

study to normalize multi-temporal images. 

For Landsat TM, the 24 September 2010 scene was selected as the reference to which 

images of all other years were normalized. I initially collected 32 spectrally invariant features, also 

referred to as radiometric ground control points (RGCP), from the field. The pixel values of 

RGCPs from each band of the reference image and target image were used to calibrate a regression 
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equation: y (reference image) = a*x (target image) + b. The resulting equation was applied to 

normalize the target image (x). In this method, the RGCPs were carefully collected throughout the 

Tahoe Basin including deep water bodies as well as invariant land features such as bare soil, roads, 

large rooftops, parking lots, sand, and large rock outcrops, to ensure a long enough spectral 

gradient. However, the limited number of field collected RGCPs were likely subject to change 

when the time span is long between the target image and the reference image. Therefore, the IR-

MAD tools were used to statistically identify no-change pixels and to normalize a whole stack of 

images spanning 24 years. Dark-object subtraction (Chavez 1988) was applied to the 24 September 

2010 reference image to correct for first-order atmospheric scattering effects. An experiment 

confirmed that regardless of whether dark-object subtraction was applied to the target image, IR-

MAD identified the same number of no-change pixels and produced exactly the same normalized 

image. A mask band was used to mask out the large water body of Lake Tahoe which can 

constitute a false no-change background due to waves and solar glare (Canty 2011). 

IKONOS imagery is very sensitive to collection angles, sun angles, and atmospheric effects, 

and thus the radiometric variation between different images can be large and the noise to signal 

ratio can be high. The preliminary radiometric calibration already accounted for solar illumination 

variations. The BRDF effects due to the difference in view angles (2.44° in zenith and 17.31° in 

azimuth between 2005-09-25 and 2009-09-27 images) and atmospheric effects were further 

normalized based on the same relative normalization theory as above by identifying spectrally 

invariant pixels, using the iMAD tool developed by Canty and Nielsen (2007). Topographic 

correction was done in advance of iMAD normalization because the spectrally invariant pixels 

found by iMAD may be on different slopes and thus the varied topographic effects should be 

corrected in order to identify true spectrally invariant pixels. 
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2.3.3 Vegetation Indices 

There are many vegetation indices (VIs) used to estimate the health status of vegetation 

with remotely sensed data. Vegetation indices are based on the principle that significant 

differences exist in the reflectance of healthy vegetation, senesced vegetation, and bare soil as a 

function of wavelength. Information contained in a single spectral band/wavelength is usually 

hard to interpret and insufficient to characterize vegetation status. Thus a variety of vegetation 

indices have been developed by combining two or more spectral bands in certain mathematical 

formulations, in order to estimate relative abundance and activity of green vegetation, which can 

be described by such parameters as leaf area index (LAI), percentage green cover, green 

biomass, chlorophyll content, and photosynthetic activity or absorbed photosynthetically active 

radiation (APAR) (Jensen 2005). The vegetation index data can be further used in various 

classification and change detection processes.  

Most vegetation indices can be divided into two general categories: ratios and linear 

combinations (Jackson and Huete 1991). The former uses the ratio of any two spectral bands or 

the ratio of sums, differences or products of any number of bands, such as Normalized 

Difference Vegetation Index (NDVI); while the latter uses linear combinations of two or more 

spectral bands, such as Tasseled Cap (Kauth-Thomas) Transformation. They are distinct in that, 

in spectral feature space, the vegetation isolines (i.e. a constant amount of vegetation with 

varying soil backgrounds) of ratio indices converge at the origin, while those of linear 

combination indices remain parallel to the soil line (i.e. the axis of bare soil spectral variation as 

a function of soil type and/or soil condition).  
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Many of the vegetation indices make use of the significant difference between red and 

near-infrared reflectance values associated with green vegetation. Reflectance values of the near-

infrared band generally increase with increasing vegetation cover, whereas those of the red band 

generally behave in the opposite way (Huete and Jackson 1985). Thus, the combination of 

reflectance values from red and infrared bands of multispectral imagery can be used to 

characterize vegetation quantity and vigor. NDVI derives from this principle and is the most 

commonly used vegetation index for detecting living vegetation canopies (Rouse et al. 1974). It 

produces index values ranging from −1 to +1, where higher values indicate more, or healthier, 

vegetation in a pixel and vice versa. The formula for NDVI is: 

     
                                               (26) 

     

where, for both Landsat TM and IKONOS imagery, NIR refers to near-infrared band 4 and R 

refers to red band 3. 

The Tasseled Cap (Kauth-Thomas) transformation is an example of linear combination 

indices which produces four orthogonal indices: brightness, greenness, yellowness and non-such 

using four Landsat MSS bands (Kauth and Thomas, 1976). Later, Crist and Cicone (1984b) 

applied the tasseled cap concept to Landsat TM data and produced three orthogonal indices: 

brightness, greenness and wetness, using all six reflective bands of Landsat TM. The equations 

are as follows: 

        B = 0.3037TM1+0.2793TM2+0.4743TM3+0.5585TM4+0.5082TM5+0.1863TM7, 

G = -0.2848TM1-0.2435TM2-0.5436TM3+0.7243TM4+0.0840TM5-0.1800TM7,     (27) 

        W = 0.1509TM1+0.1973TM2+0.3279TM3+0.3406TM4-0.7112TM5-0.4572TM7. 
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Here, the brightness feature is defined by the intersection of the plane of vegetation and the plane 

of soils. Soil variation is two dimensional in the TM Tasseled Cap space and is not equivalent to 

the primary direction of soil reflectance variability (soil line). However, TM brightness does 

respond sensitively to change in soil characteristics, because its formula captures variation in 

total reflectance. It is less responsive to vegetation change. TM greenness is a vector 

perpendicular to brightness. It is computed to be maximally responsive to the combined effect of 

high absorption in the visible bands (due to plant pigments and photosynthetic activity) and high 

reflectance in the near-infrared (due to internal leaf structure and the resultant scattering of near-

infrared radiation), which is similar to the contrasting of near-infrared and red bands in NDVI 

and is thus able to characterize green vegetation. The wetness feature is defined to correspond to 

the direction of soil moisture and plant moisture variation and is orthogonal to both brightness 

and greenness. In the three dimensional space of TM data, brightness and greenness define the 

plane of vegetation and brightness and wetness define the plane of soil. 

Some VIs fail to predict vegetation isoline behavior because of the presence of varied soil 

signals from canopy gaps and different soil backgrounds under constant canopy cover are likely 

to produce different VI values (Colwell 1974). Huete et al. (1985) found that the sensitivity of 

VIs to soil background effects was greatest in canopies with intermediate levels of vegetation 

cover, where there is enough vegetation to scatter and transmit a significant amount of NIR flux 

to the soil surface, as well as enough canopy gaps to allow the soil-reflected NIR signal, which 

strongly resembles vegetation spectral signatures, to reach the sensor. Both NDVI and Tasseled 

Cap transformations are sensitive to soil background effects.  

A series of soil-adjusted indices have been created to reduce soil background effects. The 

first Soil-Adjusted Vegetation Index (SAVI) was proposed by Huete (1988) using a soil-
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adjustment factor L to account for first-order approximation of soil background effects by 

shifting the NIR-Red spectral space origin to a point where the isolines of intermediate densities 

of vegetation converge with the soil line: 

   
              ,                                 (28) 

         

where the optimal value of L deceases with increasing vegetation density. L = 1 for very low 

vegetation densities, L= 0.5 for intermediate vegetation densities, L= 0.25 for high densities. 

Qi et al. (1994) presented a Modified Soil Adjusted Vegetation Index (MSAVI) that 

replaced the general constant L in the SAVI equation with an empirical or inductive L function 

that was data related and could self-adjust its L value to an optimum. This modification was 

proved to be of advantage over SAVI and other indices. It produces higher (vegetation) signal to 

(soil) noise ratio. A study using IKONOS imagery showed that MSAVI was better able to detect 

small vegetation patches and overcome soil background effects to a better degree than NDVI. 

However, MSAVI was more vulnerable to shadow effect than NDVI. It classified shadowed 

areas more easily as “mixed” containing both vegetation and non-vegetation information (Van 

Delm and Gulinck 2009). MSAVI is defined as follows: 

 
                                              (29.1) 

         

where L = 1-2γNDVI*WDVI, where γ is the primary soil line slope and WDVI is the weighted 

difference vegetation index (WDVI = NIR-γR). The inductive version of MSAVI is of this form: 

   
                     

            
                        (29.2) 
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which is based on the same principle as the previous empirical version and has almost the same 

vegetation sensitivity and soil noise reduction ability. It is also easier to apply to Landsat TM and 

IKONOS images, so the inductive version was used.  

To determine whether soil background effects necessitate a soil-resistant vegetation index 

for my study goals of quantifying road-related tree crown mortality in the Lake Tahoe Basin, 

SAVI and MSAVI were compared with NDVI and K-T components to see if the soil-adjustment 

function of the former would provide improvement over the latter. These indices were 

implemented in models by ArcMap model builder and vegetation index images were generated. 

Comparison of the performance of these vegetation indices was based on their power of 

predicting field-measured LAI, using either a linear relationship or exponential relationship. 

2.3.4 Predicting LAI from vegetation index 

My approach for quantifying tree crown mortality used the difference between LAI of 

successive time periods (Figures 3 and 4). LAI can be estimated by remote sensing vegetation 

index (VI) using a linear or non-linear regression model calibrated with field LAI measurements 

(Section 2.2.1.2). Tree crown mortality based on LAI differencing can be validated by separate 

tree health survey data (Section 2.2.1.1). 

VI data from Landsat or IKONOS were calibrated with LAI data, measured by the LAI-

2000 Plant Canopy Analyzer (LI-COR 1992) on a 30×30m plot basis. A total of 94 plots were used 

for IKONOS data and 120 for Landsat data.  

For IKONOS data, the 4-m pixels were resampled into 1 meter and the 30×30m square 

polygon features representing the field plots were used to calculate zonal statistics on the 1-m VI 

images with non-tree pixels assigned the VI value of soil. LAI values of the plots were related to 
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30×30m plot-level mean VI values to derive the regression equation for predicting LAI by VI. For 

Landsat data, the 30×30m pixels are exactly overlapped by LAI plots. Relating Landsat VI to field 

LAI was thus straightforward. 

VIs reach a saturation level at high values of LAI (Hatfield et al. 1985) (Figure 8). A simple 

linear relationship is not sufficient for predicting LAI from VIs, although the linear regression 

results in VIs comparison (Section 3.2) did not reveal this saturation effect because the field data 

did not include sufficiently high LAI values (>8) to saturate VIs. Many studies have suggested the 

use of exponential relationships (Hatfield et al. 1985, Baret and Guyot 1991) such as the semi-

empirical model by Baret and Guyot (1991). This model is formed by the following equation: 

                             , or                       (30.1) 

   
           

                            (30.2) 
          

where, 

VIg = vegetation index corresponding to that of the bare soil, 

VI∞ = asymptotic value of VI when LAI tends towards infinity (practically this limit is 

always reached for LAI greater than 8.0), 

KVI = coefficient which controls the slope of the relationship (equivalent to an extinction 

coefficient). 
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Figure 8. The theoretical non-linear relationship between VI and LAI. 

0 8 

VIg 

VI∞ 

LAI 

VI 

This equation was calibrated with the field LAI data and image VI data. VI∞ and KVI are 

affected by leaf inclination angle and irradiance. Baret and Guyot (1991) obtained VI∞ and KVI 

for different average leaf inclinations by fitting the above model with a fixed value for VIg. For 

conifer species, leaf inclination angle is hard to determine because of the clumping of conifer 

needles and irregularity in inclination angles. I therefore ignored the variation in leaf inclinations 

in the LAI plots containing different conifer species and aimed to obtain a set of general 

parameters (VI∞ and KVI) for VI-LAI transformation that are applicable to the major conifer 

species for the whole study area. Image data were used to identify VIg, while VI∞ and KVI were 

empirically calibrated by fitting the non-linear equation (30.1) using field LAI data and image VI 

values. The calibrated equation (30.1) was transformed to equation (30.2) which was then used to 

predict LAI by VI.  

VIg was estimated as the mean VI value of non-tree pixels (using the LiDAR mask) 

within the LAI plots. These pixels were not necessarily “bare” soil, rather, they represented the 

actual ground surface uncovered by tree crowns or tall shrubs but possibly covered with debris or 
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small understory vegetation (e.g. grass, sagebrush). Because the field LAI measurements did not 

include low understory vegetation, a plot having a LAI of 0 contains no tree crowns, but can 

include some understory vegetation that contributes to the VI value. Therefore, the VIg value 

obtained from the non-tree pixels, selected as described above, gives a better estimate of the 

actual VI value when LAI approaches 0 in equation (30.1). 

