GEOTECHNICAL EVALUATION REPORT 215 BELTWAY CONNECTION CENTENNIAL PARKWAY TO DECATUR BOULEVARD – SEGMENT "B" LAS VEGAS, NEVADA

Project No. 20174206E2 June 19, 2019

Prepared for:

ENGINEERS \ SURVEYORS

GCW Engineers\Surveyors 1555 South Rainbow Boulevard Las Vegas, Nevada 89146

Prepared by:

Geotechnical & Environmental Services, Inc. 7150 Placid Street Las Vegas, Nevada 89119

PROVIDING

- Geotechnical
 Engineering
- Construction Materials Testing & Inspections
- Environmental Services
- Ground Source Heat Exchange
- Thermal Conductivity Testing
- IAS Accredited
- AASHTO Accredited Testing Laboratory

June 19, 2019 Project No. 20164206E2

Mr. John Tobin Senior Vice President GCW Engineers\Surveyors 1555 South Rainbow Boulevard Las Vegas, Nevada 89146

RE: Geotechnical Evaluation 215 Beltway Connection Centennial Parkway to Decatur Boulevard – Segment "B" Las Vegas, Nevada

Dear Mr. Tobin:

Geotechnical & Environmental Services, Inc. (GES) is pleased to present this Geotechnical Evaluation Report for the proposed 215 Beltway Connection, Centennial Parkway to Decatur Boulevard Segment "B" project in Las Vegas, Nevada.

This report includes the findings of our geologic review, results from our subsurface explorations and laboratory testing programs, and recommendations for design and construction of the proposed pedestrian bridges, ramp undercrossing structure, and associated improvements.

We appreciate this opportunity to provide our professional services. If you have any questions or comments regarding this information, please feel free to contact our office.

Sincerely,

Geotechnical & Environmental Services, Inc.

Sandy Solares, E.I. Staff Professional

SS:DJS:caw

David J. Salter, P.E. Geotechnical Practice Leader

Dist: PDF emailed to addressee at Jtobin@gcwengineering.com; cc; Eric Giles at EGiles@gcwengineering.com Copy to project file

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1. PURPOSE AND SCOPE	1
1.2. PROJECT DESCRIPTION	1
1.3. SITE DESCRIPTION	3
2. DISCUSSION	3
2.1. GEOLOGY	3
2.2. SEISMICITY	4
2.3. LIQUEFACTION	4
2.4. MAPPED SOIL DATA	5
2.5. FIELD EXPLORATION	
2.6. LABORATORY TESTING	
2.7. SUBSURFACE MATERIALS AND CONDITIONS	8
2.7.1. FILL	8
2.7.2. NATIVE SOIL	8
2.7.3. GROUNDWATER	
3. SUBSURFACE PROFILES & GEOTECHNICAL PARAMETERS	
4. FINDINGS	.10
5. RECOMMENDATIONS	.12
5.1. EARTHWORK	
5.1.1. OVEREXCAVATION AND SITE PREPARATION	
5.1.2. BACKFILL OR GRANULAR BACKFILL AND BORROW SUITABILITY	.13
5.1.3. FILL PLACEMENT	.13
5.1.4. OBSERVATION AND TESTING	.14
5.2. EXCAVATION CONSIDERATIONS	
5.2.1. TEMPORARY EXCAVATIONS	
5.2.2. CEMENTED SOIL CONSIDERATIONS	.15
5.3. MATERIAL VOLUME CHANGES	.17
5.4. UNDERGROUND UTILITIES	
5.5. FOUNDATIONS	
5.5.1. SPREAD FOOTINGS	
5.5.2. DRILLED SHAFT FOUNDATIONS	
5.6. DRILLED SHAFT CONSTRUCTION CONSIDERATIONS	
5.7. SEISMIC DESIGN PARAMETERS	
5.8. LATERAL EARTH PRESSURES	
5.9. EXTERIOR CONCRETE FLATWORK CONSTRUCTION	
5.10. SOIL CORROSIVITY	.24
5.10.1. CONCRETE	
5.10.2. BURIED METAL	
5.11. DRAINAGE AND MOISTURE PROTECTION	
5.12. PLAN REVIEW	
5.13. PRE-CONSTRUCTION MEETING	
6. LIMITATIONS	
7. REFERENCES	.27

TABLE OF CONTENTS (Cont.)

TABLES

Table 1.2 – Project Load Information	2
Table 2.6. Summary of Selected Laboratory Test Results	
Table 2.7.2 Approximate Depth to Initial Cemented Soil Layer	9
Table 2.7.3. – Groundwater Depths Encountered	
Table 5.1.1 Recommended Overexcavation Depths	
Table 5.5.2-1. Summary of Drilled Shaft Analyses	20
Table 5.5.2-2. Lateral Load Reduction Factors	21
Table 5.7. – AASHTO Seismic Design Parameters – Site Class C	22
Table 5.8. Lateral Earth Pressures and Sliding Resistance	

APPENDIX A – SUBSURFACE STUDY

APPENDIX B – LABORATORY TEST RESULTS

APPENDIX C – DESIGN CALCULATIONS

APPENDIX D – NDOT BORING LOGS

GEOTECHNICAL EVALUATION REPORT 215 BELTWAY CONNECTION CENTENNIAL PARKWAY TO DECATUR BOULEVARD – SEGMENT "B" LAS VEGAS, NEVADA

1. INTRODUCTION

Geotechnical & Environmental Services, Inc. (GES) is pleased to present this report containing the results of a geotechnical evaluation for the proposed 215 Beltway Connection, Centennial Parkway to Decatur Boulevard – Segment "B" Project in Las Vegas, Nevada. Segment "B" encompasses the Sky Pointe Drive Pedestrian crossing, Oso Blanca Road pedestrian bridge, and the West-North (WN) undercrossing. Figure A-1 presents a vicinity map showing the approximate locations of each structure included as part of this project within the Las Vegas Valley. The following sections present the purpose and scope of our geotechnical evaluation, and project and site descriptions.

1.1. PURPOSE AND SCOPE

The purpose of this geotechnical evaluation was to provide general subsurface information and recommendations to aid in the design and construction of the proposed Sky Pointe Drive Pedestrian crossing, Oso Blanca Road pedestrian bridge, and the WN undercrossing. The scope of this study included a review of design drawings provided by GCW Engineers and Surveyors, referenced geologic literature and maps, subsurface explorations, soil sampling, laboratory testing of selected soil samples, engineering evaluations and preparation of this report.

GES reviewed existing geotechnical data obtained and summarized by Nevada Department of Transportation (NDOT) in their Geotechnical Exploration Report titled Geotechnical Data Report US 95/CC-215 Interchange and Vicinity Clark County with project number: EA 73518 and dated June 2016.

1.2. PROJECT DESCRIPTION

Our understanding of the project is based upon correspondence with GCW personnel, our experience with similar projects, review of aerial photographs, and our experience in the project vicinity. Our design recommendations are based on the following guide and codes, as applicable:

- AASHTO LRFD Bridge Design Specifications, Seventh Edition (AASHTO, 2014)
- Uniform Standard Specifications for Public Works' Construction, Off-Site Improvements (USS) (RTCSS, 2003).

• Standard Specifications for Road and Bridge Construction, Nevada Department of Transportation (NDOT, 2014) (SSNDOT).

Based on our understanding, the project will include the design and construction of a multi-span pedestrian crossing (Sky Pointe Drive Bridge), a single span pedestrian bridge (Oso Blanca Road), and a ramp undercrossing structure (WN undercrossing). Drilled shafts will support the Sky Pointe pedestrian crossing while spread footing foundations will be designed to support the Oso Blanca Road pedestrian bridge. The WN undercrossing will be constructed of reinforced concrete and will include lighting and other improvements as necessary for future improvements. We understand that the bridge structures will be constructed of structural steel and reinforced concrete.

The project design elements based on our understanding include:

- The Sky Pointe Structure will consist of a five-span bridge crossing of approximately 12 feet wide and 741 feet long and is anticipated to be supported by 6-foot diameter drilled shafts at each pier location and a 3-foot diameter shaft at Abutment No. 1 support location west of the proposed Sky Pointe Drive.
- The Oso Blanca structure will consist of a single-span pedestrian bridge of approximately 12-feet wide and 112-feet long supported on spread footings at the two bridge support locations on the east and west side of the realigned Oso Blanca Road and associated improvements.
- The WN ramp undercrossing structure will consist of a 66-foot long concrete slab and a tunnel length of 46 feet. The total clearance in the tunnel is 14-feet.

Structural load information for the pedestrian bridges provided by GCW is summarized in the following table:

	Table				
Structural Loads (kips)					
	Sky Pointe Drive Pedestrian Crossing				
Location	Dead Loads	Live Loads	Total Service Loads	Total Strength Loads	
Abutment 1	440	60	500	655	
Pier 1	915	195	1110	1485	
Pier 2	915	195	1110	1485	
Pier 3	650	115	765	1014	
Pier 4	895	190	1085	1452	
Pier 5	370	60	430	568	
Oso Blanca Road Pedestrian Bridge					
Abutment 1	540	60	600	780	
Abutment 2	540	60	600	780	

Table 1.2 – Project Load Information

1.3. SITE DESCRIPTION

A portion of the project including the Sky Point pedestrian crossing is located to the south of Sky Pointe Drive and east of the existing Frontage Road in Las Vegas, Nevada. The portion of the project encompassing the west-north ramp undercrossing structure is located west of the existing Frontage Road between Sky Pointe Drive and Bruce Woodbury Beltway. The Oso Blanca single-span pedestrian bridge is located to the west of the US-95 Interstate and north of the Bruce Woodbury Beltway and will span over the realigned Oso Blanca Road to be located west of the existing road. At the time of our field explorations, the project area included undeveloped areas located between existing roadways and fully improved areas. The attached Figure No. A-2 includes the anticipated general location of each planned pedestrian bridge and location of the undercrossing structure.

2. DISCUSSION

The following sections describe the geology, seismicity, liquefaction, mapped soil conditions, field exploration, laboratory testing, and subsurface materials and conditions for the project.

2.1. GEOLOGY

The subject site is located in the Las Vegas Valley, a fault-bounded graben structure surrounded by mountain ranges. The Las Vegas Valley is physiographically characteristic of the Basin and Range Province with generally northwest-trending parallel mountain ranges and an intervening basin. Unlike many basins within the Basin and Range Province, which are internally draining, the Las Vegas Valley is unique in that the basin drains through the Las Vegas Wash to Lake Mead and the Colorado River.

Tertiary and Quaternary unconsolidated alluvial deposits, derived from the surrounding mountain ranges, fill the valley. These deposits may be up to 4,000 feet thick at the site near the center of the valley. The surrounding mountain ranges are comprised of sedimentary and igneous rocks. Alluvial fan deposits, consisting of sand and gravel, slope down from the mountain fronts towards the valley floor. Sediments are typically less coarse, grading from fine sand and silt to clay near the valley bottom. Beds of amorphous and crystalline gypsum are common. Zones of calcareous cemented deposits (caliche) are present at various locations and depths throughout the valley.

The subject site is located on the referenced Geologic Map of the Tule Springs Park Quadrangle, Nevada, (Bell, J.W., Et al. 1998) within an area of interfluvial and fan-terrace remnants overlying

and inset into spring and paludal deposits (Qsp_{3b}) and within an area of spring and paludal deposits comprising extensive fine-grained valley-bottom fill (Qts_e). The Qsp_{3b} unit is characterized by well-developed, tightly packed desert pavement; dark rock varnish; and moderately to strongly etched surface carbonate clasts. The Qts_e unit is comprised of light brown to yellowish brown silt, fine sandy silt, and light gray to gray organic mud; locally light green clay.

2.2. SEISMICITY

The U.S. National Oceanic and Atmospheric Administration Earthquake Catalog lists about 800 events of magnitude greater than or equal to 4.0 with epicenters within about 120 miles of Las Vegas. Only 19 events greater than or equal to magnitude 4.0 are estimated to have occurred during the 1881 through 1938 period in the southern Nevada region.