Baret and Guyot (1991) found that soil-adjusted Vls could reduce the noise in relating 

VIs and LAI for low leaf area indices (i.e. LAI < 2-3). Our field plots have LAI ranging from 

0.44 to 3.7 and 116 out of the total of 120 plots have LAI <=3. Therefore, soil-adjusted VIs 

including SAVI and MSAVI were also tested against NDVI using the same non-linear algorithm 

to see if they have stronger predictive power for LAI. 

The calibrated VI-LAI relationships using the semi-empirical model (equation 30.2) are 

generalizable to other years for the same study area as long as there is insignificant year-to-year 

variation in soil background and other environmental conditions (e.g. solar irradiance, 

atmospheric conditions and satellite viewing geometry) (Baret and Guyot, 1991). Solar 

irradiance, satellite viewing geometry and leaf inclination affect the parameters VI∞ and KVI, but 

are constant for Landsat images for the same study area. For IKONOS, the issue of slight 

variation in viewing geometry was addressed in the image preprocessing stage. Soil background 

variation affects VI and consequently the VI-LAI relationship. But for the same study area, the 

cross-year variation in soil background can be ignored, and thus the VI-LAI relationship should 

not be affected from year to year. Therefore, the calibrated VI-LAI relationship from 2010 data 

can be used to retrieve historical LAI by VI from archival images. 
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2.3.5 Image Classification of Forest Health 

Remote sensing classification maps for different years enabled a post-classification 

comparison analysis on road-related tree crown mortality that was essentially different from 

quantitative change detection approaches (e.g. NDVI /LAI Differencing). Image classification 

was used to test the potential to use multispectral imagery to distinguish pixels with salt-

damaged vegetation from those with other types of canopy mortality, as well as those with 

healthy vegetation, so that the degree of salt damage and direction of change could be detected 

directly.  

 IKONOS images were used for classification of tree health status instead of Landsat TM 

for two reasons: (1) higher spatial resolution (4m), which enables fine-scale analysis of road-

related effects; (2) higher radiometric resolution (11-bit), which captures much more subtle 

differences of radiometric intensity in the pixels or reflectance of the objects, compared to the 8-

bit data of Landsat TM. Two IKONOS images from 25 September 2005 and 27 September 2009 

were classified. A fuzzy supervised classification using all four multispectral bands (blue, green, 

red and near-infrared) was conducted in ERDAS IMAGINE with the Maximum Likelihood 

decision rule. Signature separability evaluation suggested that this four-dimensional feature 

space created the highest separability among classes. Among the four bands, the near-infrared 

band played the key role, accounting for 50% of the average separability among the signatures. 

Eight classes were defined: Salt Damaged Conifers, Healthy Conifers, Broadleaf Trees, 

Grassland, Water, Road, Construction, and Bare Soil. The selection of the signature pixels for the 

“Salt Damaged Conifers” class was especially conservative, given the goals of this study. Field 

survey plots with extensive salt damage in 2009 were targeted for selecting the 2009 signature of 

this class. Tree GPS coordinates and the orthorectified 1-m resolution panchromatic band were 
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used as ancillary data to help locate salt damaged tree crowns in the 4-m resolution multispectral 

image. Extracted individual pixels of such damaged tree crowns on the multispectral image were 

merged as the final signature for this class. As for the 2005 classification, I used 2006 field 

survey plots with extensive salt damage as reference to select the signature for the “Salt 

Damaged Conifers” class on the 2005 multispectral image. The 2006 ground reference data were 

the earliest available dataset. There was very little change in the salt-damaged plots even 

between 2006 and 2009. Signatures for the remaining classes other than “Salt Damaged 

Conifers” were visually selected from the imagery of each year. For the “Healthy Conifers” 

class, several generally healthy and dense conifer stands were chosen as the signature.  

A fuzzy classification was used to assign three best classes to each pixel according to the 

Maximum Likelihood decision rule. Fuzzy classification takes into account that there are pixels 

of mixed make-up. For example, a 4-m multispectral pixel of IKONOS may contain 50% tree 

crown, 30% grass, and 20% bare soil. Fuzzy classification makes it possible to obtain 

information on what different constituent classes can be found in a mixed pixel. It also reveals 

that some classes might have certain similarity in the spectral constitution or overlap in the 

multidimensional spectral feature space. This is particularly the case for the tree classes: Salt 

Damaged Conifers, Healthy Conifers, and Broadleaf Trees. A signature separability test showed 

that the Healthy Conifers class had least divergence from Broadleaf Trees, according to Jefferies-

Matusita or Transformed Divergence measures.   

A fuzzy convolution tool in ERDAS was then operated to create a single classification 

layer by calculating the total weighted inverse distance of all the classes in a moving window of 

pixels using the output distance file. The center pixel in the window was assigned to the class 

with the largest total weighted inverse distance summed over the entire set of fuzzy classification 
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layers. Classes with a very small distance value remained unchanged while classes with higher 

distance values might change to a neighboring value if there was a sufficient number of 

neighboring pixels with that class value and small corresponding distance values. Fuzzy 

convolution helps create a context-based classification to reduce the “salt and pepper” effect, and 

makes full use of the information in the multiple classification layers extracted by the fuzzy 

classification (ERDAS 2010). 

2.3.6 Change Detection and Tree Crown Mortality 

The quantitative change detection approach used differences in estimated LAI between 

time periods to quantify tree crown mortality. Since NDVI was found to be the best predictor of 

LAI for the study area, change in LAI derived from NDVI was used to measure mortality for 

IKONOS and Landsat TM data (Sections 3.2 and 3.3).  

For IKONOS data, tree crown mortality was evaluated as the LAI change from Sep. 25, 

2005 to Sep. 27, 2009 at 6-m spatial resolution for the east shore of Lake Tahoe. Mortality was 

defined as the percentage of LAI decrease exceeding threshold values of 20% or 40%. Binary 

mortality data (mortality = 1, non-mortality = 0) were thus created, which were used in the 

logistic regression models to examine road-related effects. The percentage thresholds were used 

because the 6-m resolution approximates the size of tree crowns and any absolute change value 

in LAI of a tree is meaningless unless relative to the original LAI of this tree. For example, a tree 

with sparse foliage (e.g. Jeffrey pine) might have lower absolute decrease in LAI than a tree with 

dense foliage (e.g. white fir), but the former might have experienced higher degree mortality than 

the latter. The thresholds also account for noise or unwanted change caused by unmeasured 

factors. Two levels of thresholds were used and compared in order to see whether the model 
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using a more conservative threshold can reveal weaker or stronger effects of the predictor 

variables. 

For Landsat TM data, mortality events were defined as ΔLAI< -0.2 or ΔLAI< -0.4 

between time periods. Given the 30-m resolution of Landsat TM data, absolute LAI change 

values were used as the mortality thresholds instead of percentage thresholds because the former 

can capture single tree mortality among a patch of trees within a 30×30m pixel while the latter is 

likely to omit single tree mortality in a dense patch where the percentage decrease in the overall 

LAI can be very low. Therefore, the absolute thresholds are more suitable for detecting mortality 

at the plot level, compared to the percentage thresholds at the tree level. The 0.2 mortality 

threshold was selected because the mean LAI of field plots was approximately 2.0 and the mean 

LAI of all image pixels (forest or non-forest) was approximately 1.0. Much of the mortality from 

de-icing salt only affected a small proportion of the LAI, from field observation. However, this 

threshold was likely to be sensitive to small changes in LAI or random variation in the data. 

Therefore, the 0.4 mortality threshold was used as a comparison to see whether a more 

conservative threshold is more appropriate for examining road-related effects. 

Compared to a quantitative measurement of mortality, post-classification change 

detection could provide a different approach to modeling road-related tree crown mortality if the 

classification method could isolate salt-damaged tree crowns directly. Due to the 2-m (half-pixel) 

difference in the scan and sample origins of the 2005 and 2009 IKONOS images (Sections 

2.3.2.1 and 2.3.2.2), and the resulting 2-m true offset between IKONOS classification maps, a 

pixel-based post-classification change detection analysis was not conducted. Instead, 

classification results of 2005 and 2009 were summarized separately. The proportion of conifer 

pixels that were classified as “Salt Damaged Conifers” was used to define mortality. Mortality 
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percentage was summarized per 10-m distance zone from the roads. Road-related effects on tree 

mortality were revealed and compared between the years 2005 and 2009.   

2.3.7 Validation Using Field Data 

Tree crown mortality estimates from change detection were validated with ground 

reference data. Single year VIs were calibrated using field-measured LAI data (Section 2.2.1.2). 

The calibrated VI-LAI model (Section 2.3.4) was used to estimate LAI by VI for different years. 

The change in modeled LAI, used to define mortality (Section 2.3.6), was validated with the tree 

morphological and pathological survey data (Section 2.2.1.1).  

In order to validate the plot-level crown mortality estimates in terms of ΔLAI, the original 

tree-level survey data, containing DBH measurements and tree health ratings for each tree, were 

transformed to a plot-level measure of “healthy canopy cover” through a DBH-Canopy Cover 

allometric model and “Weighted Healthy Canopy Cover” equation. The allometric model 

estimates crown radius by DBH using a linear equation per species (Gill et al. 2000):  

crrad = b0 + b1DBH                                     (31) 

where crrad is the crown radius and b0, b1 are the species-specific parameters. Parameter values 

for different species were derived from Gill et al. (2000), with parameters for ponderosa pine 

used to model the ecologically and phylogenetically similar Jeffrey pine. Crown area can be 

easily calculated from crown radius. After crown area of each tree was calculated, the qualitative 

measurement of the health status of each tree in the field data was used to weight the raw crown 

area and the overall healthy canopy cover per plot was derived: 

Healthy Canopy Cover=  *100%+  *80%+  *30%                     (32) 
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Consequently healthy canopy cover change between different years was derived: 

Δ Healthy Canopy Cover =Δ  *100%+Δ  *80%+Δ  *30%+      *5%       (33) 

where Healthy Canopy Cover is the estimation of healthy or effective portion of green area that a 

tree canopy contains and can be recorded on the remote sensing images. A, B, C refer to the field 

measured health status of each tree and designate in the equation the canopy area of each tree 

belonging to these health status classes.   ,   ,    are the sums of crown area of the trees in 

a plot belonging to the three classes, respectively. Health status class A was assigned to a tree 

with >89% of the crown in healthy condition, B to approximately 60-89% healthy crown, C to 

<50% healthy crown, and D to dead trees (Munck et al. 2010). The constant multiplier, 5%, is 

used in Equation 33 as an estimation of normal tree growth rate over a three-year period for 

healthy trees.  

Equation (33) contains both quantitative (i.e. absolute tree death) and qualitative (i.e. 

health status change in living trees) aspects of field data. A decrease in   +  +   from 

2006 to 2009 reflects the amount of trees that were alive in 2006 but dead in 2009 (marked as D 

or DEAD), that is, absolute tree death. The weighting method was used in consideration that 

DBH was not re-measured, given that the minimal growth in DBH of the conifers in three years 

cannot exceed the amount of measurement error. In addition, even if DBH had been re-measured 

very accurately, the weighting method would have had to be used to derive canopy change 

information because health status can decrease (i.e. healthy canopy cover can decrease) while 

DBH increases or remains constant. Therefore, the change of tree health status including tree 

death was chosen as the indicator of total healthy canopy cover change. This method made use of 

both qualitative and quantitative change information and thus was able to validate change 
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detection results (based on modeled LAI change) using tree health change (described by 

defoliation and discoloration) rather than using solely physical canopy cover change from 

measured tree death, on which many other studies (Collins and Woodcock 1996) were based. 

The plots surveyed in 2006 and 2009 were examined to exclude outliers due to different 

surveyors’ measurement errors, understory effects or geometric errors of recorded plot locations. 

For example, 92 of 132 trees in the plot D-123 were assigned health status B in 2006 by a 

surveyor but status A in 2009 by another surveyor, which resulted in a large healthy canopy 

cover increase using equation (33). However, the LAI of this plot did not show any significant 

change. The plots E-1030, E-114, D-3 and W-8 were deleted because there were only a few trees 

in the plots. Most of the ground surface was covered by deciduous understory species such as 

willow, snowberry, ribes and amelanchier whose canopies change much more dramatically in the 

fall compared to conifers but they were not surveyed. Overall, thirty plots were used in the 

validation. 

2.4 Statistical Analysis of Road-Related Effects on Tree Crown Mortality 

Statistical modeling approaches including generalized linear models (GLMs; e.g. logistic 

regression) were used to model the effects of multiple underlying causes on tree crown mortality. 

Mortality probability, the response variable, was derived from remote sensing change detection 

and calibrated and validated by field data. Explanatory variables included road-related factors 

(i.e. de-icing salt application, distance from road, roadside topography and traffic) and a non-

road-related factor (i.e. precipitation).   

Stationary variables such as distance from road and roadside topography were examined in 

spatial analysis, while temporal variables including salt application, precipitation and traffic were 
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examined in analysis of changing patterns of roadside tree crown mortality over time. Spatial 

analyses were performed at both fine-scale (6-m) resolution using the 25 Sep. 2005 and 27 Sep. 

2009 IKONOS images and broad-scale (30-m) resolution using the 25 Sep. 1993 and 26 Sep. 1999 

Landsat TM images. Temporal analyses also included two levels. The first level compared wet 

years (1993-1999) with dry years (2003-2009). The second level analyzed the trend of mortality 

associated with de-icing salt, precipitation and traffic across the years from 1988 to 2010.  

2.4.1 Spatial Analysis 

2.4.1.1 Spatial Variables 

According to the hypotheses of road-related effects (Section 1.4), I constructed spatial 

proxy variables for aerial deposition effects and soil uptake effects of de-icing salts on tree crown 

mortality. The field study of Munck et al. (2010) suggested a more significant mechanism of 

aerial deposition of de-icing salt on tree crowns by moving vehicles than that of root uptake of 

de-icing salt from soil, but these two mechanisms were not directly compared. Thus, two new 

variables were created based on roadside topography to model the degree to which either of these 

two mechanisms was associated with roadside tree crown mortality. 

(1) Aerial deposition 

The spatial proxy variable for aerial deposition models the combined, synergistic 

relationships among road distance, slope position (above or below the road) and slope contour 

with regard to potential de-icing salt effects. The new variable is defined as the profile area 

contained by the terrain curve, the horizontal line from road and the vertical line, divided by the 

square of distance, and then divided by distance (Equations 35.1, 35.2, and 35.3). Profile area is 
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the accumulated trapezoidal area above all the pixels along the nearest Euclidean distance route 

orthogonal to the road. It is calculated as 

                                     
                       ,    (35.1) 

where n is the number of path pixels from the destination tree pixel to the corresponding nearest 

road pixel. The constant “6” refers to the pixel resolution of cubic resampled image. By equation 

(35.1), downslope areas have positive profile area values, while upslope areas have negative 

values. Profile area divided by distance square measures the overall path curvature of terrain 

from road to roadside pixel (Equation 35.2). 

            
                 .                      (35.2) 

        

The chance of aerial deposition of de-icing salt to the destination tree pixel is proportional to the 

overall curvature of the path and inversely proportional to the path distance. Therefore, overall 

path curvature divided by distance gives the probability of aerial deposition (Equation 35.3). 

              
                                

        

A pixel along a concave slope from the road will have higher chance of salt deposition from the 

road than a pixel along a convex slope (with same distance) (Figure 9). But if slope and distance 

are considered as separate variables at the level of an individual pixel, an opposite and wrong 

conclusion will be reached because of ignoring other intervening pixels along the path to the 

roadside. 
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Figure 9. Illustration of the aerial deposition proxy variable. 
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(2) Soil uptake / flow accumulation 

The previous field study by Nowak et al. (2008) observed that uptake of de-icing salt 

from soil might also be a factor for tree crown mortality, but the degree of its damage compared 

to direct aerial deposition of salt was uncertain, and not reflected in the data that were collected. 

In this remote sensing study, another proxy variable was derived to estimate the degree of salt 

accumulation at a pixel as mediated by water flow regime. The degree of salt accumulation at a 

pixel is estimated by the flow accumulation from roads. A flow accumulation raster was 

generated from LiDAR DEM after clipping out the upslope areas above roads and the watersheds 

unrelated to roads but contributing to the stream lines below roads (Figure 10). Therefore, only 

flows from roads were considered in the resulting flow accumulation variable. This variable was 

log transformed to have a normal distribution. 
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Figure 10. The spatial proxy variable for flow accumulation. 

2.4.1.2 Fine-Scale Analysis using IKONOS 

To achieve objectives (2) and (3) and test the corresponding hypotheses H1 and H2 

(Section 1.4), a fine-scale analysis was conducted using IKONOS imagery by virtue of its 6-m 

spatial resolution (after resampling), which allows single-tree differentiation for larger crowns 

and is an appropriate resolution for statistically modeling de-icing salt effects associated with 

distance from road and roadside topography.  

I first examined whether there was a threshold distance from road where road-related 

effects were no longer significant. Downslope and upslope areas were also compared to examine 

how distance from road interacted with roadside topography in controlling road-related mortality. 
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Furthermore, with the aid of the two spatial proxy variables created above, I used logistic 

regression to quantify how the two mechanisms of de-icing salt effects influenced tree crown 

mortality using the model:  

logit(π) = β0 + β1 Aerial Deposition + β2 log(Flow Accumulation),               (36) 

where the flow accumulation variable was log transformed to meet logistic regression assumptions. The 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) scores were used to select 

the best-fit model. 

2.4.1.3 Broad-Scale Analysis using Landsat TM 

Broad-scale spatial analysis was performed on 30-m resolution Landsat TM data. A pair 

of images from 25 Sep. 1993 and 26 Sep. 1999 was selected to explore the effects of two 

important road-related spatial variables, distance and slope, on the probability of tree crown 

mortality. Slope was a binary, categorical variable differentiating downslope (downslope = 1) 

from upslope (downslope = 0). 1993 to 1999 encompasses the wet years when the highest 

amount of de-icing salt was applied in record (Appendices C and E).  

This broad-scale spatial analysis was based on the following logistic regression model: 

logit(π) = β0 + β1distance + β2downslope + β3distance×downslope,          (37) 

where  

β0 = log odds for mortality in upslope positions at distance 0 from road;  

β0 + β2 = log odds for mortality in downslope positions at distance 0 from road;  

β2 = (β0 + β2) - β0 = log of the odds ratio for mortality in downslope relative to upslope, at 

distance 0 from road; 
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β0 + β1D = log odds for mortality at D meters from road in upslope; 

(β0 + β2) + (β1 + β3) D = log odds for mortality at D meters from road in downslope; 

β2 + β3D = [(β0 + β2) + (β1 + β3) D] – [β0 + β1D] = log of the odds ratio for mortality in 

downslope versus upslope at distance D from road. 

Finally, the rate of change in the log odds ratio with distance is  

[(β2 + β3D) - β2] / D = β3. 

The parameter of the interaction term β3 shows the effect of distance from road on the relative 

mortality probability/odds ratio at downslope versus upslope positions. 

To test the hypothesis that mortality differs with distance class, the logistic regression 

was initially run with distance as a categorical variable with 20 levels, with each level having a 

30m distance interval. The 0 – 30 m distance zone was the reference level. 

Given the 30-m resolution of the samples, the 0–60m and 0–120m zones were tested 

separately using model (37), when the continuous distance (pixel center to road edge) was used 

as a numerical explanatory variable. The 0 – 60 m zone was used to test how road distance and 

roadside topography interact in affecting mortality probability. The square of distance was also 

tested to assess if the effects of distance were linear or non-linear. The 0–120m zone was used to 

check if road-related effects extend to beyond 60m because of the suggestive trend found in this 

zone in the sample data (Table 9, Figure 19).  

For Landsat analyses at 30-m resolution, the distance and downslope / upslope variables 

were used instead of the aerial deposition variable and flow accumulation variable, which are 

only capable of being used with high-resolution imagery such as IKONOS. Similarly, AIC and 

BIC scores were used to compare the full model with reduced models. 
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2.4.2 Temporal Analysis 

Archival Landsat TM imagery permits a long-term analysis of forest mortality. I 

implemented change detection using a stack of images from 1988 to 2010. Raw images were 

preprocessed and transformed to LAI. A database with LAI change over the 22 years was 

generated, which informed the dynamic history and trend of Lake Tahoe Basin forest mortality 

and revegetation. The yearly LAI change data were related to distance from road, upslope 

/downslope, de-icing salt application, precipitation, and traffic data. I classified those small 

patches of forest (i.e. 30×30m pixels) that have experienced a mortality event (i.e. negative LAI 

change exceeding a threshold value -0.2 or -0.4) and used logistic regression to model the 

probability of a mortality event as a function of the above predictor variables.  

Two levels of temporal analyses were performed. First, the pair of anniversary images 

from 21 Sep. 2003 and 21 Sep. 2009 was compared with the 1993-1999 image pair in the 

temporal analysis to see the effect of different amounts of salt applied and precipitation on tree 

mortality probability. The 1993 to 1999 period contrasts with the period from 2003 to 2009 when 

significantly less de-icing salt was applied due to either the relatively drier climate or NDOT’s 

recent mitigation efforts in salt application (Appendix C). They contrast significantly in 

precipitation as well (Appendix E). An indicator variable was created for each of the two periods, 

with the 1993 to 1999 period coded salt = 1 (high salt application) and the 2003 to 2009 period 

coded salt = 0 (low salt application). The logistical regression model was formulated as  

         logit(π) = β0 + β1distance + β2salt + β3distance×salt,                   (38) 
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in which the interaction term tests the hypothesis that the effects of distance from the road are 

apparent only in years of high salt application, but are negligible or are not associated with de-

icing salt in other years. 

At the second level, a stack of images from 1988 to 2010 were used to generate an annual 

LAI change dataset, excluding years 1989, 1994, and 1997 when suitable images were not 

available due to cloud or snow cover. Change data from 1988 to 1989, from 1989 to 1990, from 

1993 to 1994, from 1994 to 1995, from 1996 to 1997, and from 1997 to 1998 were therefore 

missing. This dataset allowed long-term analysis of the effects of de-icing salt application, 

precipitation and traffic on the dynamics of tree crown mortality. First, scatterplots were created 

to explore the relationships between mortality and salt application, precipitation, and traffic, 

respectively. Salt application data in the scatterplots were the summary data for each year on all 

road sections, while in the latter statistical analyses salt data were specific to different road 

sections (Appendix C), so were the traffic data. Therefore, the scatterplots are shown only for 

exploratory purpose. Statistical findings were based on the regression analyses using more 

detailed data.  

Using logistic regression, I aimed to test the hypothesis that temporal variation in roadside 

tree crown mortality is explained by the amount of de-icing salt applied, traffic volume, and 

climate together. An increasing trend of roadside tree crown mortality was hypothesized to be 

positively associated with increasing amount of salt applied, after traffic and climate have been 

accounted for. Interactions between these explanatory variables are also possible. The full logistic 

model used was 

logit(π) = β0 + β1salt + β2precipitation + β3traffic + β4salt×precipitation + β5salt×traffic.   (39) 

71 

 



72 

 

Based on the spatial analysis results, only samples from the de-icing salt influenced zone 

(0–60m) were included in the above model. Traffic data (MADT) were only available from 1999 

to 2009 (Appendix D). 

3 Results 

3.1 Evaluation of Topographic Correction Methods 

The Sun-Crown-Sensor model (Section 2.3.2.4) made significant improvement over the 

Sun-Canopy-Sensor model and Sun-Terrain-Sensor model in depicting the correlation between 

terrain-regulated illumination on tree crowns and observed radiance in red band (r = 0.58 > 0.56 > 

0.54) (Figures 11 (a), (b), and (c)). The near-infrared band had more scattered reflectance and 

weaker correlation with terrain-regulated illumination on tree crowns (Figures 11 (d), (e), and (f)). 

Equation (19) still performed better than other equations in near-infrared band, but the difference in 

r values was relatively small (r = 0.422 > 0.415 > 0.395). 

  
(a)                                         (b) 



  

(c)                                          (d) 

  

(e)                                          (f) 

Figure 11. Comparison of alternative approaches to deriving C parameter, for red band: (a) based 

on the Sun-Terrain-Sensor model, X axis is the      (range: 0 ~ 1) image of 2009-09-27; (b) 

based on the Sun-Canopy-Sensor model, X axis is the 
    

    
 (range: 0 ~ 1.5) image of 2009-09-27; 

(c) based on the Sun-Crown-Sensor model, X axis is the 
    

     
 (range: 0 ~ 2) image of 2009-09-27; 

for near-infrared band: (d) based on the Sun-Terrain-Sensor model; (e) based on the Sun-Canopy-

Sensor model; (f) based on the Sun-Crown-Sensor model. A LiDAR tree crown mask was used 

and a total of 161736 pixels with more than 13/16 (80%) tree crown coverage were used to 

derive C. This can exclude bare pixels and minimize the influence of soil background on the 

relationship and highlight the variation of reflectance as a function of sun-crown-sensor 

geometry. Tall shrubs and deciduous species were also excluded to obtain a better specific C 

parameter for conifers. 
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2
In the model evaluation using test data, the Sun-Crown-Sensor model had the highest R  

(0.4674) and its +C version outperformed other models by having the highest EF (0.3784), lowest 

RMSE (0.287) and lowest δρ (0.0917) in topographically correcting the test image (Table 1, Figure 

12). The red band of the 2009-09-27 IKONOS imagery after the SCnS+C topographic correction 

showed significant decrease in terrain effects, compared to the raw image (Appendix F). 