After about 1947, nuclear testing began at the Nevada Test Site. Therefore, many of the recorded earthquakes after about 1947 may be due to nuclear blasts occurring more than about 60 miles from the subject site. Several hundred earthquakes occurred from 1936 to 1965 near Hoover Dam, presumably due to filling of the Lake Mead reservoir, with 24 of these events reportedly greater than or equal to magnitude 4.0.

Based on a review of referenced geologic maps and literature, the nearest Quaternary-age (last 1.6 million years) fault is located approximately 0.82 mile southeast of the planned pedestrian crossing (dePolo and Bell, 2000). Other mapped Quaternary-age tectonic faults are the Eglington fault (which geologists have debated may also be potentially active) and the Frenchman Mountain fault; these faults are located approximately 3 miles southeast and approximately 14.7 miles southeast of the planned pedestrian crossing structure, respectively. The nearest mapped Holocene active fault (i.e., a fault that has moved within the last 10,000 years) is the Black Hills fault, located approximately 23 miles southeast of the planned bridge structure. The nearest mapped fissure zone is located about 3 miles southeast of the site near Ann Road and Decatur Boulevard (dePolo and Bell, 2000). Based on the results of our review of available literature, it is our opinion that the potential for fault-related surface rupture at the site is low.

2.3. LIQUEFACTION

Liquefaction is a phenomenon in which loose, saturated soils lose shear strength under short-term (dynamic) loading conditions. Ground shaking of sufficient duration results in the loss of

grain-to-grain contact in potentially liquefiable soils due to a rapid increase in pore water pressure, causing the soil to behave as a fluid for a short period of time.

To be potentially liquefiable, a soil is typically cohesionless with a grain-size distribution generally consisting of sand and silt. It is generally loose to medium dense and has a relatively high moisture content, which is typical near or below groundwater. The potential for liquefaction decreases with increasing clay and gravel content but increases as the ground acceleration and duration of shaking increase. Potentially liquefiable soils need to be subjected to sufficient magnitude and duration of ground shaking for liquefaction to occur. Effects of liquefaction can include relatively large total and differential settlements, flotation of subsurface structures, slope failures, lateral ground displacements (lateral spreading), surface subsidence, ground cracking, and sand boils.

An in-depth evaluation of the potential for liquefaction at the site was outside the scope of this geotechnical evaluation. Qualitatively, the subsurface soils composed primarily of stiff to very stiff lean clay with gravel, very dense clayey gravel, strongly cemented caliche, and the depth at which groundwater was encountered at the site indicate a low liquefaction potential at the subject site.

2.4. MAPPED SOIL DATA

Based on review of the Clark County Soil Guidelines Map (CCBD, 1998), the project site is located in a previously mapped standard geotechnical consideration area with mixed alluvial sand and gravel. Based on review of the Clark County Expansive Soil Guidelines Map (CCDDS, 2006), a portion of the project encompassing Oso Blanca Road pedestrian bridge is located in a standard geotechnical consideration area having none to low swell potential (0 to 4 percent) with the Sky Pointe pedestrian crossing and the west-north ramp undercrossing structure located in a special geotechnical consideration area having moderate swell potential (4 to 8 percent).

2.5. FIELD EXPLORATION

GES evaluated the subsurface conditions along the planned Sky Pointe Drive bridge crossing site by drilling seven exploratory borings between November 12, 2018 and November 20, 2018. Each boring was drilled near bridge support locations on the east and west side of the future Sky Pointe Drive. Exploratory boring B-1 and B-3 were advanced to approximately 65 and 69.5 feet below the ground surface, respectively, where practical auger refusal was encountered on strongly cemented soils. Boring B-2 and B-4 through B-7 were advanced to approximately 85 feet below the ground surface. Figure A-2 presents a site plan showing the approximate location of each of the subsurface explorations. The locations were recorded by GES personnel using a handheld GPS unit at the time the explorations were performed. The elevations were obtained from Google Earth and are considered approximate.

GES representatives directed the subsurface explorations, while maintaining detailed logs of the subsurface conditions, classifying the soils encountered, and obtaining soil samples. The soils encountered were classified in general accordance with the Unified Soil Classification System (USCS). Logs of the subsurface conditions encountered in the exploratory borings are presented in Appendix A. Also included in the appendix is a Key to Symbols and Terms (Figure No. A-3) utilized on the exploration logs.

The borings were drilled with a Mobile B-90 truck-mounted drill rig and a Diedrich D-50 track-mounted drill rig using 8-inch nominal outside diameter hollow-stem augers (H.S.A.). Solid Stem Augers with a 4-inch diameter were used on exploratory boring B-7 where a strongly cemented soil layer was encountered. Ring-lined soil samples and penetration resistance (i.e., blow counts) were obtained with a 3-inch outside diameter ring-lined drive sampler (modified California) in general accordance with ASTM D3550, or a 2-inch outside diameter standard penetration test (SPT) split-spoon sampler in general accordance with ASTM D1586. The sampler was driven with a 140-pound automatic trip hammer falling about 30 inches. The blow count obtained from driving the sampler was used to evaluate the density and consistency of the in-place soil. A thin walled sampler (e.g., Shelby tube) was also attempted at selected depths in each boring in accordance with ASTM D1587 in order to obtain relatively undisturbed soil samples. Bulk samples were also obtained at selected subsurface intervals and from the ground surface at borings B-1, B-3, and B-6.

Auger cuttings from the drilling operations were spread across the project site for disposal at the end of each work day. The boreholes were backfilled with bentonite slurry and/or controlled low-strength material (CLSM).

Pocket penetrometer tests were also performed in the field on selected fine-grained, clayey specimens as an indication of soil strength. The results of the pocket penetrometer tests are shown on the boring logs at their respective sampling depths as referenced in Appendix A.

Drill rates were generally obtained where layers of strongly cemented soils were encountered within the borings. Drill rates were obtained by measuring the time required to drill through a known depth. The measured time elapsed and the distance drilled were converted to drill rates and were recorded on the boring logs in seconds per foot. The drilling rates are a qualitative indication of the relative hardness of the cemented soils but are also influenced by drilling method, bit size, bit wear, drilling pressure and other features. The drill rates, given in seconds per foot, are listed on the boring logs in Appendix A at the depths where cemented soils were encountered.

2.6. LABORATORY TESTING

The laboratory testing program included tests to classify the on-site soils and to assess engineering and physical properties of the on-site soils. The test results are presented on the boring logs in Appendix A and on test reports presented in Appendix B. Detailed descriptions of the laboratory tests performed are also presented in Appendix B. A summary of selected laboratory test results is provided in the table below.

Test	Test Results	Notes
Atterberg Limits Liquid Limit Plastic Limit Plasticity Index	No value to 97 Non-plastic to 37 Non-plastic to 60	Generally non-plastic to high plastic soils
Moisture content	2.8 to 30.5 percent	
Dry density	73.2 to 119.7 pounds per cubic foot	
Material passing #200 sieve	18 to 95 percent	
Consolidation – Compression Index, Cc	0.08 to 0.15	
Direct Shear Test – Angle of Internal Friction	28 to 31 degrees	
Direct Shear Test – Cohesion	0.10 to 0.34 ksf	
Swell Potential	0 to 4 percent	None to low swell potential
Sodium Content	0.01 to 0.02	
Sulfate Content	0.08 to 0.35 percent	Negligibly to severely deleterious to concrete
Sodium Sulfate Content	0.016 to 0.059 percent	Low chemical heave (salt heave) potential
Total Salts (Solubility)	0.11 to 0.45 percent	Low soluble
Sulfide**	ND* to 1.6mg/kg	
рН	8.15 to 8.41	
Reduction-oxidation**	339 to 350 mV	
Chloride Content	ND* to 300 mg/kg	Low corrosion potential
Resistivity	400 to 878 Ohms-cm	Severely to very severely corrosive to steel

Table 2.6. Summary of Selected Laboratory Test Results

*Not detected; ** Consult a corrosion engineer

The test results are presented in Appendix A on the boring logs and on test reports presented in Appendix B. Detailed descriptions of the laboratory tests performed are also presented in Appendix B.

2.7. SUBSURFACE MATERIALS AND CONDITIONS

The following sections describe the fill and native soils encountered in the borings. Detailed information regarding subsurface materials and conditions are presented on the boring logs in Appendix A.

2.7.1. FILL

Fill material was not encountered in our exploratory borings. Fill placed without documentation to indicate that the fill soils were placed under the supervision of a geotechnical engineer are considered uncontrolled. The term uncontrolled fill soil refers to material which was placed without engineering observation, testing, or documentation; uncontrolled fill is considered unsuitable for the support of proposed improvements. Our scope did not include an evaluation of the existing fill soils or certification of existing fill or improvements.

2.7.2. NATIVE SOIL

The native subsurface soils encountered in the borings generally consisted of moist to wet and stiff to very stiff lean clay with gravel with weakly to moderately cemented layers at intermittent levels, and moist to wet and medium dense to very dense clayey gravel. Detailed information regarding subsurface materials and conditions, are presented on the exploration logs in Appendix A.

Strongly cemented soils, with varied thickness, were generally encountered in all of the borings at the site at depths of between approximately 33 to 74 feet below the existing ground surface. The approximate depth that strongly cemented soil was first encountered in the borings, the approximate layer thicknesses, and hardness of the materials encountered are summarized in the following table. Additional layers of cemented soils could be encountered beyond or between our exploration locations at varying elevations.

Boring No.	Approximate Depth to First Cemented Layer (feet)	Approximate Thickness of Initial Cemented Layer (feet)	Degree of Hardness
B-1	33	9	Very Hard
B-2	33	3	Very Hard
B-3	33	7	Very Hard
B-4	46	3	Hard
B-5	32	3	Very Hard
B-6	30	2	Hard
B-7	31	4	Very Hard

 Table 2.7.2 Approximate Depth to Initial Cemented Soil Layer

In addition, weakly and/or moderately cemented soils were encountered within the soil layers at varying depths in all seven borings. Weak, moderate and strong cementation is identified on the boring logs at the depths encountered.

2.7.3. GROUNDWATER

Groundwater was encountered in four of the borings drilled for the project. Groundwater was encountered during drilling at depths ranging from approximately 58½ to 69 feet below the ground surface. Approximate groundwater depths are shown on the boring logs in Appendix A and are summarized in Table 2.7.3. Information from Las Vegas Valley Depth to Shallow Groundwater Map indicates groundwater levels deeper than 100 feet near the site.

Exploration No.	Depth to Groundwater Encountered During Drilling (feet)	Approximate Surface Elevation (feet)	Approximate Groundwater Elevation (feet)
B-2	63	2,394	2,331
B-5	58.5	2,384	2,325.5
B-6	65	2,380	2,315
B-7	69	2,377	2,308

Table 2.7.3. – Groundwater Depths Encountered

Groundwater depth measured 1 day after drilling

Design groundwater elevation is 2,331 feet. Groundwater levels should be anticipated to fluctuate due to seasonal precipitation, groundwater withdrawal and recharge, irrigation practices, and potential future dewatering efforts within and/or near the subject site. A detailed evaluation of possible groundwater fluctuations is beyond the scope of this study.

3. SUBSURFACE PROFILES & GEOTECHNICAL PARAMETERS

Soil profiles with geotechnical design parameters for each boring associated with a foundation are presented in Appendix C. The geotechnical parameters are largely based on our review of

the Triaxial test results performed by NDOT as part of the CC215-US95 Interchange project (NDOT 2016). GES should be notified of subsurface discrepancies observed during drilled shaft drilling.