Table 1. Evaluation of the Topographic Correction Models on the Test Site 

Equation Data Noise: 0.3640   

Model Type 
2

Y X r  RMSE EF δρ 

Cosine   
        0.3910 0.3573  0.0364 0.3211 Sun Correction         

Terrain 
       Sensor C-    ,    from           0.3910 0.3321  0.1678 0.1928 

Correction            

      
SCS     0.4280 0.3172 0.2408 0.2035 

             

Sun 
        

Canopy SCS+C   ,    from           0.4284 0.3014 0.3143  0.1251 
                 

Sensor 

Modified               ,    from       0.4284 0.3012  0.3154  0.1285 
SCS+C                      

          
SCnS     0.4674 0.3288  0.1841  0.1949 Sun             

Crown 
            Sensor      

SCnS+C   ,    from       0.4557 0.2870 0.3784  0.0917 
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Figure 12. Regression line and line of perfect fit for different topographic correction models 

using the test site data. ρ/ρ0 is the observed reflectance on terrain normalized by the flat pixel 

reflectance (Section 2.3.2.4 (6)). 
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3.2 Evaluation of Different Vegetation Indices 

When NDVI, SAVI (L=0.5 or L=0.25), MSAVI and the Tasseled-Cap indices were used 

to fit a linear function, all the indices had significant relationships with field measured LAI 

2
(Figure 13 and Table 2). NDVI was the best predictor (R  = 0.7542), followed by SAVI (L=0.25) 

and Tasseled Cap indices. The soil-adjusted VIs, esp. SAVI (L=0.5) and MSAVI, did not prove 

any advantage in adjusting soil background effects or it suggested that soil background effects 

were not important in this study. Among the three Tasseled Cap indices, Greenness was the only 

significant predictor (p-value = 0.001); Wetness (p-value = 0.915) and Brightness (p-value = 

0.434) were both not useful in estimating LAI.  

The comparison of vegetation indices when fitting the exponential relationship (Equation 

30.1) using field measured LAI is shown in the next section. 

76 

 



77 

 

   

(a)                                                           (b) 

  

(c)                                                          (d) 

 

(e) 

Figure 13. Relationships between LAI and (a) NDVI, (b) (c) SAVI, (d) MSAVI, (e) Tasseled Cap 

Greenness. 
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Table 2. Multiple Regression results using LAI as dependent variable and the 3 Tasseled Cap 

indices as independent variables. 

Coefficients Value Std. Error t value P-value 

Intercept 2.3530 1.1604 2.0278 0.0529 

Brightness -0.0124 0.0156 -0.7956 0.4335 

Greenness 0.1384 0.0384 3.5994 0.0013 

Wetness -0.0030 0.0275 -0.1077 0.9151 

Degrees of freedom:  28  Residual standard error: 0.038985 

Multiple R-Squared:  0.7338        Adjusted R-squared: 0.7031      

3.3 Modeled VI-LAI Relationship 

 When the VI-LAI relationships were calibrated with field measured LAI for IKONOS 

and Landsat TM data using the non-linear semi-empirical model (Equation 30.1), NDVI yielded 

the most reasonable values for parameters VI∞ and KVI when checked with image data (Tables 3 

and 4). When the soil-adjusted vegetation indices were used in the model, either negative KVI 

values or VI∞ values lower than the VIg (soil VI) were obtained (Table 5). Therefore, only NDVI 

was used in the model to estimate LAI in this study. 

Table 3. Nonlinear regression for NDVI using IKONOS data. NDVIg was identified and fixed. 

Parameters Value Std. Error t-value p-value 

NDVIg 0.206  
  

NDVI∞ 0.7290 0.1431 5.093 < 0.0001 

KVI 0.2113 0.0733 2.882 0.005 

Degrees of freedom: 92 Residual standard error:  0.0359  

Table 4. Nonlinear regression for NDVI using Landsat data. NDVIg was identified and fixed. 

Parameters Value Std. Error t-value p-value 

NDVIg 0.257  
  

NDVI∞ 0.7609 0.1374 5.536 < 0.0001 

KVI 0.3454 0.1359 2.542 0.017 

Degrees of freedom: 28 Residual standard error:  0.0390  
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Table 5. Nonlinear regression for other VIs using Landsat data. VIg was identified and fixed. 

Parameters Value Std. Error t-value p-value 

MSAVIg 0.156 

MSAVI∞ 0.1510 

 
  
0.0040 37.930 < 0.0001 

KVI -0.9271 0.2872 -3.227 0.004 

Degrees of freedom: 28 Residual standard error:  0.0165  

SAVI (L=0.5) 0.175 

SAVI∞ 0.1470 

 

0.0190 7.723 < 0.0001 

KVI -0.4898 0.1971 -2.485 0.02 

Degrees of freedom: 28 Residual standard error:  0.0165  

SAVI (L=0.25) 0.199 

SAVI∞ -0.0970 

 

0.4102 -0.237 > 0.5 

KVI -0.1280 0.1543 -0.829 0.4 

Degrees of freedom: 28 Residual standard error:  0.0201  

  

  

From Tables 3 and 4, the following equation was used to transform IKONOS NDVI to 

LAI: 

           
       , 

                

and equation 

           
         

                

was used to transform Landsat NDVI to LAI. 

3.4 Quantitative Change Detection Results  

A dataset of yearly change detection results as measured by quantitative LAI change was 

generated using Landsat TM images from 1990 to 2010 for long-term temporal analysis. LAI 

change images from 1993 to 1999 encompassing wet years with high salt application and from 

2003 to 2009 encompassing dry years with low salt application were also created using Landsat 

TM anniversary images for broad-scale spatial analysis and wet-dry year comparison (Figure 14). 
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A 4-year change in LAI from 2005 to 2009 was generated using a pair of IKONOS images for 

fine-scale spatial analysis (Figure 15).  

 

(a)                                           (b) 

Figure 14. LAI change: (a) from 25 Sep. 1993 to 26 Sep. 1999 (wet years with high salt 

application), (b) from 21 Sep. 2003 to 21 Sep. 2009 (dry years with low salt application) for the 

whole Lake Tahoe Basin using Landsat TM images. Red represents decrease in LAI and green 

represents increase in LAI. 
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            (a)                                                   (b) 

Figure 15. LAI change from 25 Sep. 2005 to 27 Sep. 2009: (a) for the Nevada portion of the 

Lake Tahoe Basin using IKONOS images, (b) for the area around Mt. Rose highway near Incline 

Village. Red represents decrease in LAI and green represents increase in LAI. 
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3.5 Classification Results 

Classification maps for 2005 and 2009 show that trees classified as salt-damaged were 

widely dispersed throughout the Basin and their quantity was much lower than healthy trees 

(Figure 16). From 2005 to 2009, there was a decrease in the proportion of damaged trees and a 

corresponding increase in the proportion of healthy trees (Figures 16a and 16b).  However, there 

was a greater proportion of mortality near roads in 2009 than in 2005, especially within the 0-

30m zone (Figure 16c). 

 

(a) Sep. 25, 2005 Classification (Spooner Lake) 
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(b) Sep. 27, 2009 Classification (Spooner Lake) 

 

(c) Proportion of mortality per distance zone (whole study area) 

Figure 16. Multispectral fuzzy classification results: (a) Sep. 25, 2005, (b) Sep. 27, 2009, and (c) 

post-classification comparison on the proportion of mortality per distance zone from the road. 

The colors on the classification map are interpreted as follows: orange = trees with damage; dark 

green = healthy trees; light green = grassland or shrubland; gray = bare soil; blue = water; and 

black = road. 
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3.6 Validation of Remote Sensing Estimated Mortality 

LAI change derived from remote sensing was reasonably well correlated with estimates 

of healthy canopy cover change using field surveys (Figure 17). From 2006 to 2009, most of the 

field plots were detected by remote sensing to have decreased LAI, but the modeled healthy 

canopy cover from field surveys (Section 2.3.7) showed many plots had positive changes. 

Nevertheless, these relationships suggested that remote sensing estimated LAI change in the 

validation sites was consistent with the canopy health pattern observed in the field.   

 

Figure 17. Relationship between observed ΔHealthy Canopy Cover and ΔLAI derived from 2006 

and 2009 Landsat TM images. 
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3.7 Spatial Patterns of Tree Crown Mortality 

3.7.1 Fine Scale 

From the IKONOS sample data, there was a decreasing trend of mortality probability 

with increasing distance from road especially within the 0-100m vicinity (Figure 18). The trend 

leveled off after 150m. For downslope areas, there was a shorter distance zone of 0-30m where 
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the decrease of mortality was most strikingly evident. Upslope areas generally had higher 

mortality probability than downslope areas.  

 

(a) 

 

(b) 

Figure 18. Scatterplots of sample probability of mortality (threshold=-40%) versus distance for 

data grouped by intervals of distance using the 2005 to 2009 IKONOS change data. (a) shows 
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data from the 0–300m zone from the road; (b) shows the trends in the 0–30m and 0–100m 

downslope regions. 

The results of logistic regression of the probability of mortality as a function of distance 

and up or down slope position were used for explanatory purpose (Table 6). Only samples from 

0–100m were included as suggested by Figure 18 to explore road-related effects. The interaction 

term distance × downslope was not retained in the final model (p-value = 0.76 and 0.44 for the -

20% and -40% mortality thresholds, respectively). The mortality probability was negatively 

associated with both distance from road and downslope positions (Table 6). Because a higher 

probability of mortality generally existed in upslope positions after accounting for distance, 

which cannot be explained by road-related effects, only samples from downslope were used in 

later analyses to examine road-related effects.  

Table 6. Logistic regression model to assess 

upslope=0) on tree mortality within 0–100m 

the effects of distance and slope (downslope=1, 

zone, using 2005–2009 IKONOS data. 

Mortality 

Threshold 
Variable Coefficient Std. error z-statistic p-value 

<-20% ΔLAI 

<-40% ΔLAI 

Intercept 

distance 

downslope 

Deviance = 19570.24 

-0.211 

-0.0006 

-0.0840 

DF 

0.042 

0.0006 

0.0338 

= 14326 

-5.063 

-0.923 

-2.486 

0.000 

0.358 

0.013 

 

Intercept 

distance 

downslope 

Deviance = 17961.56 

-0.634 

-0.0013 

-0.0933 

DF 

0.044 

0.0007 

0.0358 

= 14326 

-14.413 

-2.017 

-2.602 

0.000 

0.043 

0.009 

 

When the two proxy variables for de-icing salt effects (i.e. aerial deposition and flow 

accumulation) were used in the model, a clear effect of increasing mortality probability 

associated with increasing aerial deposition and flow accumulation of de-icing salt was revealed 
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for downslope areas (Table 7). Interpretation of aerial deposition effects can be partitioned into 

the relative influences of slope steepness, distance from road and path curvature, the three 

components of the aerial deposition proxy variable (Figure 9). For example, a tree on a 60° slope 

was 1.57 times (95% CI: 1.14 to 2.16) more likely to be damaged relative to a tree on a 30° 

slope, at 12m from the road. On a 45° slope, a tree at 12m distance from the road was 1.22 times 

(95% CI: 1.06 to 1.40) more likely to be damaged relative to a tree that was 24m from the road. 

At 24m from the road, a tree after a concave slope was 2.47 times (95% CI: 1.31 to 4.67) more 

likely to have mortality than that after a convex slope.  

Flow accumulation effects were statistically significant but weak. The odds ratio of 

mortality was 1.05 (95% CI: 1.01 to 1.10) with every 10 times of pixels’ flow contribution, 1.11 

(95% CI: 1.02 to 1.21) with every 100 times of pixels’ flow contribution, and 1.17 (95% CI: 1.02 

to 1.33) with every 1000 times of pixels’ flow contribution.  

Table 7. Logistic regression model to assess de-icing salt effects via two mechanisms on tree 

mortality within 0–100m downslope zone using 2005-2009 data. Mortality was defined by two 

thresholds, 20% and 40% decrease in LAI. 