4. FINDINGS

Based on the results of our field exploration and laboratory testing programs, it is our opinion that there are no known geologic or geotechnical conditions that would prevent development of the site. It is also our opinion that there are some geotechnical considerations that will affect site development, such as the following:

- Fill materials were not encountered in our subsurface explorations. Fill placed without documentation to indicate that the fill soils were placed under the supervision of a geotechnical engineer are considered uncontrolled. The term "uncontrolled fill" soil refers to fill which was placed without engineering observation, testing, or documentation; uncontrolled fill is considered unsuitable for the support of proposed improvements. Our scope did not include an evaluation of the existing fill soils or certification of existing fill or improvements.
- Weakly to moderately cemented soils were encountered in all the borings during our field exploration. Weakly and moderately cemented soil refers to cemented soil that will crumble or break with little or considerable finger pressure, respectively. In general, very dense or weakly to moderately cemented soils can be excavated with a backhoe and medium hard cemented soils can be excavated with a ripper tooth or by a backhoe with extreme difficulty.
- Strongly cemented soils were encountered in all the borings at the site at depths of between approximately 33 to 74 feet below the existing ground surface. Additional cemented soil layers may likely be encountered at different depths and locations between our borings. Strongly cemented soil refers to rock-like soil that will not crumble or break at any finger pressure. To excavate medium hard to hard, and/or hard cemented rock-like materials, a heavy-duty excavator or trencher, Caterpillar D-10 Dozer or larger (or equivalent) with ripper, hoe-ram, headache ball, rock-saw or similar rock excavation techniques is recommended and will likely be needed. Where thick layers of very hard cemented materials are to be excavated, blasting is sometimes needed for removal. A detailed excavatability or rippability evaluation is beyond the scope of this study. The contractor should perform the independent investigations necessary to determine the type of equipment required to perform the work. If the contractor(s) have any questions regarding site conditions, site preparation, or the recommendations provided, they

should contact a representative of GES for any needed clarifications prior to submitting earthwork bids.

- Based on the results of our laboratory testing and our understanding of the subject project, it is our opinion that the level of verification and inspection should be continuous during grading and drilled shaft construction.
- Groundwater was encountered in four borings at depths between 58½ to 69 feet below the existing ground surface. Information from Las Vegas Valley Depth to Shallow Groundwater Map indicates groundwater levels deeper than 100 feet near the site. A groundwater elevation of 2,331 feet was used in our analysis. Groundwater levels should be anticipated to fluctuate due to seasonal precipitation, groundwater withdrawal and recharge, irrigation practices, and existing and potential future dewatering efforts within and/or near the subject site. A detailed evaluation of possible groundwater fluctuations was beyond the scope of this study.
- Due to the consistency and types of soils encountered at the site and the depth to groundwater, it is our opinion that the potential for distress resulting from liquefaction at the site is low.
- Based on the results of our review of available literature and the distance to mapped faults and fissures, it is our opinion that the potential for fault-related surface rupture at the project site is low.
- The tested site soils have none to low expansion potential as described in Section 1803.5.3.2 and Table 1808.6.1.1 of the SNA to the 2012 IBC.
- Based on the laboratory test results, and in accordance with Table 1804.3.1 of the SNA to the 2012 IBC (SNBO, 2013), the solubility of the tested soils is considered low.
- The tested soils have a negligible to severe concrete sulfate exposure as defined in Tables 4.2.1 and 4.3.1 of American Concrete Institute (ACI) Publication 318-11 per Section 1904.1 and 1904.2 of the 2012 IBC. It is our opinion that concrete in contact with soils at the site should be designed for a severe sulfate exposure.
- The tested soils have a severe to very severe corrosion potential to buried metals based on the chemical testing performed.
- The average shear wave velocity method for evaluating Site Class is described in Table C3.10.3.1-1 (Method A) in the referenced LRFD Bridge Design Specifications (AASHTO, 2014).
 Based on the conditions encountered during our subsurface explorations, and the referenced

shear wave velocity information, a Site Class C, as described in Table 3.10.3.1-1 in the LRFD Bridge Design Specifications is appropriate for design of this project.

5. RECOMMENDATIONS

The following sections present recommendations concerning the proposed Sky Pointe Drive pedestrian crossing, WN ramp undercrossing, and Oso Blanca Road pedestrian bridge improvements. These recommendations are based upon our understanding of the project, the engineering properties of the tested on-site soils, the geologic conditions that are presented in this report, and the assumption that an adequate number of tests and observations will be made during construction to evaluate compliance with these recommendations.

5.1. EARTHWORK

Based on the results of our field exploration and laboratory testing programs and our stated understanding of the proposed project, it is our opinion that the following earthwork recommendations for the proposed improvements are applicable to the project.

5.1.1. OVEREXCAVATION AND SITE PREPARATION

Proposed improvement areas should be cleared of any pavements, surface obstructions, debris, organics (including vegetation), and other deleterious material. Materials generated from clearing operations should be removed from the project site for disposal.

We recommend that the full depth of any on-site undocumented fill and surficial loose and/or disturbed soils, at the time construction begins, be removed from proposed structure and improvement areas, including bridge, block retaining/screen wall, pavement, and exterior flatwork areas. These excavated soils may be stockpiled for later use as borrow or granular backfill or backfill if they comply with the recommendations provided in this report.

Proposed improvement areas should be cleared of any pavements, flatwork, surface obstructions, debris, organics (including vegetation), and other deleterious material. Materials generated from clearing operations should be removed from the project site for disposal.

We recommend that the on-site soils be overexcavated and a zone of processed, moistureconditioned and compacted backfill or granular backfill should be provided beneath site improvements and shallow foundations. After the removal of unsuitable soils has been performed, as described previously, the on-site native soils should be overexcavated to the depths summarized in the table below:

Proposed Improvement	Minimum Overexcavation Depth*
Structure Shallow Foundations	12 inches below bottom of shallow footings
Concrete Slabs-on-Grade	12 inches below existing grade or the bottom of supportive
Concrete Flatwork/ Site Improvements	gravel (Type II Aggregate Base)

 Table 5.1.1 Recommended Overexcavation Depths

*Overexcavation depths may need to be increased to remove unsuitable material

During construction the geotechnical consultant should observe exposed materials, after recommended removals of unsuitable materials, to evaluate whether additional removal down to competent materials is needed. After the recommended excavations are performed, the native soils should be scarified to a depth of at least 6 inches, moisture conditioned to between optimum and 3 percent above the optimum moisture content and compacted to at least 95 percent of the maximum dry density, as determined by AASHTO T180. The soil preparation area should extend laterally a minimum of 2 feet beyond the edges of exterior concrete flatwork and pavement. The vertical and lateral extent of the recommended excavations should be evaluated under the direction of the geotechnical consultant. Scarification efforts may be terminated at depths where strongly cemented material is encountered, as evaluated in the field by the geotechnical consultant.

5.1.2. BACKFILL OR GRANULAR BACKFILL AND BORROW SUITABILITY

Samples of materials proposed for use as imported backfill, granular backfill or borrow should be submitted to the geotechnical consultant for testing and evaluation prior to being transported to the site. Based on the subsurface soils encountered in our explorations, the native shallow soils do not appear to meet specifications for backfill, granular backfill or borrow. Imported materials and on-site materials that have been excavated, stockpiled, and processed for use as backfill or granular backfill should satisfy the recommendations provided in Sections 704.03.10, 704.03.11 and/or 704.03.12 in the 2014 NDOT Standard Specifications. Additional fill materials should be free of debris, organic materials, and other deleterious materials including asphalt concrete pavement and concrete rubble.

5.1.3. FILL PLACEMENT

Areas to receive backfill or granular backfill should be prepared prior to fill placement as described in Section 5.1.1 of this report. Backfill or granular backfill should be uniformly moisture conditioned to between optimum and 3 percent above the optimum moisture content, placed in horizontal, loose lifts up to 8 inches thick, and compacted to 95 percent of the maximum dry density, or more, as determined by AASHTO T310. The fill lift thickness should not exceed 8 inches in loose thickness.

If fill material is placed where the existing ground surface is steeper than 5:1 (horizontal to vertical), the surface on which fill is to be placed should be benched. We recommend that benches be 8 feet or wider or be of sufficient width to permit operation by compaction equipment. Benches should include approximately 2-foot high vertical or near-vertical intervening steps, cut to expose suitable soil as evaluated in the field by the geotechnical consultant during earthwork operations. Preparation of the benching surface in areas to receive fill should include scarification and moisture-conditioning to a depth of approximately 6 inches, and compaction to a relatively non-yielding condition, prior to placement of fill.

5.1.4. OBSERVATION AND TESTING

A qualified geotechnical consultant should perform appropriate observation and testing services during grading and construction operations. These services should include observation of removal of soft, loose, or otherwise unsuitable soils, evaluation of subgrade conditions where soil removals are performed, and performance of observation and testing services during placement and compaction of backfill or granular backfill and backfill soils. In-place density and moisture tests should be performed in accordance with AASHTO T310. The test frequency should be at least one test per 100 cubic yards of fill material placed or at least 2 tests per lift of fill material placed, whichever is more. Additional field tests may also be performed in structural and non-structural areas at the discretion of the geotechnical consultant.

Observation and testing of soils should be performed on a continuous basis during grading and drilled shaft construction.

5.2. EXCAVATION CONSIDERATIONS

The following sections provide recommendations to aid in the successful performance of excavations at the project site and include recommendations regarding temporary excavations and cemented soil considerations.

5.2.1. TEMPORARY EXCAVATIONS

Excavations should not undermine existing footings. Excavations should be located a minimum lateral distance from the existing foundation equal to or greater than the proposed depth of excavation. If excavations are proposed near existing foundations or slopes, the owner should be contacted to evaluate the necessary measures to be taken on a case by case basis.

Temporary slope surfaces should be kept moist to retard raveling and sloughing. Water should not be allowed to flow over the top of excavations in an uncontrolled manner. Stockpiled material and/or equipment should be kept back from the top of excavations a distance equivalent to the depth of the excavation or more. Workers should be protected from falling debris, sloughing and raveling in accordance with Occupational Safety and Health Administration regulations. Temporary excavations should be observed by the project's geotechnical consultant so that appropriate additional recommendations may be provided based on the actual field conditions. Temporary excavations are time sensitive and failures are possible.

Excavations greater than 4 feet in depth into uncemented soils are not anticipated to stand vertically. Excavations greater than 4 feet in depth should be sloped back in accordance with the maximum allowable slope ratios presented in Appendix B to Subpart P of Occupational Safety and Health Standards for the Construction Industry (OSHA) 29 CFR, State of Nevada, Division of Occupational Safety and Health, Part 1926. Based on the results of our explorations, the on-site soils preliminarily classify as Type C as defined by OSHA (Federal Register 29 CFR, Part 1926, Subpart P-excavation). The soil type definitions in Appendix A to Subpart P of OSHA 29 CFR, Part 1926 should be applied to soils encountered in excavations to determine the maximum allowable slope ratio. As an alternative to sloped excavation sidewalls, excavations could be shored and braced. Shoring and bracing should be designed in accordance with Appendices C and D to Subpart P of OSHA 29 CFR, Part 1926. Safety of construction personnel is the responsibility of the contractor.

5.2.2. CEMENTED SOIL CONSIDERATIONS

Weakly to moderately cemented soils were encountered in all the borings during our field exploration. Weakly and moderately cemented soil refers to cemented soil that will crumble or break with little or considerable finger pressure, respectively. In general, very dense or weakly to moderately cemented soils can be excavated with a backhoe and medium hard cemented soils can be excavated with a ripper tooth or by a backhoe with extreme difficulty. In general, to excavate moderately hard to hard, hard, and very hard rock-like materials, a heavy-duty excavator or trencher, Caterpillar D-10 Dozer (or equivalent) or larger, ripper, hoe-ram, headache ball, rock-saw or similar rock excavation techniques may be needed. Where thick layers of very hard cemented materials are to be excavated, blasting is sometimes needed for removal. A detailed excavatability or rippability evaluation is beyond the scope of this study. The contractor should perform the independent investigations necessary to determine the type of equipment required to perform the work. If the contractor(s) have any questions regarding site conditions, site preparation, or the recommendations provided, they should contact a representative of GES for any needed clarifications prior to submitting earthwork bids.

Strongly cemented soils were encountered in all the borings at the site at depths of between approximately 33 to 74 feet below the existing ground surface. Additional cemented soil layers will likely be encountered at different depths and locations between our borings. The following additional recommendations are provided in anticipation of strongly cemented soil being encountered during construction. A detailed excavatability or rippability evaluation was beyond the scope of this study. The contractor should perform the independent investigations necessary to determine the type of equipment required to perform the work. If the contractor(s) have any questions regarding site conditions, site preparation, or the recommendations provided, they should contact a representative of GES for any needed clarifications prior to submitting earthwork bids.

Overexcavation and/or scarification efforts may be terminated at depths where medium hard to very hard, strongly cemented material is encountered, as evaluated in the field by the geotechnical consultant.

Due to the potential for differential settlement, structure footings (including retaining wall footings) should not bear on both strongly cemented and non-cemented or weakly cemented soils. If both cemented and non-cemented/weakly-cemented soils are present at the footing base, as evaluated by the geotechnical consultant, the cemented soil should be overexcavated approximately 12 inches and replaced with backfill or granular backfill, or the uncemented soil should be overexcavated down to strongly cemented soil and the excavated material replaced with lean concrete.

Oversize material is anticipated to be generated during excavation of strongly cemented material. These materials will need to be crushed prior to being used as backfill or granular backfill and backfill or removed from the site and disposed of in a suitable manner. Bulking of this material should be anticipated when it is excavated, processed/crushed, and compacted. For planning purposes, up to approximately 10 percent bulking, or more, should be anticipated.

Rock excavation techniques such as use of heavy-duty ripping equipment, heavy-duty backhoe, headache ball, hoe-ram, and/or rock saw should be anticipated if strongly cemented soils are encountered. The contractor should be aware of the potential for (and take adequate precautions to reduce the potential for) vibrational damage to adjacent or nearby structures, and take appropriate precautions, when using heavy impact equipment during removal of strongly cemented materials. Pre-construction documentation of existing distress to structures near construction areas, and monitoring of these structures and ground motions generated, should be considered to reduce the potential for damage and construction-related claims.

5.3. MATERIAL VOLUME CHANGES

Based on our experience, it is our opinion that there will be a reduction in volume when the native uncemented soils are excavated and compacted. Shrinkage of the native uncemented soils is estimated to be in the range of 10 to 20 percent when compacted to at least 95 percent of the maximum dry density (AASHTO T180). Accordingly, with shrinkage of 10 to 20 percent, one cubic yard of excavated native soils compacted to 95 percent relative compaction would generate approximately 0.90 to 0.80 cubic yards of backfill or granular backfill, respectively. A bulking factor of approximately 10 percent should be anticipated for the excavation of strongly cemented soils.

5.4. UNDERGROUND UTILITIES

Trenches for underground utilities should be excavated to the depths shown on the approved improvement plans. The bottom of trench excavations should be founded on undisturbed, stiff to very stiff, or dense to very dense native soils or compacted embankment fill. If the trench is excavated below the grade shown on the approved improvement plans, the bottom may be filled using soils meeting the specifications for Backfill or Granular Backfill presented in Section 704 of the 2014 NDOT Standard Specifications. These soils should be moisture conditioned and compacted as recommended for backfill in Section 5.1.3 above.

Trenches for flexible pipes should be excavated to provide a width more than 1.5 times the outside pipe diameter and have more than 12 inches of horizontal clearance on each side of the pipe for pipe zone backfill placement and compaction. Trenches for rigid pipes should be excavated to provide a minimum width of the outside pipe diameter times 1.33 for pipe zone backfill placement

and compaction. If CLSM is used as pipe zone, the trench width may be reduced to the outside pipe diameter plus 12 inches and enough room for the proper placement of the CLSM. CLSM should be sampled and tested for compressive strength according to Section 704.03.07 of the USS at a frequency of once per placement day or every 100 cubic yards, whichever is more. The contractor should excavate trenches to a dimension that allows compaction of the pipe zone and bedding within the trench widths described above.

Excavated native soils may be used for on-site utility trench backfill provided they meet the recommendations for imported backfill or granular backfill detailed in Section 5.1.2 above. Cemented soils encountered during trench excavation will require processing and evaluation prior to use as trench backfill. Soils used for on-site trench backfill should be moisture conditioned to within 2 percent of the optimum moisture content, placed in 8-inch maximum loose lifts, and compacted to at least 95 percent of the maximum dry density per AASHTO T180. Suitability and placement of trench backfill should be evaluated during construction. In-place density and moisture tests of on-site trench backfill should be at least one test per 200 linear feet of fill material placed per each vertical foot of compacted fill.

Off-site utility trench backfill placement procedures should meet the specifications outlined in the latest edition of the referenced Clark County Uniform Standard Specifications for Public Works Construction (USS).

Due to the nature of the on-site soils, ponding or jetting of utility trench backfill will not be acceptable. Trench backfill should be compacted by mechanical means only.

5.5. FOUNDATIONS

The following sections present foundation recommendations for shallow spread footings and drilled shafts to be used for this project.

5.5.1. SPREAD FOOTINGS

Footings should be designed based on the bearing and sliding resistance parameters presented in this section, which assume that footings will bear on medium dense to very dense native material, or on adequately placed and compacted backfill meeting Section 704.03.10 of the 2014 NDOT Standard Specifications or entirely on cemented soils (caliche). Due to the potential for differential settlement, footings should not bear on both caliche and non-cemented soils. If both cemented and

non-cemented soils are present at the footing base, the cemented soils should be overexcavated 12 inches and replaced with compacted backfill or granular backfill.

Spread footings should be established at least 2 feet below the lowest adjacent final compacted subgrade. Spread footings should be at least 2 feet wide.

The nominal bearing resistance values for both strength limit and service limit states for various footing configurations in general accordance AASHTO LRFD Bridge Design Specifications, Section 10 based on angle of internal friction of 34 degrees and unit weight of 130 pounds per cubic foot (pcf) are discussed in this section. The formulas and parameters for bearing resistance and nominal bearing resistance for various depths to bottom of footing for the strength limit are provided in Appendix C. The formulas and parameters for bearing resistance with 1-inch limiting settlement for the service limit are provided in Appendix C.

It should be noted that the information presented in Appendix C are derived based on the soil parameters assumed in the calculation. If the soil conditions encountered are different from those used in the analysis, Geotechnical & Environmental Services, Inc. should be immediately notified so that we may review the situation that exists and make supplementary recommendations as needed.

5.5.2. DRILLED SHAFT FOUNDATIONS

Analysis of axial loading and anticipated lateral deflections of drilled shafts to support the bridge were evaluated in accordance with American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications (AASHTO, 2014). The results of our axial analyses are provided in Appendix C. The information provided in these appendices is based on results obtained from analyses performed using our laboratory test results, encountered subsurface soil conditions, and anticipated loading conditions provided by GCW.

Design Criteria for Drilled Shaft Foundations

Soil profiles with geotechnical design parameters for each boring associated with a foundation are presented in Appendix C. The geotechnical parameters are largely based on our review of the Triaxial test results performed by NDOT as part of the CC215-US95 Interchange project (NDOT 2016). Based on the subsurface conditions encountered in our explorations, we judge the soil profiles to be representative of the soils anticipated to be encountered during construction

of drilled shafts. GES should be notified of subsurface discrepancies observed during drilled shaft drilling.

Downward Axial Resistance

Axial drilled shaft capacities were formulated using skin friction resistance in accordance with the methods outlined in Section 10.8 of the AASHTO LRFD Bridge Design Specifications (AASHTO, 2014). Axial resistance analysis was performed using a spreadsheet that was developed based on Section 10.8.3.5 of the AASHTO LRFD Design Specifications (AASHTO, 2014). As requested by GCW, analysis was performed for 36-inch and 72-inch diameter shafts for the abutments and piers, respectively. Spreadsheet outputs from axial analysis are provided in Appendix C.

Evaluation of the neutral plane was performed in accordance with Section 9.8.2.7 of the referenced Federal Highway Administration (FHWA) manual (Hannigan, 2006). Settlement due to downdrag at the neutral plane was evaluated using the computer program Settle 3D (Rocscience, 2010). The software utilized Boussinesq's method to compute the stress distribution due to the loads. The results of our settlement analyses are summarized in the following table.

Location	Drilled Shaft Length (feet)	Axial Load at Strength Limit State (kips)	Approximate Total Settlement (inches)
Abutment 1	37	793	0.70
Pier 1	29	1591	<0.25
Pier 2	40	1799	<0.25
Pier 3	28	1460	<0.25
Pier 4	35	1468	<0.25
Pier 5	14	570	<0.25

Table 5.5.2-1. Summary of Drilled Shaft Analyses

Lateral Loading

For lateral loading, drilled shafts in a single row may be considered to act individually when the center-to-center spacing is greater than five shaft diameters in the direction normal to loading. The table below presents the lateral load reduction factors to be applied for various pile spacing for in-line loading. Linear interpolation may be used for intermediate spacing. Lateral load analyses will be performed by others.

Center-To-Center Shaft Spacing for In-Line Loading in Diameters	Ratio of Lateral Resistance of Shaft in Group to Single Shaft
5	1.0
3	0.8

Table 5.5.2-2. Lateral Load Reduction Factors

5.6. DRILLED SHAFT CONSTRUCTION CONSIDERATIONS

As discussed previously, strongly cemented soils (caliche) were encountered in our subsurface explorations. Accordingly, difficult drilled shaft excavation conditions should be anticipated. Drilled shaft excavation activities will be impeded by strongly cemented soils. Rock excavation and heavy-duty excavation techniques should be anticipated.

Groundwater (2,331 feet design elevation) is anticipated to be encountered at the site. Accordingly, casing of drilled shaft excavations, use of drilling mud, and other special excavation techniques should be considered. We recommend that the contractor be prepared to take appropriate measures during construction to reduce the potential for caving of the drilled holes, including the use of casing and/or drilling mud. In addition, we recommend that measures, such as placement of concrete by tremie method below groundwater, are implemented so that aggregate and cement do not segregate during concrete placement. When possible, reinforcing steel and shaft concrete should be placed the same day the shaft excavation is drilled. To aid in reducing the potential for "blowout" between adjacent (less than 3 shat diameters) shaft excavations, it may be necessary to drill and fill the shafts alternately, allowing the concrete to cure 8 hours or more before drilling the adjacent shaft. Concrete compressive strength and steel reinforcement should be specified in accordance with recommendations of a qualified structural engineer.

Crosshole sonic logging (CSL) should be considered to evaluate concrete integrity of the drilled shafts. To perform CSL in drilled shafts, vertical 2-inch diameter steel tubes (equal in length to the shaft plus 3 feet) need to be placed on reinforcing cages prior to concrete placement. The CSL tubes should extend to within a few inches of the bottom of the excavation and should be filled with water within 4 hours of concrete placement. The number and layout of the CSL tubes will depend on the diameter of the drilled shaft. CSL should be performed 4 to 8 days after placement of concrete.

The bottom and sidewalls of each drilled shaft excavation should be evaluated in the field during construction by the geotechnical consultant. The geotechnical consultant should compare the encountered conditions with those assumed for design. If the encountered geotechnical conditions are significantly different than those used in design of the drilled shaft, our office should be notified

and additional recommendations, if warranted, will be provided upon request. The contractor should make provisions to provide for the integrity of the excavation and to make sure that the excavations are cleaned and straight, and that sloughed, loose, or soft soil is removed from the bottom of excavations prior to placement of concrete.

Concrete should be placed in the drilled shaft excavation as soon as practicable after drilling and evaluation by the geotechnical consultant. Concrete should have an ultimate strength not less than that specified and should be workable and plastic so that it may be placed without segregation. Concrete should be cast-in-place against undisturbed earth in the hole in such a manner to provide for the exclusion of appreciable amounts of foreign matter in the concrete. The shafts should be adequately reinforced for lateral and uplift loads, as recommended by the project structural engineer.

5.7. SEISMIC DESIGN PARAMETERS

The average shear wave velocity method for evaluating Site Class is described in Table C3.10.3.1-1 (Method A) in the referenced LRFD Bridge Design Specifications (AASHTO, 2014). Based on the conditions encountered during our subsurface explorations, and the referenced shear wave velocity information, a Site Class C, as described in Table 3.10.3.1-1 in the LRFD Bridge Design Specifications is appropriate for design of this project.