Mortality 

Threshold 
Variable Coefficient Std. error z-statistic p-value 

<-20% ΔLAI 

<-40% ΔLAI 

Intercept 

Aerial deposition 

Flow accumulation(log) 

Deviance = 9910.096 

-0.504 

0.0094 

0.0223 

DF 

0.067 

0.0034 

0.0097 

= 7293 

-7.555 

2.789 

2.293 

0.000 

0.005 

0.011 

 

Intercept 

Aerial deposition 

Flow accumulation(log) 

Deviance = 9027.807 

-0.956 

0.0112 

0.0177 

DF 

0.072 

0.0035 

0.0104 

= 7293 

-13.327 

3.225 

1.700 

0.000 

0.001 

0.089 
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To assess whether the 0–30m downslope zone near road is most sensitive to de-icing salt 

effects, as suggested in Figure 18, the model was refit with samples from this zone. Aerial 

deposition effects became more evident (mortality threshold <-40%), but the effect of flow 

accumulation was no longer evident (Table 8). The odds ratio of mortality was 1.99 (95% CI: 

1.32 to 3.01) in the 0–30m zone with an average increase by 50 unit in aerial deposition, which is 

equivalent to a change from on a 30° slope to on a 60° slope at 12m from the road. This was 

slightly higher than the 1.75 (95% CI: 1.25 to 2.46) odds ratio with the same amount of increase 

in aerial deposition in the 0–100m zone. 

Table 8. Logistic regression model to assess de-icing salt effects via two mechanisms on tree 

mortality within 0–30m zone using 2005–2009 data. Mortality was defined by two thresholds, 20% 

and 40% decrease in LAI. 

Mortality 
Variable Coefficient Std. error z-statistic p-value 

Threshold 

Intercept -0.471 0.115 -4.112 0.000 

Aerial deposition 0.0099 0.0040 2.463 0.014 <-20% 

ΔLAI Flow accumulation(log) 0.0059 0.0187 0.315 0.749 

Deviance = 2651.384 DF = 1956    

Intercept -0.911 0.123 -7.415 0.000 

Aerial deposition 0.0141 0.0042 3.321 0.001 <-40% 

ΔLAI Flow accumulation(log) -0.0130 0.0201 -0.647 0.516 

Deviance = 2384.293 DF = 1956 AIC = 2390.29 BIC = 2407.03  

Intercept -0.978 0.065 -15.076 0.000 

<-40% 
Aerial deposition 0.0138 0.0042 3.279 0.001 

ΔLAI 
Deviance = 2384.709 DF = 1957 AIC = 2388.71 BIC = 2399.87  
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3.7.2 Broad Scale 

A clear trend of decreasing mortality probability with increasing distance from road was 

observed within 120m of the road, and especially within 60m from the road (Figure 19). There 

was a slight increase in mortality probability after 60m. 

 

Figure 19. Fits of logistic regression models for probability of mortality at different distance 

zones and scatterplots of sample mortality probability using 1993–1999 data. Mortality threshold 

= -0.4 (ΔLAI). 
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When distance was used as a categorical variable, the only distance zone that had 

significantly (p-value ≤ 0.05) different mortality probability relative to the 0–30m zone was 30–

60m (Table 9). The odds of mortality for the 0–30m zone where the trees are more likely to have 

de-icing salt contact was estimated to be 2.6 times the odds of mortality for the more distant 30–

60m zone (95% CI: 1.1 times to 6.2 times). There was also suggestive but inconclusive evidence 

of decreasing mortality probability in the 60–90m and 90–120m zones. Zones beyond 120m 
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were not significantly different from the roadside zone (0–30m), and were thus excluded from 

following analyses. 

Table 9. Logistic regression model to assess the effects of different distance classes on tree 

mortality (threshold=-0.4) rate using 1993–1999 data. 

Variable Coefficient Std. error z-statistic p-value 

Intercept -3.054 0.272 -11.233 0.000 

DIST60 -0.959 0.441 -2.177 0.029 

DIST90 -0.570 0.443 -1.287 0.197 

DIST120 -0.782 0.488 -1.605 0.107 

DIST150 0.373 0.349 1.068 0.285 

DIST180 0.341 0.363 0.941 0.347 

DIST210 0.072 0.387 0.186 0.063 

DIST240 0.306 0.357 0.855 0.390 

DIST270 -0.244 0.415 -0.588 0.555 

DIST300 0.103 0.407 0.254 0.803 

DIST330 -0.066 0.396 -0.167 0.865 

DIST360 -0.170 0.416 -0.408 0.682 

DIST390 -0.258 0.447 -0.577 0.562 

DIST420 -0.786 0.522 -1.507 0.131 

DIST450 0.051 0.408 0.125 0.896 

DIST480 -0.029 0.419 -0.068 0.944 

DIST510 0.182 0.399 0.456 0.646 

DIST540 -0.918 0.568 -1.618 0.105 

DIST570 -0.183 0.432 -0.424 0.674 

DIST600 -0.639 0.525 -1.218 0.222 

Downslope 0.630 0.158 3.989 0.000 

Deviance = 1677.719 Degrees of freedom = 4579  

When distance was used as a continuous variable and only samples from 0–60m zone 

were included, the mortality threshold -0.4 was more suitable than -0.2 in revealing road-related 

effects (Tables 10a and 10b). The hypothesized interaction term between distance and downslope 

was not retained in the final model (p-value = 0.68). Mortality in downslope areas versus upslope 

areas was not significantly different (Tables 10a and 10b). Therefore, only distance was further 

2
examined as the explanatory variable. Including the quadratic term distance  did not make much 
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improvement over the first-order distance only model (Table 10b). Although the AIC score 

decreased slightly from 199.776 to 198.357, the BIC score increased from 208.57 to 211.548. 

2
Moreover, both distance and distance  had p-values larger than 0.05 (Table 10b). BIC’s stronger 

penalization for the number of parameters and the high p-values when the quadratic term was 

included suggested that mortality was nearly linearly related to distance from road and the 

distance only model should be selected. The effect of every 10-m increase in distance from road 

edge was estimated to be a 26.5% (95% CI: 4.8% to 43.2%) decrease in probability of mortality, 

for trees within 60m of the road (Figure 20).  

Table 10a. Logistic regression model to assess the effects of distance and slope on tree mortality 

(threshold=-0.2) rate using 1993–1999 data, within the 0–60m zone from the road. 

Variable Coefficient Std. error z-statistic p-value 

Intercept 

distance 

downslope 

Deviance = 370.052 

-1.606 

-0.0149 

0.4736 

DF= 597 

0.294 

0.0084 

0.1206 

 

-5.460 

-1.762 

-1.812 

 

0.000 

0.078 

0.070 

 

Table 10b. Logistic regression model to assess the effects of distance and slope on tree mortality 

(threshold=-0.4) rate using 1993–1999 data, within the 0–60m zone from the road. 

Variable Coefficient Std. error z-statistic p-value 

Intercept 

distance 

downslope 

Deviance = 192.990 

-2.070 

-0.0304 

-0.7627 

DF = 597 

0.403 

0.0132 

0.4785 

AIC = 198.990 

-5.141 

-2.312 

-1.594 

BIC = 212.181 

0.000 

0.021 

0.111 

 

Intercept 

distance 

2
distance  

Deviance = 192.357 

-3.277 

0.069236 

-0.001837 

DF = 597 

0.723 

0.059737 

0.001085 

AIC = 198.357 

-4.530 

1.159 

-1.693 

BIC = 211.548 

0.000 

0.246 

0.091 

 

Intercept 

distance 

-2.314 

-0.0307 

0.383 

0.0132 

-6.039 

-2.336 

0.000 

0.019 
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Deviance = 195.776 DF = 598 AIC = 199.776 BIC = 208.570  

 

Figure 20. Fit of logistic regression model for mortality, with distance
 
as explanatory variable to 

examine road-related effects within 60m of the road. 
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When considering all samples from within the 0–120m zone, there was strong evidence 

of an interaction effect between distance and slope (Table 11). The odds of mortality were 

associated with distance differently for downslope than for upslope. The resulting logistic model 

was as follows: 

logit (  ) = -2.29 – 0.0186distance – 1.3596downslope + 0.0229distance × downslope 

For downslope (downslope=1), the model became: logit (  ) = -3.65 + 0.004234distance. 

The odds ratio was 1.043 (95% CI: 0.735 to 1.480) with every 10m increase in distance from 

road. This was not a significant increasing trend since the confidence interval included 1.  

For upslope (downslope=0), the model became: logit (  ) = -2.29 – 0.018637distance. The 

odds ratio was 0.830 (95% CI: 0.727 to 0.947) with every 10m increase in distance from road. A 
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distinct trend of decreasing mortality with increasing distance from the road remained from the 

0–60m zone to 0–120m zone for upslope trees (Figure 19).  

Table 11. Logistic regression model to assess the effects of distance and slope (with interaction 

term) on tree mortality (threshold=-0.4) rate using 1993–1999 data. 

Variable Coefficient Std. error z-statistic p-value 

Intercept -2.290 0.345 -6.633 0.000 

distance -0.018637 0.006750 -2.761 0.006 

downslope -1.359618 0.675879 -2.012 0.044 

distance×downslope 0.022871 0.011097 2.061 0.039 

Deviance = 318.309  Degrees of freedom = 1054  

 

3.8 Temporal Patterns of Tree Crown Mortality 

3.8.1 Comparison between wet years and dry years 

There was strong evidence of an interaction effect between salt and distance (Table 12). 

In years of high salt application (1993–1999), i.e. salt = 1, the model became: logit (  ) = -2.314 - 

0.031distance, which was the same as the model in Table 10b. As discussed before, this model 

clearly captured the effects of distance on mortality and suggested the existence of de-icing salt 

caused tree crown damage. In years of low salt application (2003–2009), i.e. salt = 0, the model 

was: logit (  ) = -2.299 + 0.029distance, which estimated the effect of distance to be an increase 

in the odds of mortality by a multiplicative factor of exp (0.029×10) = 1.336 (95% CI: 1.259 to 

1.419), if distance increases 10 meters.  

The odds ratio of mortality from 1993 to 1999 (wetter years) relative to from 2003 to 

2009 (drier years) was approximately 0.98 at 0m from road, 0.54 at 10m from road, 0.30 at 20m 
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from road, and so on. Generally, wet years had lower levels of mortality than dry years across the 

Basin (Figure 14). 

Table 12. Logistic regression model to assess the effects of distance (0–60m) and wet 

(salt=1)/dry (salt=0) years on tree mortality (threshold=-0.4) rate using 1993–1999 and 2003–

2009 change data. 

Variable Coefficient Std. Error z-statistic p-value 

Intercept 

distance 

salt 

distance×salt 

Deviance = 795.928 

-2.299 

0.029 

-0.015 

-0.060 

DF 

0.255 

0.006 

0.460 

0.015 

= 1196 

-9.025 

4.528 

-0.033 

-4.085 

0.000 

0.000 

0.974 

0.000 

 

3.8.2 Long-term trend from 1990 to 2010 

The time series data from 1990 to 2010 showed positive correlations between mortality 

and salt and between mortality and precipitation, and a negative correlation between mortality 

and traffic (Figure 21). There was a possible one-year delay of tree crown mortality response to 

salt application as shown in the “lag scatterplot” of Figure 21b compared to Figure 21a. 
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(c)                                                           (d) 

Figure 21. Scatterplots of mortality proportion as a function of (a), (b) salt application (1990–

2010), (c) precipitation (1990–2010), and (d) traffic (1999–2009 MADT), respectively. In (b), 

there is 1-year lag in response of mortality to salt application. 
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When the traffic data (MADT) from 1999 to 2009 together with salt and precipitation data 

were used to fit the full model (39), salt and precipitation had significant interaction (p-value = 

0.030) and MADT had strong additive effect (p-value < 0.001) (Table 13a). From 1999 to 2009, 

MADT only varied from 13511 to 15564. The year-to-year average change in MADT was about 

200. An increase in winter daily traffic by 200 count/day was only associated with a 4.2% (95% 

CI: 1.9% to 6.4%) decrease in the odds of mortality. Therefore, I focused on examining the 

interaction effect between salt and precipitation: 

logit(π) = β0 + β1salt + β2precipitation + β3salt×precipitation. 

The drop-in-deviance test on the interaction term gave LRT = 5.20, and p-value = 0.022, 

which suggested salt and precipitation had significant interaction effect (Table 13b). The 

influence of salt application on the odds ratio of mortality was dependent on precipitation. In 

3
wetter years, every 10 yard /mile increase in salt application had stronger effect on the odds of 
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mortality (Figure 22a). De-icing salt effects were more distinct in wet years than in dry years 

(Figure 22b). 

No matter whether precipitation or traffic was included in the model or not, salt 

application was consistently the strongest explanatory variable. Without considering other factors 

(i.e. simple regression with salt as the only variable), a median increase in the amount of salt 

3
applied by 10 yard /mile was estimated to cause 7.8% (95% CI: 3.1% to 12.6%) increase in the 

odds of mortality. 

Table 13a. The full model to test the effects of salt, precipitation and MADT in de-icing salt 

effect prone area (0–60m) using 1999–2009 data. 