As indicated in the referenced AASHTO LRFD Bridge Design Specifications (AASHTO, 2014), the subject site is in an area (approximately 36.27791 degrees latitude and -115.26054 degrees longitude) characterized by a Horizontal Peak Ground Acceleration of approximately 0.15g with a 7 percent probability of exceedance in 75 years. Additional seismic design parameters are provided in the following table.

		Value		Reference
Parameters	Zero Period	Short Period	Long Period	(AASHTO, 2014)
Mapped Maximum Considered Earthquake Spectral Response Acceleration, PGA, Ss, and S ₁	0.15g	0.40g*	0.15g*	Figures 3.10.2.1-1, 3.10.2.1-2, and 3.10.2.1-3
Site Coefficient, Fpga, Fa, and Fv	1.2	1.2	1.65	Tables 3.10.3.2-1, 3.10.3.2-2, and 3.10.3.2-3
Design Spectral Response Acceleration, A_S , S_{DS} , and S_{D1}	0.18g	0.48g	0.25g	Equations 3.10.4.2-3, 3.10.4.2- 3, and 3.10.4.2-6

*Minimum value allowed by NDOT in Clark County for Ss is 0.4 and for PGA and S₁ are 0.15 as presented in Figure 12.3H of the referenced Structures Manual (NDOT, 2008). Estimated values for PGA, Ss and S₁ are 0.15, 0.39 and 0.12, respectively as mapped in the referenced specifications (AASHTO, 2014).

5.8. LATERAL EARTH PRESSURES

Retaining elements should be designed according to the recommendations in this report. Retaining walls with level backfill should be designed to resist the lateral earth pressures for the appropriate conditions presented in Table 5.8.

Parameter	Strength Limit State		
Coefficient of Active Earth Pressure, ka	0.33		
Coefficient of At-rest Earth Pressure, ko	0.50		
Coefficient of Passive Earth Pressure, kp	9.0		
Factored Coefficient of Passive Earth Pressure, k_p	6.192		
Sliding Passive Resistance Factor, ϕ_{ep}	***0.5		
Factored Passive Lateral Earth Pressure, pp	805 psf/ft** of depth		
Nominal Sliding Resistance for Cast-in place Concrete, R_τ	$0.675(V)^*$ where V is total vertical force		

Table 5.8. Lateral Earth P	ressures and Sliding Resistance
	coourco and onanig reolotance

*The nominal sliding resistance is based on an internal friction angle, ϕ_f , of 34 degrees.

**Factored passive lateral earth pressure is based on an internal angle of 34 degrees and a unit weight of 130 pcf.

***additional factor to be used when using passive to resist sliding.

Backfill placed behind retaining walls or subsurface walls should consist of backfill or granular backfill meeting the criteria presented in this report. Backfill placed behind retaining walls should be placed in 8-inch maximum vertical lifts and should be compacted to between 90 and 95 percent of the maximum laboratory dry density as evaluated per AASHTO T180. Over-compaction adjacent to retaining walls or subsurface walls should be avoided.

5.9. EXTERIOR CONCRETE FLATWORK CONSTRUCTION

Concrete flatwork should be at least 4 inches in thickness. Potential for chemical heave is low according to chemical testing results performed as part of this study. Accordingly, aggregate base course materials beneath concrete flatwork should be 4 inches in thickness, or more, and should consist of Type II Aggregate Base or other similar material approved by the geotechnical engineer. Aggregate base should be uniformly placed and compacted to at least 95 percent of the maximum dry density.

The existing on-site subgrade soils beneath concrete flatwork should be prepared as described in section 4.1 of this report, including moisture-conditioning to between optimum and 3 percent above

optimum moisture content and compaction to 90 percent, or more, of the maximum dry density as evaluated by AASHTO T180 prior to the placement of supportive aggregate base.

Excessive slump (due to a high water-cement ratio) of the concrete and/or improper curing procedures could lead to excessive shrinkage, cracking or curling of slabs and other flatwork. Concrete placement and curing operations should be performed in accordance with the American Concrete Institute (ACI) Manual of Concrete Practice (ACI, 2011).

5.10. SOIL CORROSIVITY

The corrosion potential of onsite soils to concrete and buried metal was evaluated in the laboratory using representative samples obtained from the exploratory borings. Laboratory testing was performed to assess the effects of sulfate content on concrete and soil resistivity on buried metal. Results of these tests are presented in Appendix B. Recommendations regarding concrete to be utilized in construction of proposed improvements and for buried metal pipes are provided in the following sections.

5.10.1. CONCRETE

Chemical tests performed on selected samples of on-site soils indicated sulfate contents of 0.08 to 0.35 percent by weight. Based on review of the referenced American Concrete Institute Manual of Concrete Practice (ACI, 2011), the tested soil is considered negligibly to severely deleterious to concrete. However, based on our experience with projects in the vicinity of the subject site, we recommend that concrete in contact with on-site soils, along with subsurface walls up to 12 inches above finished grade, contain Type V cement, and have a design compressive strength of at least 4,500 pounds per square inch (psi), and a maximum water to cement ratio of 0.45. In addition, it is recommended that reinforcing bars in cast-against-grade concrete, except for exterior concrete flatwork, be covered by approximately 3 inches or more of concrete. Concrete should be placed with an approximate 4-inch slump, or as specified by the structural engineer of record, and good densification procedures should be used during placement to reduce the potential for honeycombing. Structural concrete should be placed, concrete samples should be obtained, and the concrete slump should be tested by the project's geotechnical consultant in accordance with ACI recommendations and project specifications.

5.10.2. BURIED METAL

Laboratory resistivity test results performed on representative samples of on-site soils indicate electrical resistivity values ranging from approximately 400 to 878 Ohms-centimeters (Ohms-cm) at saturated moisture contents, which is severely to very severely corrosive to buried metals. We recommend that a Corrosion Engineer be consulted for protection recommendations regarding metal in contact with onsite soils. These corrosion reduction methods may include utilization of protective coatings, pipe sleeves, and/or appropriate cathodic protection as recommended by a qualified corrosion engineer. Where permitted by jurisdictional building codes, the use of plastic pipes for buried utilities should also be considered.

5.11. DRAINAGE AND MOISTURE PROTECTION

Infiltration of water into subsurface soils can lead to soil movement and associated distress, and chemically and physically related deterioration of concrete structures. To reduce the potential for infiltration of moisture into subsurface soils, we recommend the following:

- Positive drainage should be established and maintained away from proposed structures.
- A relatively impermeable barrier should be placed against retaining structures where retained soil is in contact with the retaining wall so that unsightly staining of the exposed wall face and potential for degradation of the wall will be reduced.
- Paved areas should have a surface gradient of 2 percent or more. In addition, surface runoff from surrounding areas should be intercepted, collected, and not permitted to flow onto the pavement or infiltrate the base and subgrade. We recommend that perimeter swales, edge drains, curbs and gutters, or combination of these drainage devices, be constructed to reduce the adverse effects of surface water runoff.
- •

5.12. PLAN REVIEW

The recommendations presented in this report are based on the findings of our geotechnical evaluation. Project grading and foundation plans should be reviewed by the geotechnical engineer to evaluate whether the project grading and foundation plans are consistent with the geotechnical design criteria presented in this report.

5.13. PRE-CONSTRUCTION MEETING

We recommend that the owner or the owner's representative, the engineer of record, the contractor, material testing firm, and the geotechnical consultant should attend a pre-construction meeting to discuss the plans and the project.

6. LIMITATIONS

The recommendations contained in this report are based on field exploration, laboratory testing, review of referenced maps and literature, and our understanding of the proposed construction. The soil data used in the preparation of this report were obtained from seven borings and existing information provided by GCW personnel. It is possible that variation in the soil conditions will exist between the locations explored. Therefore, if any soil conditions are encountered that are different from those outlined in this report, Geotechnical & Environmental Services, Inc. should be immediately notified so that we may review the situation that exists and make supplementary recommendations as needed. In addition, if the scope of the proposed construction, including the types of structures, anticipated loads and maximum cut and fill depths, changes from what is described in this report, our firm should be notified. A detailed excavatability or rippability evaluation is beyond the scope of this study.

The recommendations presented in this report assume that an adequate number of tests and observations will be made during construction to evaluate compliance with the recommendations. These tests and observations should be provided under the direction of a qualified geotechnical consultant. Such testing and observations should include but not be limited to the following:

- Review of site construction plans for conformance with the soils investigation.
- Observation and testing during site preparation, grading, footing and other excavations, and placement of fill, aggregate base, concrete, asphalt concrete, and steel reinforcement.
- Consultation as may be required during construction.

Our services were performed using that degree of care and skill ordinarily exercised under similar circumstances by reputable engineering firms in this or similar localities. No other warranties, either express or implied, are included or intended in this report.

7. REFERENCES

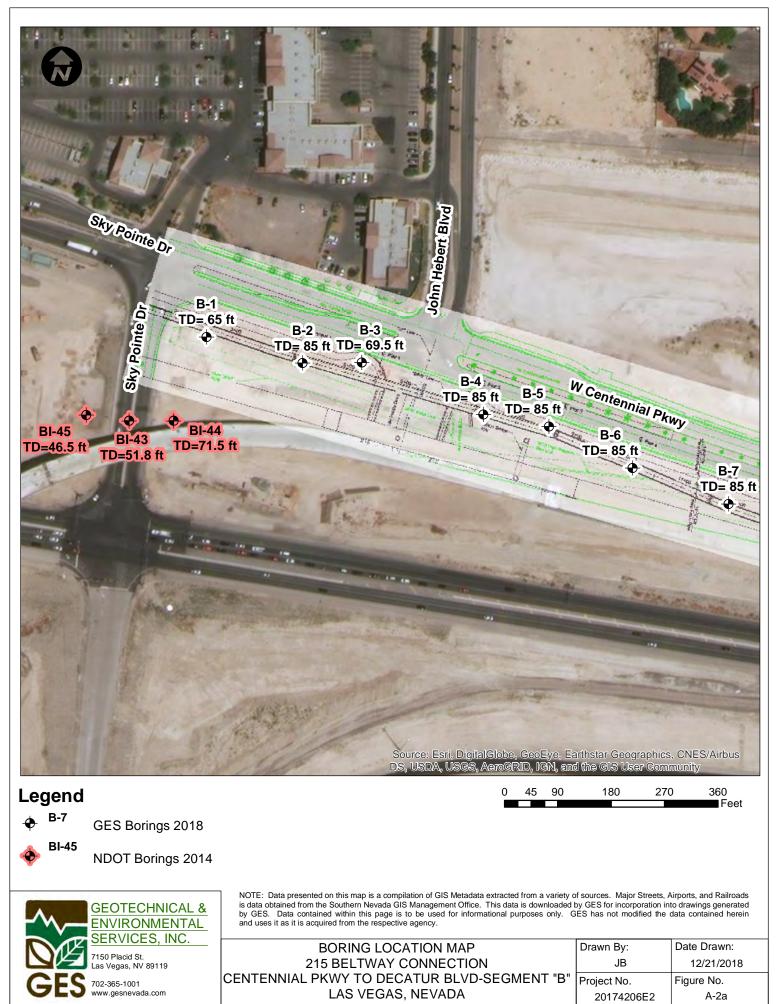
- American Association of State Highway and Transportation Officials (AASHTO), 1993, AASHTO Guide for Design of Pavement Structures: Fourth Edition, Volume 1 and Volume 2.
- American Association of State Highway and Transportation Officials (AASHTO), 2005, Standard Specifications for Transportation Materials and Methods of Sampling and Testing; 25th Edition.
- American Association of State Highway and Transportation Officials (AASHTO), 2014, LRFD Bridge Design Specifications; 7th Edition with 2015 and 2016 Interim Revisions.
- American Concrete Institute (ACI), 2011, ACI Manual of Concrete Practice.
- American Society for Testing and Materials (ASTM), 2010, Annual Book of ASTM Standards, Section 4 Construction: Volumes 04.02, 04.08, and 04.09.
- Bell, J.W., and J.G. Price, 1991, Subsidence-Related Faults and Fissures of the Las Vegas Valley Map; Nevada Bureau of Mined and Geology, Scale 1:62,500.
- Bell, J.W., and J.G. Price, 1993, Subsidence in Las Vegas Valley, 1980-91, Final Project Report; Nevada Bureau of Mines and Geology, Open-File Report 93-4.
- Cibor, Joseph M., Geotechnical Considerations of Las Vegas Valley.
- Clark County Building Department (CCBD), and Nevada Bureau of Mines and Geology (NBMG), 1998, Clark County Soil Guidelines Map: Revision Number 1, dated May 1.
- Clark County Department of Development Services-Building Division (CCDDS) and the Nevada Bureau of Mines and Geology, 2006, Clark County Expansive Soil Guidelines Map: dated September 5.
- Clark County Geographic Information Systems Management Office (GISMO), 2008, Open Web Info Mapper, http://gisgate.co.clark.nv.us/openweb/asp/openweb.asp.
- dePolo, C.M. and J.W. Bell, 2000, Map of Faults and Earth Fissures in the Las Vegas Area, Nevada Bureau of Mines and Geology prepared in cooperation with Las Vegas Valley Water District: Plate 1.
- Geotechnical & Environmental Services, Inc., proprietary in-house data.
- Google Earth, Imagery date May 09, 2018 at approximate location 36.27791, -115.26054, accessed on December 13, 2018.
- Hannigan, P.J., G.G. Goble, Thendean, G., Likins, G.E., and F. Rausche, 2006, Design and Construction of Driven Pile Foundation, FHWA-NHI-05-042 and NHI-05-043, Federal Highway Administration, U.S. Department of Transportation, Washington, DC, Vols, I and II: Dated April.
- Louie, J. N., S. K. Pullammanappallil, A. Pancha, T. West, and W. K. Hellmer, 2011, Earthquake hazard class mapping by parcel in Las Vegas Valley: Proceedings, ASCE Structures Congress, Las Vegas, doi:10.1061/41171(401)156.
- Bell, J.W., et al., 1998, Geologic Map of the Tule Springs Park Quadrangle, Nevada, Nevada Bureau of Mines and Geology Las Vegas Area prepared in Cooperation with The U.S. Geological Survey: Map 113, Scale 1:24,000.

Nevada Bureau of Mines and Geology, Las Vegas Valley Subsidence Project, 1991, Subsidence-Related Faults and Fissures of the Las Vegas Valley Map, Plate 2: June, Scale 1:62,500.

Nevada Department of Transportation (NDOT), 2014, Standard specifications for Road and Bridge Construction

- Occupational Safety and Health Administration (OSHA), 2002, OSHA Standards for the Construction Industry, 29 CFR Part 1926.
- Regional Transportation Commission of Southern Nevada Specifications Subcommittee (RTCSS), 2003, Uniform Standard Specifications for Public Works Construction, Off-Site Improvements (USS), Clark County Area, Nevada: Third Edition, current revision.
- Southern Nevada Building Officials, 2012, Southern Nevada Amendments to the 2012 International Building Code: dated August 20, 2013.
- State of Nevada Department of Conservation & Natural resources, Division of Water Resources, Well Log Database: http://water.nv.gov/engineering/wlog/wlog.cfm.
- United States Geological Survey (USGS), Quaternary Faults and Folds Database of the United States: http://earthquake.usgs.gov/qfaults/.

APPENDIX A SUBSURFACE STUDY


LAS	VEGAS	NEVADA
LAO	VLOAD,	

www.gesnevada.com

J:\GES\Clients\Las Vegas Office\Projects\2017_Projects\20174206\E2 (Sky Pointe Ped. Bridge)\ArcGIS

20174206E2

A-1

J:\GES\Clients\Las Vegas Office\Projects\2017_Projects\20174206\E2 (Sky Pointe Ped. Bridge)\ArcGIS

J:\GES\Clients\Las Vegas Office\Projects\2017_Projects\20174206\E2 (Sky Pointe Ped. Bridge)\ArcGIS

KEY TO SYMBOLS AND TERMS

Terms used according to the Unified Soil Classification System

Consistency or Condition of Soils

Fine-Grained Soils (Silt and Clay): Major portion passing #200 sieve

California Sampler* (blows/foot)	SPT** (blows/foot)	Relative Consistency	Unconfined Compressive Strength (tsf)	Manual Manipulation
< 2 2-5 5-10 10-20	< 2 2-4 4-8 8-15	Very Soft Soft Firm Stiff	< 0.25 0.25-0.50 0.50-1.00 1.00-2.00	Thumb will penetrate soil more than 1 in. Thumb will penetrate soil about 1 in. Thumb will penetrate soil about $\frac{1}{4}$ in. Thumb will not indent soil but readily indented
>20	>15	Very Stiff	>2.00	with thumbnail. Thumbnail will not indent soil.

*ASTM D3550 using a 140-pound hammer falling 30 inches. **ASTM D1586

Coarse-Grained Soils (Sand and Gravel): Major portion retained on #200 sieve

Modified California Sampler* (blows/foot)	SPT** blows/foot)	Relative Density	Behavior of $\frac{1}{2}$ -inch Diameter Probe Rod
0-7	0-4	Very Loose	Easily penetrated when pushed by hand.
7-18	4-10	Loose	Firmly penetrated when pushed by hand.
18-50	10-30	Medium Dense	Easily penetrated when driven by 1 lb. hammer.
50-90	30-50	Dense	Penetrated less than 1 inch when driven with a 1 lb. hammer.
>70	>50	Very Dense	Penetrated less than $\frac{1}{4}$ inch when driven with a 1 lb. hammer.

*ASTM D3550 using a 140-pound hammer falling 30 inches.

**ASTM D1586

Cementation	Characteristic
Weak	Crumbles or breaks with handling or little finger pressure.
Moderate	Crumbles or breaks with considerable finger pressure.
Strong	Will not crumble or break with finger pressure.

Hardness	Characteristic
Moderately Hard	Can be readily scratched by a knife blade; scratch leaves a heavy trace of dust and scratch is readily visible after the powder has been blown away.
Hard	Can be scratched with difficulty; scratch produces little powder and is often faintly visible; traces of the knife steel may be visible.
Verv Hard	Cannot be scratched with pocket knife. Leave knife steel marks on surface.

	Misc. Symbols	Constituent Percentages	Moisture Condition	
__	Exploration continues	Trace - < 5%	Dry - Absence of moisture,	CALI - Caliche
		Few - 5 to 10%	dusty, dry to the touch	Soil Sampler Symbols
<u>–</u>	Initial groundwater depth	Little - 15-25%	Moist - Damp but no visible water	Air Knife
<u> </u>	Measured groundwater depth	Some - 30-45%		Bulk Sample
	(after 24 hours or more)	Mostly - 50-100%	Wet - Visible free water, usually soil is below water table	California Sampler
No	tes			

1. Subsurface explorations were performed using the equipment listed on the exploration logs.

2. Subsurface explorations were performed on the date(s) shown on the exploration logs.

Soil sampler(s) were driven with a 140 pound hammer falling 30 inches (unless otherwise noted in the text of this report).
 The transitional between soil trans above on the surplustice last as a source of the surplust and the text of the surplust and the surplust and the surplust as the surpl

4. The transitions between soil types shown on the exploration logs as occuring abruptly at particular depths may in actuality be a gradual progression from one soil type to the next.

5. Exploration logs are subject to the limitations, conclusions, and recomendations presented in this report.

Disclaimer

This Key to Symbols and Terms is part of a report prepared by Geotechnical & Environmental Services, Inc. and should be used with the report. The descriptions on the exploration logs apply only at the specific exploration locations and at the time the explorations were made. They are not warranted

to be representative of subsurface conditions at other locations or times.

Standard Penetration Test

Core Barrel

Shelby Tube

Strata Group Symbols

Concrete CL- Low plasticity

clay

clay

ML - Silt

AC - Asphalt Concrete

CH - High plasticity

CL-ML - Silty low plasticity clay

MH - Elastic silt

SC - Clayey sand

SM - Silty sand

sand

sand

gravel

gravel

and gravel

SP - Poorly graded

SW - Well - graded

GC - Clayey Gravel

GM - Silty gravel

GP - Poorly graded

GW - Well - graded

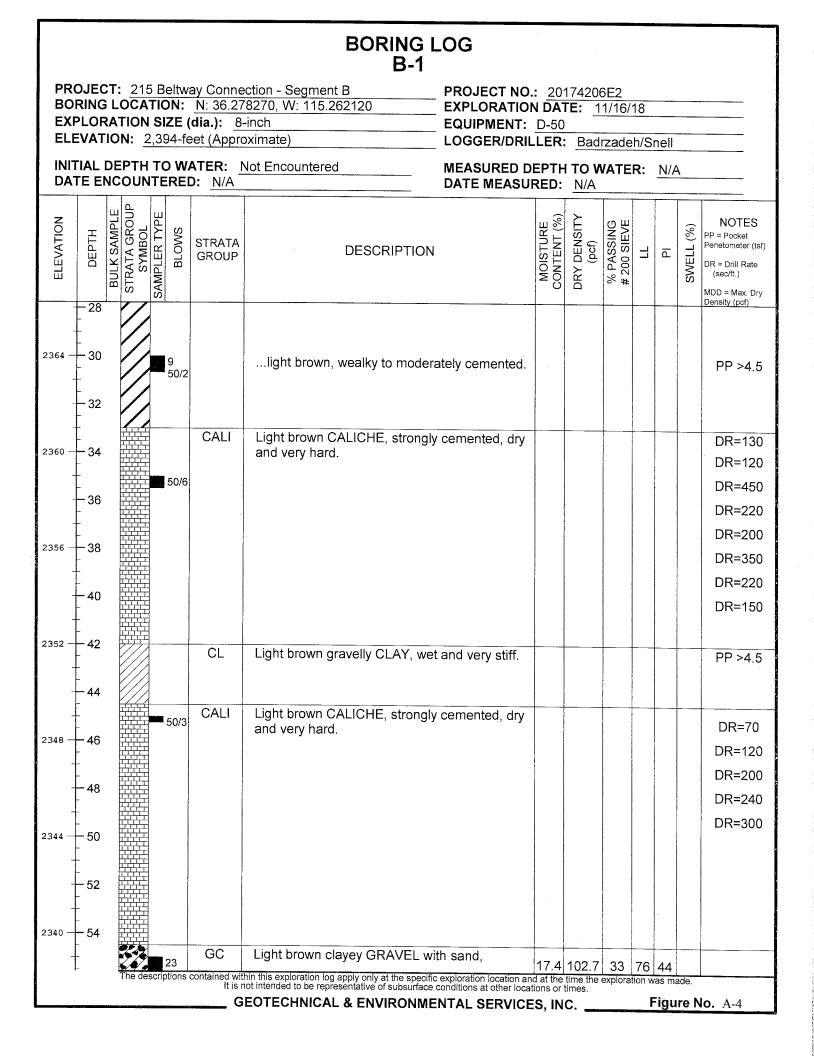
CG - Cemented sand

PCC - Portland Cement

PROJECT: 215 Beltway Connection - Segment B BORING LOCATION: N: 36.278270, W: 115.262120

EXPLORATION SIZE (dia.): 8-inch

ELEVATION: 2,394-feet (Approximate)