Variable Coefficient Std. Error 

 

z-statistic p-value 

Intercept 1.8915 0.9061 2.087 0.037 

salt -0.0189 0.0134 -1.418 0.156 

precipitation -0.0119 0.0064 -1.870 0.061 

MADT  -2.14E-04 5.96E-05 -3.597 0.000 

salt×precipitation 6.83E-04 3.14E-04 2.171 0.030 

Deviance = 5891.636 DF= 6595  

Table 13b. The best supported model to test the interaction effects of salt and precipitation in de-

icing salt effect prone a

Variable 

Intercept 

rea (0–60m) using

Coefficient 

-1.326 

 1990–2010 data. 

Std. Error 

0.216 

z-statistic 

-6.148 

p-value 

0.000 

salt -0.014296 0.010152 -1.408 0.159 

precipitation -0.012680 0.005432 -2.334 0.020 

salt×precipitation 0.000518 0.000227 2.280 0.023 

Deviance = 8378.506 DF = 9596 AIC = 8386.506 BIC = 8415.184  
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(a) 

 

(b) 

Figure 22. Interaction effects between salt and precipitation: (a) the odds ratio of mortality with 

every 10 yard
3
/mile increase in salt application; (b) the effects of salt application on the 

probability of mortality during dry, median and wet years. 
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4 Discussion 

4.1 Topographic Correction of Remote Sensing Imagery 

Although some vegetation indices such as NDVI cancel out topographic effects by per-

pixel normalization in their equations, there is still significant influence of diffuse irradiance from 

atmospheric and terrain sources that cannot be addressed by vegetation indices alone. In other 

words, any topographic correction method that uses a single multiplicative correcting factor for all 

spectral bands (e.g. Cosine Correction) has no effect on simple ratio-based vegetation indices (e.g. 

NDVI), but the C-Correction, SCS+C and SCnS+C correction methods incorporate band-specific 

C parameters to account for diffuse irradiance; therefore these transformations should be 

performed before calculating vegetation indices.  

Visible bands (blue, green and red) of both Landsat TM5 and IKONOS are within the range 

of 0.45~0.69 µm wavelength, which is strongly absorbed by green canopy. Irradiance of these 

bands at the ground is therefore limited to that coming directly from the sun and sky through 

canopy gaps. Thus, tree crowns play a more important role than the ground surface in the 

reflectance of visible bands, and the Sun-Crown-Sensor model demonstrates an advantage. 

However, vegetation canopy (esp. conifers) without high canopy closure will scatter and transmit a 

significant amount of near-infrared (0.76~0.90 µm for both Landsat TM5 and IKONOS) flux to the 

ground surface underneath the canopy as well as through canopy gaps. The ground surface 

subsequently reflects part of this scattered and transmitted flux back to the sensor (Huete 1988). 

Therefore, terrain does have increased influence for near-infrared (NIR) band especially when the 

canopy closure is low (for coarse resolution imagery) or tree crowns have low LAI (for high 

resolution imagery) which violates the assumptions of Sun-Canopy-Sensor or Sun-Crown-Sensor 

model. Although the regressions in Figure 11 use tree pixels (> 80% covered by tree crown 
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according to LiDAR tree crown mask), many of them are not dense tree crowns (esp. Jeffrey pine) 

which allow enough transmission of the near-infrared flux to the ground. That is why the Sun-

Crown-Sensor model only shows marginal advantage in the NIR band. This is in accordance with 

the finding of Gu and Gillespie (1998) that the Sun-Canopy-Sensor model is more appropriate than 

the Sun-Terrain-Sensor model for canopies of 50% or higher canopy closure on Landsat imagery. 

Due to the complex contribution of near-infrared reflectance from terrain background and from 

tree crowns, none of the equations can depict the correlation for near-infrared bands better than for 

visible bands. Nevertheless, the obvious advantage of the Sun-Crown-Sensor model over the other 

two in the visible bands supports the using of the Sun-Crown-Sensor model in this study. 

2
In Table 1, the Sun-Crown-Sensor model (without C) had the highest R  but a low EF 

statistic. This was because the original Sun-Crown-Sensor model explained most of the data 

    
variance associated with terrain-regulated illumination on tree crowns (i.e. ) in equation (19), 

     

2
which gave high R , and the diffusive effects of atmosphere were largely captured in the parameter 

C = b/m of equation (19), which was not included in the original SCnS model (Equation (15)) and 

thus a low EF was obtained, indicating consistently biased over-estimation. Therefore, it was not 

surprising that when the atmospheric effects contained in C was accounted for in the SCnS+C 

2
model, it had the best performance as measured by R , RMSE, EF, and δρ together. So, the SCnS 

model and the C parameter based on it should be combined in practice to have the best topographic 

correction results.  

The SCnS+C model is recommended for topographic correction of forest images and its 

utility can be further tested in applications where other types of vegetation cover and terrain 

conditions are considered. 



4.2 Different Vegetation Indices 

Using ground reference data collected at two different points of time to calibrate change 

detection is hampered by time and sampling method. Single year vegetation indices provide a 

way to circumvent the problem, because single year ground reference data are much easier to 

obtain and the sampling method can be modified at any time without the need to recalibrate with 

previous year’s data. The calibrated relationships between current vegetation indices and actual 

forest canopy attributes (e.g. LAI, healthy canopy cover, and foliage biomass) can be generalized 

to the same study area for previous years, given that there is little temporal variation in soil 

background and other environmental conditions for the same location and only the characteristics 

of canopy itself change over time including density, structure, species composition and 

greenness. Although the LAI data were obtained in a single year, they already contain such 

canopy variations across different plots as if they were the variations in the same canopy across 

different years. 

In the comparison of the four vegetation indices, results did not show any advantage of 

the soil adjusted VIs over NDVI, no matter whether linear functions or exponential functions 

were fitted. When the linear model was used, NDVI had the most significant relationship with 

field LAI data. MSAVI and SAVI (L=0.5), which were intended to correct for soil background 

effects and enhance the power of predicting LAI, did not show better performance than other 

soil-sensitive indices. However, SAVI and MSAVI might outperform soil-sensitive vegetation 

indices in studies that encompass different soil types. There is not much variation in soil types in 

the relatively uniform areas near roads in the Lake Tahoe basin, especially when ground 

reference data were collected in easy-accessible locations where soils are similar. Moreover, 

many other random effects such as understory (e.g. grass) noises and LAI measurement errors 
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might cancel each other out. The multiple regression using the three Tasseled Cap indices 

revealed that Greenness was the only significant predictor for estimating LAI, while Wetness and 

Brightness were both insignificant. This strongly contrasts with Collins and Woodcook’s (1996) 

conclusion at the same study area that change in Tasseled Cap Wetness (i.e. MKT Wetness) was 

the most reliable single indicator of forest change. 

When the suitability of these indices was evaluated by fitting the non-linear relationship 

between VI and LAI using the semi-empirical model, NDVI yielded the most reasonable values 

for parameters VI∞ and KVI, while other indices resulted in negative KVI values or VI∞ smaller 

than VIg that were useless. Therefore, the semi-empirical model using NDVI was chosen to 

transform remote sensing data to LAI data in this study. 

White et al. (1997) also showed that NDVI provided the best estimate of LAI but 

decreased in predictive ability with decreasing spatial resolution as a result of pixel aggregation 

and averaging. Therefore, for IKONOS image, averaging the original 4×4m pixels at a 30×30m 

plot level in order to be related to LAI data might undermine the accuracy of LAI estimation. In 

addition, satellite-derived vegetation indices are optical measures of canopy greenness, a 

composite property of leaf chlorophyll content, leaf area, canopy cover and structure, but they 

have often been employed as proxies for individual vegetation attributes such as canopy cover or 

LAI. These attributes as a portion of the composite canopy property, when used individually, are 

only moderately correlated with vegetation indices (Glenn et al. 2008). Therefore, using 

vegetation indices to estimate these parameters (e.g. LAI) separately is subject to uncertainty, 

although the final VI-LAI model used in this study was well-calibrated. 
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The objective of this evaluation was not to test the advantage of a vegetation index in 

theory or in model, but to look for the practically suitable one for the actual conditions in this 

study area. NDVI, therefore, can be said to be the most suitable vegetation index in the context 

of this study, and is recommended for future monitoring of forest mortality associated with de-

icing compounds along roads. 

4.3 Different Change Detection Methods 

The quantitatively estimated mortality from LAI change included mortality caused by 

many different factors including, but not limited to, de-icing salt damage (road-related), disease, 

insects, and drought (non-road-related). To isolate the component of tree crown mortality that 

was road-related, statistical analyses had to be applied to examine if a significant relationship 

between tree crown mortality and road-related variables could be found. These statistical analysis 

approaches are discussed in sections 4.5 and 4.6. 

Comparing the quantitative change detection using IKONOS data with that using Landsat 

TM data, the disadvantages of IKONOS change detection include the sensitivity to subtle 

environmental variables such as topographic features and mutual shadowing among tree crowns, 

and the images’ non-nadir collection angles which caused slight misalignment of tree crowns 

between two years (Sections 2.3.2.1 and 2.3.2.2). Although thorough image preprocessing 

techniques were employed to minimize the geometric and radiometric noises, some uncertainty 

might still exist. However, IKONOS data showed its significant advantage in discovering de-

icing salt effects by virtue of its high resolution, especially with the aid of the two newly created 

spatial proxy variables for aerial deposition and flow accumulation of de-icing salt (Section 

4.5.1). Landsat TM data were much more resistant to geometric and radiometric errors, but its 
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coarser resolution was not appropriate for fine-scale analysis on road-related effects. However, 

the historical records of Landsat TM data permitted long-term temporal analyses on the 

dynamics of roadside tree mortality, and together with historical salt application data they were 

able to reveal the effects of de-icing salt application on tree crown mortality in a convincing 

manner (Section 4.6). In summary, the long-term temporal analysis using Landsat TM data and 

the fine-scale spatial analysis using IKONOS data were complementary to each other in 

confirming road-related effects on tree crown mortality. 

In the post-classification comparison approach, the analysis of de-icing salt effects would 

be much simpler if the spectral signature of de-icing salt damage could be directly identified in 

the multiple spectral bands. Unfortunately, IKONOS classification failed to differentiate de-icing 

salt damage from other mortality factors. The classification results showed that trees classified as 

salt-damaged were widely dispersed throughout the Basin. However, de-icing salt damage should 

only exist near roads according to field studies. This suggests that tree crown mortality can be 

well extracted by classification using IKONOS images, but whether it is caused by de-icing salt 

or by other factors cannot be distinguished. The spectral characteristics of de-icing salt damage 

might not have significant differences from other kinds of tree crown damage, or the four coarse-

spectral-resolution bands of IKONOS (similar to Landsat TM data) might not be appropriate or 

sufficient to capture the subtle variation in spectral response of different damage types. 

Hyperspectral remote sensing data should be used instead of multispectral data (White et al. 

2007) in the future if one attempts to classify de-icing salt caused tree crowns mortality directly. 

Nevertheless, the classification results were informative. Trees were generally healthier in 

2009 than in 2005. Many trees had changed from being unhealthy to healthy in this 4-year 

period. This was consistent with the fact that there was a prolonged extensive drought before 



2005 (from 2000 to 2004). Therefore, trees in 2005 were generally under the stress of drought 

and more mortality occurred across the Basin. Several years after the drought, the forest likely 

experienced increased growth, regeneration and canopy vigor. However, the higher proportion of 

mortality near roads in 2009 than in 2005 especially within the 0–30m zone was very likely due 

3
to significantly higher amounts of de-icing salt applied in 2009 (18.1 yard /mile) than in 2005 

3
(11.7 yard /mile) (Appendix C). This phenomenon was also consistent with that found in 

quantitative change detection analyses. It can be inferred that de-icing salt effects controlled 

mortality in close vicinity to roads while drought affected mortality at a broad-scale across the 

Basin. 

4.4 Calibration and Validation 

4.4.1 Calibration 

Most field data only allow for calibration of drastic change (e.g. clear-cut, drastic beetle 

attack) but not of fine-scale tree health change. For example, the field morphological and 

pathological data (Section 2.2.1.1) only recorded crown damage ratings and health status of trees 

categorically. My variable of interest was tree crown mortality, with the component of road-

related mortality (e.g. caused by de-icing salt) especially subtle, because the observable 

symptoms of de-icing salt damage on tree crowns mainly include loss of photosynthetic 

materials (yellowing) in the tips of needles. The categorical field mortality data were, therefore, 

not suitable for calibrating quantitative change detection, but only sufficient for the purpose of 

validation. In this context, the field survey strategy in 2010 was modified to measure LAI 

quantitatively (Section 2.2.1.2). The calibrated VI-LAI relations were used to transform 

individual years’ VI to LAI. ΔLAI was the predictor of tree crown mortality which was validated 

by field morphological and pathological data. Although the LAI data were obtained in a single 
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year, the sampling design ensured that the data contained variations in canopy attributes across 

different plots as if they were the variations in the same canopy across different years. Therefore, 

the VI-LAI relationship calibrated using these LAI data can explain variations in tree crown 

status both across sites and across years. 