PROJECT NO.: 20174206E2

EXPLORATION DATE: 11/16/18 EQUIPMENT: D-50

LOGGER/DRILLER: Badrzadeh/Snell

INITIAL DEPTH TO WATER: Not Encountered DATE ENCOUNTERED: N/A

			JUNI			<u></u>			<u></u>					
ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL SAMPIER TVPE	BLOWS	S G	TRATA	DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE		P	Ľ	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
- 2392 —	0 2	N				CL	NATIVE: Dark brown lean CLAY with gravel and moist.	10.7						
- - 2388 —	- 4 			7 9 11	1		brown to dark brown and very stiff.	14.7	105.1					PP >4.5
- - 2384	- 8 8 			9			with caliche nodules and caliche gravel,							PP >4:5
	- 			9 11 16			weakly cemented.							FF 24.0
2380 —	- 14 			21 15 12	C	CL-ML	gravelly. Brown to white silty CLAY with sand, gravel and gypsum powder, moist and very stiff.	d						PP >4.5
_ 2376 — _	- 18													
- - 2372 —	- 20			8 14 17		SC	Brown to light brown clayey SAND with gravel, moist and medium dense.	10.2	107.1	31	42	19		
-	- - 	17 17 17 17 17 17 17 17 17 17 17 17 17 1		4.4					-					
2368 —	- 26		The deep	14 10 10		CH	Brown gravelly fat CLAY, dry and very stiff.		100.3		tion			PP >4.5
							hin this exploration log apply only at the specific exploration location a of intended to be representative of subsurface conditions at other loc EOTECHNICAL & ENVIRONMENTAL SERVIC			exhiols				lo. A-4
								, -						

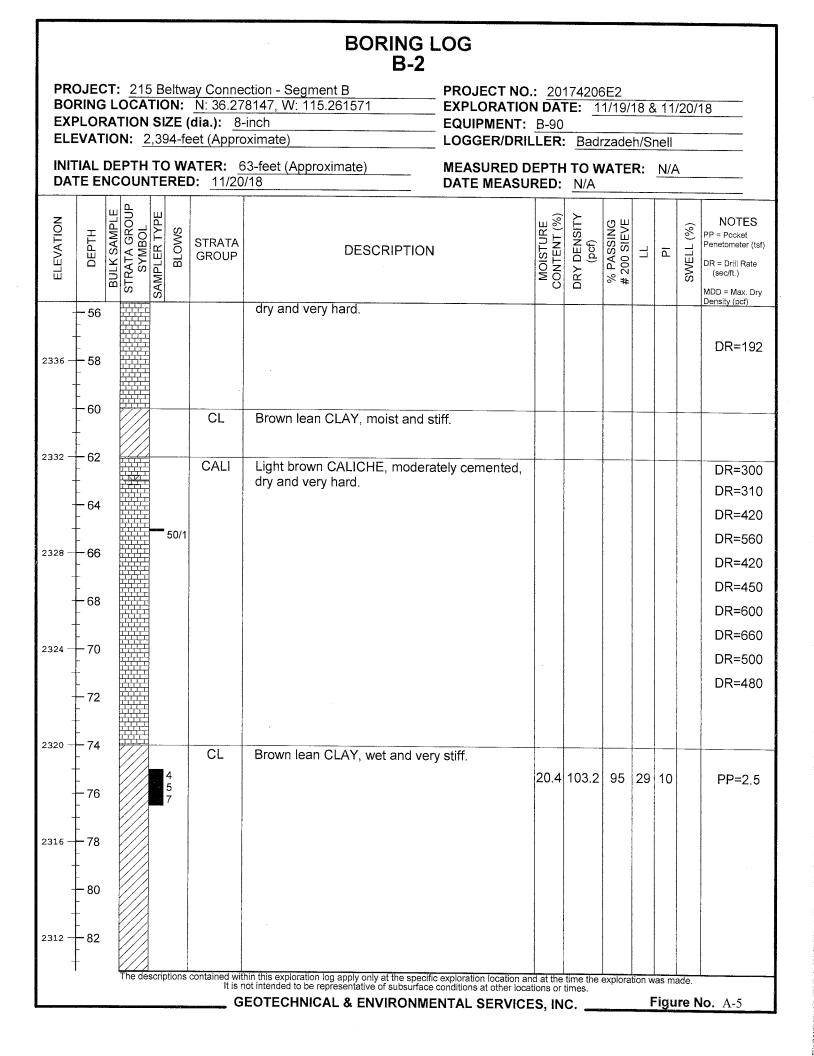
BORING LOG B-1 PROJECT: 215 Beltway Connection - Segment B PROJECT NO.: 20174206E2 BORING LOCATION: N: 36.278270, W: 115.262120 EXPLORATION DATE: 11/16/18 EXPLORATION SIZE (dia.): 8-inch EQUIPMENT: D-50 **ELEVATION:** 2,394-feet (Approximate) LOGGER/DRILLER: Badrzadeh/Snell **INITIAL DEPTH TO WATER:** Not Encountered MEASURED DEPTH TO WATER: N/A DATE ENCOUNTERED: N/A DATE MEASURED: N/A STRATA GROUP ш SAMPLER TYPE DRY DENSITY (pcf) MOISTURE CONTENT (%) % PASSING # 200 SIEVE ELEVATION BULK SAMPL NOTES % DEPTH BLOWS SYMBOL PP = Pocket STRATA SWELL (Penetometer (tsf) DESCRIPTION ā GROUP DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf) weakly to moderately cemented, dry and very 56 21 stiff. 2336 - 58 60 CALI Light brown CALICHE, strongly cemented, dry and very hard. DR=840 2332 62 DR=1200 DR=1200 64 DR=900 50/0 DR=1000 END OF BORING AT 65.5 FEET 2328 66 68 2324 -- 70 72 2320 -74 76 2316 -<u>⊢78</u> 80 2312 -- 82 The descriptions contained within this exploration log apply only at the specific exploration location and at the time the exploration was made. It is not intended to be representative of subsurface conditions at other locations or times. **GEOTECHNICAL & ENVIRONMENTAL SERVICES, INC.** Figure No. A-4

PROJECT: 215 Beltway Connection - Segment B BORING LOCATION: N: 36.278147, W: 115.261571 EXPLORATION SIZE (dia.): 8-inch

ELEVATION: 2,394-feet (Approximate)

INITIAL DEPTH TO WATER: 63-feet (Approximate) DATE ENCOUNTERED: 11/20/18 PROJECT NO.: 20174206E2

EXPLORATION DATE: <u>11/19/18 & 11/20/18</u> EQUIPMENT: B-90


LOGGER/DRILLER: Badrzadeh/Snell

ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP	DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE		ā	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
2392	0 2 					CL	<u>NATIVE</u> : Dark brown lean CLAY with gravel and dry.							
2388	- 4 - 6				5 8 7		dark brown to brown, stiff.	10.3	97.6					PP >4.5
- 2384				7	9 10 8		brown.							PP >4.5
2380 —	- - - - - - - - - - - - - - - - - - -				0									
2376 —	- 				12 9 9		sandy lean clay	10.1	91.2		36	14		PP >4.5
	- 				11 12 10	SC	Light brown to white clayey SAND with gravel, dry and medium dense.	11.5	87.3	34	52	44		PP >4.5
	- 				6 11	CL	Brown lean CLAY with gravel, dry and very stiff.					and the second se		
2368	26 		The de		11		hin this exploration log apply only at the specific exploration location an not intended to be representative of subsurface conditions at other loca EOTECHNICAL & ENVIRONMENTAL SERVICE			explora	tion v	vas m	ade.	lo. A-5

BORING LOG **B-2** PROJECT: 215 Beltway Connection - Segment B PROJECT NO.: 20174206E2 BORING LOCATION: N: 36.278147, W: 115.261571 EXPLORATION DATE: 11/19/18 & 11/20/18 EXPLORATION SIZE (dia.): 8-inch EQUIPMENT: B-90 **ELEVATION:** 2,394-feet (Approximate) LOGGER/DRILLER: Badrzadeh/Snell **INITIAL DEPTH TO WATER:** 63-feet (Approximate) MEASURED DEPTH TO WATER: N/A DATE ENCOUNTERED: 11/20/18 DATE MEASURED: N/A STRATA GROUP SYMBOL BULK SAMPLE MOISTURE CONTENT (%) DRY DENSITY (pcf) SAMPLER TYPE % PASSING # 200 SIEVE ELEVATION NOTES BLOWS DEPTH (%) PP = Pocket STRATA Penetometer (tsf) SWELL DESCRIPTION Ⅎ ā GROUP DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf) - 28 - 30 2364 -24 ...light brown, gravelly and wet. 50/4GC Light brown clayey GRAVEL, moderately cemented, moist and very dense. 32 CALI Light brown CALICHE, strongly cemented, dry DR=60 and very hard. 2360 34 50/1 DR=185 36 CL-ML Light brown gravelly silty CLAY, moist and very stiff. 2356 38 40 16.8 106.2 11 14 CH Light brown fat CLAY with yellowish smears, PP=4.5 weakly to moderately cemented, moist and very 2352 -42 stiff. 44 CALI Light brown CALICHE, strongly cemented, dry and very hard. 12 SC 17.3 40 80 49 13 Brown to light brown clayey SAND with gravel, 2348 46 14 moist and very stiff. 48 CALL Light brown CALICHE, strongly cemented, dry and very hard. DR=240 CI Light brown lean CLAY with gravel, weakly 50 2344 3 cemented, moist and very stiff. 4 PP=4.5 30 52 2340 -- 54 50/4 CALI Light brown CALICHE, moderately cemented DR=150 The descriptions contained ed within this exploration log apply only at the specific exploration location and at the time the exploration was made It is not intended to be representative of subsurface conditions at other locations or times.

GEOTECHNICAL & ENVIRONMENTAL SERVICES, INC.

Figure No. A-5

	BORING LOG B-2																		
PROJECT:215 Beltway Connection - Segment BPROJECT NO.:20174206E2BORING LOCATION:N: 36.278147, W: 115.261571EXPLORATION DATE:11/19/18 & 11/20/18EXPLORATION SIZE (dia.):8-inchEQUIPMENT:B-90ELEVATION:2,394-feet (Approximate)LOGGER/DRILLER:Badrzadeh/Snell																			
	INITIAL DEPTH TO WATER: 63-feet (Approximate) MEASURED DEPTH TO WATER: N/A DATE ENCOUNTERED: 11/20/18 DATE MEASURED: N/A																		
ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP			DES	CRIPTIO	N		MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE	ΓΓ	đ	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
2308 —	- 84 						with	sand.											PP=3.0
	308 86 10 PP=3.0 END OF BORING AT 86.5 FEET																		
2304	88 90																		
-	- - - - - - -																		
2300 —	 94 																		
2296 —	- 98 																		
-	- 10(- -	כ																	
2292 -	- 102 -																		
2288 —	- 104 - - - 106 -																-		
-	- - 108 -	3																-	
2284 —	_ 11(<i>*</i>											-	
ŀ			The de	escrip	otions							exploration location and anditions at other loca ITAL SERVICI							lo. A-5

PROJECT: 215 Beltway Connection - Segment B BORING LOCATION: N: 36.278149, W: 115.261232

EXPLORATION SIZE (dia.): 8-inch

ELEVATION: 2,396-feet (Approximate)

Т

PROJECT NO.: 20174206E2

EXPLORATION DATE: 11/15/18 EQUIPMENT: D-50

LOGGER/DRILLER: Badrzadeh/Luis-Sanchez

INITIAL DEPTH TO WATER: Not Encountered

ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP	DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE	LL	Ē	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Densiti. (ref.)
2396	- 2			1.	11	CL	NATIVE: Dark brown sandy lean CLAY and dry. with trace gravel, weakly cemented and very stiff.	9.3	104.8					PP>4.5
- 2388	- - - - - -				19									
- - 2384 — -	- 10 - - - 12 -				10 10 10	GC	Brown clayey GRAVEL with caliche nodules, dry and medium dense.	12.7	99.8	46	31	14		
2380 —	- 14				23 23 24		with sand and dense.	2.8	119.7					
	- 18				10									
	- 22				16 28 37	CL	Light brown lean CLAY with gravel, weakly to moderately cemented, dry and very stiff.							PP >4.5
2372	- - 24 - - - 26				10 17 21	GC	Brown clayey GRAVEL with caliche nodules, dry and medium dense to dense.	8.3	103.2	21	28	10		
		T	he des				in this exploration log apply only at the specific exploration location an ot intended to be representative of subsurface conditions at other locat EOTECHNICAL & ENVIRONMENTAL SERVICE			explora				lo. A-6