If digital change detection results (e.g. ΔNDVI, MKT components) instead of single-year 

vegetation indices had been calibrated directly using field mortality data, there would have been 

more challenges. Collins and Woodcock (1996) suggested that the exact relationships between 

change detection components (refer to digital MKT components) and field-observed mortality 

were quite variable between different pairs of images. Recalibration of change components to 

field measured mortality between different scenes or between different multi-temporal datasets 

covering the same area was recommended. This requires that multiple years of corresponding 

field datasets should be available for calibrating each change detection dataset, which 

undermines the generalizability of remote sensing in historical change detection where precise 

calibration datasets are often not available retrospectively. Even for a single pair of images, using 

ground reference data collected at two different points of time corresponding to the pair of 

images to calibrate change detection of tree health was hampered by field sampling method. 

Thus, my approach for calibration and validation as shown in Figures (3) or (4) provided a way 

to circumvent the problems of calibrating multi-temporal change detection. 

4.4.2 Validation 

The growth rate model did not work better than using a constant growth rate in the 

validation. This was probably because equation (34) calculated the maximum diameter growth 

without considering competition, disease and other site-specific parameters and therefore 
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overestimation could occur. The increase in canopy cover of living trees from 2006 to 2009, 

without considering other factors, calculated by this method ranged from 3% to 20% for all plots. 

The average rate was 10%. This was similar to the estimated constant growth rate 5% used in 

equation (33) for some plots. Most plots had larger growth rates which might be overestimated 

by equation (34).  

An issue with the validation field data was that we only measured tree DBH. Estimating 

canopy cover or foliage biomass from DBH by allometric models was inherently hampered by 

the variation in crown morphology associated with tree density, physiology, geography and many 

other factors. So, future field survey should include measuring crown radius or canopy cover 

directly or using radiometer to measure LAI for multiple years, in order to validate remote 

sensing estimated LAI change. In addition, to accurately measure growth rate, timber core 

samples should be obtained from living trees and their DBH growth in the past can be retrieved 

by measuring the width of annual growth rings. 

Plot size was also another issue with the field data. We designed the plots as 30m×30m 

squares that could exactly correspond to pixels on Landsat TM image. Pixel-size plots might be 

too small, and thus too sensitive to the misregistration between Landsat images. Justice and 

Townshend (1981) suggested the plot size to be P (1+2L), P is pixel size and L is the positional 

accuracy of the geometric registration in terms of pixels. Therefore, 60×60m should be a better 

plot size for the Landsat TM data. 

In addition, we measured all trees (>10cm DBH) in a plot and canopy cover was derived 

by summing the crown area regardless of canopy overlap, while satellite sensors can only sense 

the outer layer of canopy. The overall aboveground biomass will be inherently underestimated by 
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optical sensors. Thus errors could occur when using overestimated field data to validate 

underestimated remote sensing results. This was likely the reason, in addition to the 

imperfectness of the field validation dataset, why remote sensing estimated ΔLAI from 2006 to 

2009 had negative values for most validation sites but the modeled canopy cover or foliage 

biomass from field data increased at many sites.  

4.5 Spatial Pattern of Tree Crown Mortality Associated with Roads 

4.5.1 Fine Scale 

The clear trend of tree crown mortality within 100m of roads was consistent with the 

finding from field studies that de-icing salt effects existed mainly within 101 feet ≈ 30m from 

road (Munck et al. 2010). It was surprising that upslope areas had higher mortality probability 

than downslope areas irrespective of distance from road (Figure 18, Table 6). This should be 

associated with factors other than de-icing salt effects, since both mechanisms of de-icing salt 

dispersal (i.e. aerial deposition and flow accumulation) are limited in upslope areas. 

The two proxy variables for aerial deposition and flow accumulation of de-icing salt 

proved their advantage in revealing de-icing salt effects on tree crown mortality. The aerial 

deposition mechanism had strong significant effects, while the flow accumulation mechanism 

was only weakly associated with tree mortality. The mortality threshold of -20% ΔLAI was better 

than -40% in modeling de-icing salt effects especially for the flow accumulation mechanism, 

which implied that de-icing salt damage through soil uptake was associated with smaller degrees 

of tree crown mortality. On the contrary, the -40% threshold value revealed stronger aerial 

deposition effects, which suggested that direct aerial deposition of de-icing salt onto tree crowns 

near road damaged trees to a larger degree. 
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The fact that flow accumulation near roads was usually very low relative to more distant 

downslope areas could explain why the effect of flow accumulation of de-icing salt was 

unobservable within 30m of the road, but more distinct at a broader scale (0–100m). Comparing 

Table 7 and Table 8, an inference can be drawn that de-icing salt effects via aerial deposition 

mechanism was stronger in the 0–30m zone than in more distant zone, while the effect of soil 

uptake of de-icing salt was only observable in a broader zone where the accumulation of salt 

through water flow was high enough to show significant effects. Overall, the effects of aerial 

deposition of salts played a major role in roadside tree crown mortality, whereas the flow 

accumulation mechanism was statistically significant but only exerted weak effects.  

4.5.2 Broad Scale 

The small increase in mortality probability from 60m to 120m (Figure 19), especially for 

downslope, was a hint that a decreasing trend of mortality probability with increasing distance 

from road mainly existed within 60m of the road and the trend was likely masked by other 

stronger factors that were not measured. This agrees with the field findings of very limited de-

icing salt symptoms beyond 30m from road and increased mortality caused by other factors such 

as diseases (Munck et al. 2010). This trend was also apparent using the higher resolution 

IKONOS imagery (Figure 18) where there was a similar abrupt increase of mortality after the 

drastic decrease, once when distance from the road had exceeded 30 m. 

The logistic regression results provided strong circumstantial evidence of de-icing salt 

effects on tree crown mortality, and pointed to aerial deposition of salt spray as the most likely 

mechanism. The effect of distance on mortality was largely linear in the close vicinity of road 

(0–60m). The chance of spread of de-icing salt onto roadside tree crowns, especially through 
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aerial deposition mechanism, is also considered to be inversely proportional to increasing 

distance from road. Trees closer to the road are more susceptible to de-icing salt. Trees farther 

away are more likely to be protected by the front trees from aerial spray of salt. It is necessary to 

note that although the sample mortality and modeled mortality probability in Figure 20 were 

estimated for every 10m interval of distance (measured from pixel center) for better illustration, 

the 30-m resolution of Landsat TM data may cause some uncertainty in analyses below 30-m 

scale. 

When considering the broader zone (0–120m), the odds of mortality were not 

significantly affected by the distance from road in downslope areas. Combining the results from 

previous 0–60m zone analysis, it can be said that mortality probability near roads (0–60m) 

follows the hypothesis of de-icing salt effects but it is no longer significantly higher than that 

farther from roads after 60m in downslope areas. As found in the fine-scale analysis, de-icing salt 

effects via flow accumulation in downslope area was significant in the 0–100m zone, but not 

observable within 30m due to too low flow accumulation values. It suggests that flow 

accumulation of de-icing salt and its effect tends to be higher in farther distance and therefore 

compensates the decreased effect from aerial deposition of de-icing salt. This can explain the 

abrupt increase in mortality beyond 60m following the decease within 60m which altered the 

overall trend within 120m in downslope areas. 

In upslope areas there was no de-icing salt contact through flow accumulation and only 

aerial deposition was possible. Thus the trend of mortality observed in upslope was consistent 

with aerial mechanisms for road-related mortality and contrasted with the trend in downslope 

areas within the 120m zone. Within 0–60m from road, the difference in mortality probability 

between downslope and upslope was not significant (Table 10b), but from 0–120m, the 
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probability of mortality was higher in downslope than in upslope. For example, according to the 

fitted model, at 90m from road, the odds ratio of mortality in downslope relative to upslope is 

exp(-3.65+0.004234×90)/exp(-2.29-0.018637×90) = 2.01. It is suggestive evidence that some 

additional de-icing salt effects may exist in more distant downslope areas through the flow 

accumulation mechanism. This is in accordance with the findings in the fine-scale analysis that 

de-icing salt effects through flow accumulation was stronger in more distant (>30m) downslope 

areas and compensates the decreased aerial salt deposition effect, although the 2005–2009 

IKONOS change detection data did not show more mortality in downslope than in upslope sites. 

With the Landsat TM dataset, it can only be suggested but not concluded that the maximum zone 

of de-icing salt effects may extend beyond 60m to 120m from the road in downslope areas. 

4.6 Temporal Patterns of Tree Crown Mortality Associated with Roads 

In the first level of temporal analysis, the odds of mortality were estimated to increase by 

1.336 (95% CI: 1.259 to 1.419) with every 10 m increase in distance from the road, in dry years 

of low salt application. This contradicted the distinct negative effect of road distance in wet years 

when large amounts of salt were applied. Thus the positive road-related trend in these dry years 

was not likely associated with de-icing salt effects. Nowak et al. (2008) and Munck et al. (2010) 

found that there was an increasing trend of mortality caused by factors including diseases but 

excluding de-icing salt with increasing distance from road, which was antagonistic rather than 

synergistic to salt damage. Trees were more likely to be damaged by something other than salt 

especially in dry years. Therefore, this result suggested that de-icing salt effects were weak and 

masked by other stronger factors in dry years with much less salt application. 

In wet years, the significantly higher level of precipitation may strengthen tree vigor and 

decrease trees’ vulnerability to damage. Thus it is not surprising that wet years had lower 
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mortality probability then dry years even in the salt-affected zone near road. On the other hand, 

more snowfall in wet years leads to more splash generation and snow ploughing (Blomqvist and 

Johansson, 1999), which increases the probability of aerial deposition of de-icing salt onto 

roadside ground and tree crowns and therefore increases de-icing salt damage. The generally 

lower mortality or higher tree vigor across the Basin in combination with the stronger de-icing 

salt damage near roads in wet years rendered the distance-controlled pattern of mortality 

especially distinct and strongly suggested the existence of de-icing salt effects. When de-icing 

salt effects were negligible in dry years, other damaging agents drove the spatial pattern of 

mortality along roads and precipitation, on the other hand, determined the general degree of 

mortality across the Basin.  

In the long-term temporal analysis, a clear effect of de-icing salt on mortality probability 

was revealed, while the interpretation for precipitation and traffic was more complicated. 

Although the MADT data were measured for winter seasons, they could not represent the exact 

traffic situation during snowing days when traffic could influence de-icing salt effects especially 

through the aerial deposition mechanism. Moreover, the facts that MADT data only spanned 10 

years and the year-to-year variation was only approximately 200 (count/day) while the range was 

from 13511 to 15564, limited the sample size and data distribution for a long-term temporal 

analysis. That was why MADT showed statistically significant but very weak negative effects on 

roadside tree crown mortality. The traffic variable was not further analyzed. 

The final best-supported logistic regression model revealed a significant interaction effect 

between salt application and precipitation (Figure 22). De-icing salt effects were more distinct in 

wet years than in dry years. In dry years (e.g. precipitation < 30 inches) the effects of salt were 

not observable. Other stronger damaging factors under the stress of drought might mask the 
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weak salt effects because of lower salt applications in dry winters. This was consistent with the 

previous findings from the wet-dry comparison using the two image pairs. In summary, the 

temporal analyses clearly suggested that de-icing salt damage on tree crowns were evident when 

high amounts of salt were applied and other damaging agents were weak due to stronger tree 

vigor associated with higher precipitation. 

In addition, I noted that conifers retain foliage for several years, so foliage produced in 

the current year that is salt damaged will be observed and recorded for at least 1 (and likely 2 or 

3) more years and thus there is a carry-over effect coupled with the sequence of dry-wet years 

(low-high salt damage) (Munck et al. 2010). Figure 21 showed obvious delay (about 1 year) of 

response in mortality to variation in salt application (annual summary data), which was very 

likely caused by the carry-over effect. Precipitation also had similar lag effects on mortality. 

Further examinations on these phenomena are needed in future studies to discriminate and 

quantify immediate effects and lagged effects of salt damage on conifer tree crowns. 

Overall, convincing evidence of de-icing salt effects was found in the results of temporal 

analysis. Salt application was consistently the strongest explanatory variable, regardless of 

whether precipitation or traffic was considered. 

4.7 Management Implications 

The remote sensing methodologies and observed spatial and temporal patterns of tree 

crown mortality suggest several management implications. 

1) Landsat TM images are a useful remote sensing data source for retrieving historical 

road-related forest mortality and monitoring future tree health change in a broad-scale 

112 

 



and long-term context. Higher resolution imagery is necessary for examining fine-

scale patterns of de-icing salt effects, although it is more costly and requires 

considerable efforts in data preprocessing. Robust remote sensing protocols for 

monitoring road-related tree crown mortality will adopt a multi-scale approach, 

adopting imagery from remote sensing platforms with varying spatial and temporal 

resolution.  

2) Aerial deposition of de-icing salt onto tree crowns by moving vehicles has a much 

stronger effect than does flow accumulation. It affects tree health mostly within 30m 

of the road. Therefore, tree species that are more resistant to de-icing salt damage 

could be planted as a barrier within the 0–30m zone from roads to protect other trees 

behind it. Taller trees could be planted on concave slopes. 

3) De-icing salt application is a significant factor for roadside tree crown mortality. 

Road management should continue efforts to decrease the amount of de-icing salt 

used in winter or to use less deleterious alternative materials. 

4) Trees at the roadside are generally healthier but salt damage is more distinct in wet 

years than in dry years. Under the stress of drought, other mortality agents become 

stronger although de-icing salt damage is not observable as such by remote sensing. 

This implies mitigation strategies should be focused on de-icing salt effects in wet 

years while paying more attention to other damaging factors in dry years, in order to 

maintain roadside tree health and the ecological and aesthetic values of the Lake 

Tahoe Basin. 
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5 Conclusions 

This study introduced several innovations in remote sensing methodologies and 

demonstrated the utility of applying remote sensing techniques to detect road-related effects on 

tree crown mortality. Several conclusions regarding remote sensing methods and tree mortality in 

the Lake Tahoe Basin were drawn: 

1) The Sun-Crown-Sensor (+C) topographic correction methods are theoretically well-

founded and outperformed other commonly used methods in correcting for 

radiometric distortions caused by terrain in forest satellite images. The Sun-Crown-

Sensor model considers different viewing angles and is generally applicable to IKONOS, 

Landsat TM and other multispectral images with forest as the major land cover type. The 

C parameter derived based on the Sun-Crown-Sensor geometry also significantly 

improved model accuracy compared to the original C-correction. Combining the new 

Sun-Crown-Sensor model and the new method of deriving C, the Sun-Crown-Sensor+C 

topographic correction method is recommended for radiometrically correcting forest 

images. 

2) LiDAR proved its utility as important ancillary data in this study. The high 

resolution and geometric accuracy of LiDAR DEM data greatly improved the accuracy in 

orthorectifying IKONOS images, and a novel method was developed to create a projected 

tree crown mask from LiDAR DEM and DSM data that helped focus the analyses on tree 

crowns.     

3) NDVI was consistently ranked as the best vegetation index for predicting LAI and 

ΔLAI was an appropriate predictor of tree crown mortality in this study. The 
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collection of LAI field data enabled calibrating remote sensing data into quantitative LAI 

of physical meaning. Change in LAI was used to define tree crown mortality. The more 

qualitative forest morphologic and pathological survey data were used to validate remote 

sensing estimated mortality. 

4) Quantitative change detection by LAI differencing using multispectral images was 

successful in discovering road-related effects (including de-icing salt effects) on tree 

crown mortality. Qualitative change detection by classifying multispectral images was 

not able to detect the spectral signature of de-icing salt damage on tree crowns directly. 

Hyperspectral remote sensing data are needed in future studies if the objective is to 

directly classify tree crown mortality caused by de-icing salt.  

5) Using IKONOS images and the two spatial proxy variables, a significant effect of 

increasing mortality associated with increasing aerial deposition of de-icing salt was 

revealed. Aerial deposition was the primary mechanism of de-icing salt effects which 

was most distinct within 30m of the road, whereas flow accumulation effect tended to be 

statistically significant at more distant locations (30–100m) although the actual effect was 

very weak relative to aerial deposition.  

6) The spatial analysis using Landsat TM images revealed that a decreasing trend of 

mortality with increasing distance from road mainly existed within 60m of the road 

but may extend beyond 60m to 120m from the road in downslope areas. This agreed 

with the findings by IKONOS analysis and suggested the maximum zone of de-icing salt 

effects was within 120m of the road. 



7) The temporal analysis using Landsat TM images provided convincing evidence of 

de-icing salt effects on the probability of mortality. Mortality increased with increasing 

amount of salt applied. The more precipitation there was, the more distinct the effects of 

de-icing salt were observed. 

8) The temporal analysis with salt application data complemented the spatial analysis 

in confirming that both the spatial pattern and temporal pattern of tree crown 

mortality near the roads were largely related to de-icing salt. 
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Appendix A: Criteria for Selecting LAI Field Plots 

The following is the list of criteria for selecting LAI field plots: 

(1) There must be an opening with bigger than 60-m diameter near each plot for reference 

readings. Because forest canopy is tall, the above reference readings have to be made in 

an open site. A big enough opening makes sure that no radiation from adjacent vegetation 

is sensed by the lowest angle (74.1°) of the LAI-2000 sensor. Measurements are most 

accurate when taken under overcast sky conditions; under clear-sky conditions, scattering 

from direct radiation incident on canopy foliage results in underestimates of LAI. Due to 

the scarcity of overcast weathers in the Lake Tahoe Basin in summer and fall, 

measurements can only be taken during early morning or late evening when the sun 

approached the horizon. Therefore, a short distance from the reference open site to the 

sampling plot ensures there is enough time for repeated measurements between the open 

site and sampling plot.  

(2) Plots should contain as little understory vegetation as possible. Understory vegetation is 

difficult to measure using the LI-COR sensor because it is usually below the lowest view 

angle (20° from horizon) of the equipment. Pure conifer plots enhance the relationship 

between LAI values and remote sensing data by minimizing noise caused by potentially 

different responses of LAI-2000 sensor and satellite sensor to variation in plant spectral 

properties. 

(3) Plots should contain no dead trees retaining needles (yellow or still green) so that the 

measured LAI is the photosynthetically active leaf area index. Healthy tree plots also 
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make it possible to calibrate the 2009-09-27 IKONOS data with LAI measured in Sep. 

and Oct. 2010.  

(4) Plots should be sampled across a sufficiently long gradient of tree density values, such 

that the regression against remote sensing vegetation indices will be robust across a broad 

range. 

(5) Plots should vary in species composition such that the field data are more representative 

for the whole study area. 

(6) Plots should be distributed at different elevations and with different slopes and aspects so 

that the data are more representative.  

 

 

 

 

  

123 

 



124 

 

Appendix B: Satellite Images 

Table B.1. All Landsat TM and IKONOS images used in this study. 

Image Date 
Scene Center 

Longitude/Latitude 
Satellite Sensor Image ID 

11-Sep-1988 

03-Oct-1990 

06-Oct-1991 

22-Sep-1992 

25-Sep-1993 

15-Sep-1995 

03-Oct-1996 

09-Oct-1998 

26-Sep-1999 

12-Sep-2000 

15-Sep-2001 

02-Sep-2002 

21-Sep-2003 

23-Sep-2004 

12-Oct-2005 

29-Sep-2006 

02-Oct-2007 

18-Sep-2008 

21-Sep-2009 

24-Sep-2010 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

120.1/38.9 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

Landsat 5 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

TM 

L5043033_03319880911 

L5043033_03319901003 

L5043033_03319911006 

L5043033_03319920922 

L5043033_03319930925 

L5043033_03319950915 

L5043033_03319961003 

L5043033_03319981009 

L5043033_03319990926 

L5043033_03320000912 

L5043033_03320010915 

L5043033_03320020902 

L5043033_03320030921 

L5043033_03320040923 

L5043033_03320051012 

L5043033_03320060929 

L5043033_03320071002 

L5043033_03320080918 

L5043033_03320090921 

L5043033_03320100924 

25-Sep-2005 

27-Sep-2009 

-119.9/39.1 

-119.9/39.1 

IKONOS 

IKONOS 

IKONOS-2 

IKONOS-2 

2005092519042390000010110092 

2009092718555930000011612413 
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Appendix C: Salt Application Data 

Table C.1. Average salt 
3

applied per mile on six major route sections (Yard /Mile) 

Fiscal 

Year 

US-50 DO SR-28 DO SR-28 CC SR-28 WA SR-207 DO SR-431 WA Grand 

Total 13 (miles) 1.23 3.95 10.99 3.2 6.5 

1988-1989 20.7 19.0 12.4 13.0 32.4 40.3 21.8 

1989-1990 16.3 22.1 10.2 3.8 15.7 6.5 10.5 

1990-1991 24.8 39.2 17.9 12.8 25.3 32.8 22.4 

1991-1992 21.8 28.6 12.9 9.8 14.9 33.5 18.9 

1992-1993 49.0 49.9 34.5 26.5 35.7 42.3 38.4 

1993-1994 34.4 36.4 26.2 22.1 18.6 35.0 28.6 

1994-1995 41.4 108.9 36.5 19.2 41.3 90.3 44.2 

1995-1996 28.9 88.8 40.4 22.5 38.0 50.4 33.9 

1996-1997 18.4 33.7 19.7 20.6 23.5 35.7 23.0 

1997-1998 38.0 61.7 23.5 17.7 34.5 43.3 31.9 

1998-1999 40.5 75.3 37.3 22.9 22.2 37.7 34.1 

1999-2000 24.5 26.0 7.7 8.1 16.9 23.0 17.1 

2000-2001 30.3 38.8 9.1 6.5 23.6 23.1 19.6 

2001-2002 23.4 24.9 9.5 16.2 11.8 24.7 19.0 

2002-2003 12.7 22.8 7.0 3.1 12.5 16.6 10.2 

2003-2004 11.3 13.6 4.6 5.3 8.0 16.0 9.4 

2004-2005 16.4 13.4 5.1 6.9 9.3 16.5 11.7 

2005-2006 14.9 13.9 2.3 5.7 11.3 24.3 12.1 

2006-2007 7.0 10.9 4.0 6.2 16.3 13.7 8.3 

2007-2008 20.8 37.8 9.8 12.8 15.7 13.9 16.2 

2008-2009 19.8 17.8 10.9 13.4 23.0 25.1 18.1 

2009-2010 28.7 46.1 23.0 22.9 48.9 31.8 28.8 
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Appendix D: Traffic Data 

Table D.1. Mean Monthly Average Daily Traffic (MADT) in snowing season (November – April) 

from 1999 to 2009. 

Year SR-431 SR-28 US-50 Tahoe  US-50 Carson MEAN 

1999 8109 12104 28603 9100 14479 

2000 8293 12115 29744 9610 14940 

2001 8961 12246 28885 10119 15053 

2002 9414 12299 29019 10753 15371 

2003 9611 12149 29052 10760 15393 

2004 9870 12147 29013 11225 15564 

2005 9680 11765 29332 10866 15411 

2006 9856 11469 28231 10412 14992 

2007 10013 11377 27525 10352 14817 

2008 9936 10882 26609 10401 14457 

2009 9687 10100 24504 9753 13511 
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Appendix E: Weather Data 

Table E.1. Precipitation (inch) per water year (Oct. to next Sep.) from 1988 to 2010. 

Marlette Heavenly 

Water Year Mt. Rose Lake Valley MEAN 

1988-1989 57 36.5 34 42.5 

1989-1990 35.2 23.9 22.7 27.3 

1990-1991 36.7 22.9 26.9 28.8 

1991-1992 29 19.3 23.8 24.0 

1992-1993 70.6 43 39.3 51.0 

1993-1994 34 23 24.3 27.1 

1994-1995 90.8 52.3 53.6 65.6 

1995-1996 73.4 41.4 40.4 51.7 

1996-1997 80.1 46 42.9 56.3 

1997-1998 65.1 50.5 43.8 53.1 

1998-1999 64.2 41.4 40.8 48.8 

1999-2000 46.6 30.9 28.7 35.4 

2000-2001 26.3 20 20.3 22.2 

2001-2002 47.2 29.6 25.8 34.2 

2002-2003 51.4 29.9 31.3 37.5 

2003-2004 45.7 23.8 26.2 31.9 

2004-2005 62 40.6 41.8 48.1 

2005-2006 80.4 44.2 42.6 55.7 

2006-2007 32.4 18.5 22.1 24.3 

2007-2008 42.8 26.4 26 31.7 

2008-2009 48 22.2 28.4 32.9 

2009-2010 54.4 34.3 34.4 41.0 
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Appendix F: The Sun-Crown-Sensor + C Topographic Correction Result 

(a)             (b) 

Figure F. 1. The Sun-Crown-Sensor + C topographic correction on the red band of the 27 Sep. 

2009 IKONOS image: (a) before correction, (b) after correction. 
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