 PROJECT:
 215 Beltway Connection - Segment B

 BORING LOCATION:
 N: 36.278149, W: 115.261232

EXPLORATION SIZE (dia.): 8-inch

ELEVATION: 2,396-feet (Approximate)

PROJECT NO.: 20174206E2

EXPLORATION DATE: 11/15/18

EQUIPMENT: D-50

LOGGER/DRILLER: Badrzadeh/Luis-Sanchez

INITIAL DEPTH TO WATER: Not Encountered DATE ENCOUNTERED: N/A

	_ · · · · · · · · · · · · · · · · · · ·					······								
ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP	DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE		đ	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
2368	- 28	× , , , , , , , , , , , , , ,			15	SC	Brown clayey SAND with gravel, slightly moist and dense.	25.3	90.6	24	75	48		
- 2364 — -	- 32				18 27		Light brown CALICUT strength second by							
-	- 34				50/2	CALI	Light brown CALICHE, strongly cemented, dry and very hard.							DR = 345 DR = 450
2360	- 36 - - - 38													DR = 316
- 2356 — -	- 40 				23 27 36	CL	Light brown lean CLAY with gravel, dry and very stiff.							PP>4.5
- 2352 —	- 42 - - - 44													
	- 46				30 24 19		gravelly, weakly cemented.	8.8	106.5					
- 2348	48													
- 2344 —	50				50/1	GC	Brown clayey GRAVEL, moderately cemented, dry and very dense.							DR = 136
-	- - - - 54					CL	Brown gravelly lean CLAY, dry, and very stiff.							
-	╞		he des		28 otions	contained wit	hin this exploration log apply only at the specific exploration location ar not intended to be representative of subsurface conditions at other loca	d at the	time the	explora	tion w	/as m	ade.	DR = 600
							not intended to be representative of subsurface conditions at other loca EOTECHNICAL & ENVIRONMENTAL SERVICE							lo. A-6

PROJECT: 215 Beltway Connection - Segment B BORING LOCATION: N: 36.278149, W: 115.261232 EXPLORATION SIZE (dia.): 8-inch

PROJECT NO.: 20174206E2

EXPLORATION DATE: <u>11/15/18</u> EQUIPMENT: D-50

ELEVATION: 2,396-feet (Approximate)

LOGGER/DRILLER: Badrzadeh/Luis-Sanchez

Daulzaden/Luis-Sanche

INITIAL DEPTH TO WATER: Not Encountered DATE ENCOUNTERED: N/A

	1	7	1	7	1	1								
ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	SAMPLER TYPE		STRATA GROUP	DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE	LL L	ā	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
2340 -	- 56				50/1	CALI	Brown CALICHE, strongly cemented, dry and very hard.							
														DR = 1800 DR = 2300
	-													DR = 2300
2336	60										E 1			DR = 840
-	F													DR = 1600 DR = 1600
-	- 62 -													DR = 650
2332 —	- - 64								:					DR = 960
-	-													DR = 1560
· -	66													DR = 1080
-	-							1 2			,			DR = 3000
2328	68													DR = 2160
_	- - 70			<u> </u>	50/0	· · · · · · · · · · · · · · · · · · ·	Practical auger refusal at 69.5 feet. END OF BORING AT 69.5 FEET	+						
-	- 70	1												
2324 —	- 72													
-)- 													
-	- 74 -													
- 2320 -	+ - 76													
-										3				1
-	- 78													
-	+													
2316 —	- 80 -													
-	- 82													
-	+													
	•	Ļ	The de	scri	ptions	contained wit It is r	hin this exploration log apply only at the specific exploration location ar tot intended to be representative of subsurface conditions at other loca	id at the tions or	time the times	L explora	ition w	l /as m	ade.	<u> </u>
						G	EOTECHNICAL & ENVIRONMENTAL SERVICE	S IN			I	Fiau	re N	lo. A-6

PROJECT: 215 Beltway Connection - Segment B BORING LOCATION: N: 36.2779066, W: 115.2605376

EXPLORATION SIZE (dia.): 8-inch

ELEVATION: 2,388-feet (Approximate)

PROJECT NO.: 20174206E2

EXPLORATION DATE: 11/12/18

EQUIPMENT: D-50

LOGGER/DRILLER: Solares/Snell

INITIAL DEPTH TO WATER: Not Encountered DATE ENCOUNTERED: N/A

MEASURED DEPTH TO WATER: <u>N/A</u> DATE MEASURED: N/A

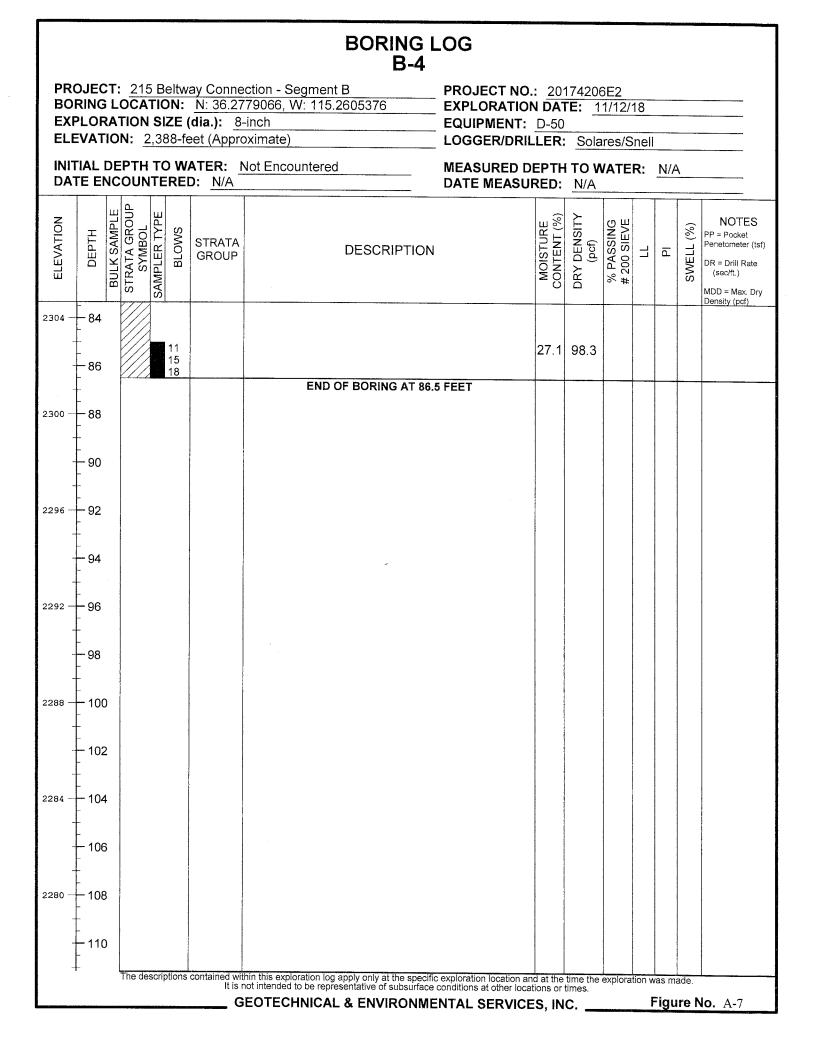
STRATA GROUP SYMBOL MOISTURE CONTENT (%) DRY DENSITY (pcf) SAMPLER TYPE % PASSING # 200 SIEVE ELEVATION NOTES BULK SAMPL DEPTH BLOWS % PP = Pocket STRATA Penetometer (tsf) SWELL DESCRIPTION Ы GROUP DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf) 2388 0 CL NATIVE: 5.1 Dark brown lean CLAY and dry. 2 2384 4 ...brown, gravelly, dry and very stiff. 12 12 6 2380 -8 10 15 25 GC Light brown clayey GRAVEL, moist and medium dense. 2376 12 14 ...gravel >2" in diameter. 16 7.4 94.7 18 2372 -- 16 24 18 2368 20 14 ...white, increase in gravel amount. 22 2364 24 CL Light brown lean CLAY with gravel, moist and very stiff. 9 21.4 94.9 14 26 26 The descriptions contained within this exploration log apply only at the specific exploration location and at the time the exploration was made. It is not intended to be representative of subsurface conditions at other locations or times. GEOTECHNICAL & ENVIRONMENTAL SERVICES, INC. Figure No. A-7

							BORING B-4	LOG							
BO EXI	PROJECT: 215 Beltway Connection - Segment B PROJECT NO.: 20174206E2 BORING LOCATION: N: 36.2779066, W: 115.2605376 EXPLORATION DATE: 11/12/18 EXPLORATION SIZE (dia.): 8-inch EQUIPMENT: D-50 ELEVATION: 2,388-feet (Approximate) LOGGER/DRILLER: Solares/Snell														
						ATER: <u>N</u> : <u>N/A</u>	Not Encountered	MEASURED D DATE MEASU			/ATE	R:	N/A	۸	
ELEVATION	DEPTH		STRATA GROUP SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP	DESCRIPTION		MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE	LL	Ē	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
2360	- 28 - 30 - 32				10 11 7		brown and gravelly.								PP>4.5
- - 2352	- 34				6 25 50/1		brown to light brown with gra	vel and sand.							DR = 156
- - 2348 —	- 				11	SC	Brown clayey SAND with grave	el moist and very	13.4	90.7	39	34	15		
- - 2344	- - - - - - - - - - - -				37 50/3		dense.		10.4	50.7	00	04	10		
-	- 46				10 12 47	CALI	Brown to light brown CALICHE weakly to moderately cemente	with gravel, d, moist and							DR = 600 DR = 480
2340	- 48 - - 50				50/3	CL	dense. Light reddish brown gravelly C cemented, moist and very stiff	LAY, weakly		<u>.</u>			-		DR = 600 DR = 240
- 2336 — -	- 52										1				
-	- 54 -		The de		50/4 tions	contained wit	hin this exploration log apply only at the specifion internet of subsurface	c exploration location ar	11.1	109.3 time the	explora	tion v	vas m	ade	
							not intended to be representative of subsurface EOTECHNICAL & ENVIRONMI								lo. A-7

PROJECT: 215 Beltway Connection - Segment B BORING LOCATION: N: 36.2779066, W: 115.2605376 EXPLORATION DATE: 11/12/18

EXPLORATION SIZE (dia.): 8-inch

ELEVATION: 2,388-feet (Approximate)


PROJECT NO.: 20174206E2

EQUIPMENT: D-50

LOGGER/DRILLER: Solares/Snell

INITIAL DEPTH TO WATER: Not Encountered DATE ENCOUNTERED: N/A

ELEVATION	DEPTH	BULK SAMPLE STRATA GROUP SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP	DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE	LL	Ы	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
2332 —	- 56				CALI	Brown CALICHE, moist, moderately to strongly							ponery (por)
	-					cemented and very hard.							00 - 100
-	- 58												DR = 180
-	-												DR = 240
2328 —	- 60												DR = 840
-													DR = 480
_	- 62												DR = 900
-	-												
2324	- 64				-		1						
	-												
	- 66			50/0			-						
													DR = 1800
2320 —	- 68							1					DR = 300
2320	- 00		-										DR = 180
	70												DR = 360
	- 70												DR = 240
- 2316 —	- 72				CL	Light brown lean CLAY, with gravel, wet and very firm.							
							5						
-	- 74 -			50/4	GC								
-	-				GC	Brown clayey GRAVEL, wet and very dense.							
2312 —	- 76 -												
-	-				CL	Brown sandy lean CLAY with multicolored nodules of cemented sand, moist and very stiff.							
-	- 78		1			· , · · · · · · · · · · · · · · · · · ·							
-													
2308 —	- 80												
-													
-	- 82												
		The de	scri	otions		hin this exploration log apply only at the specific exploration location an not intended to be representative of subsurface conditions at other locat			explora				L
						EOTECHNICAL & ENVIRONMENTAL SERVICE							lo. A-7

PROJECT: 215 Beltway Connection - Segment B BORING LOCATION: N: 36.27785, W: 115.2601621 EXPLORATION SIZE (dia.): 8-inch

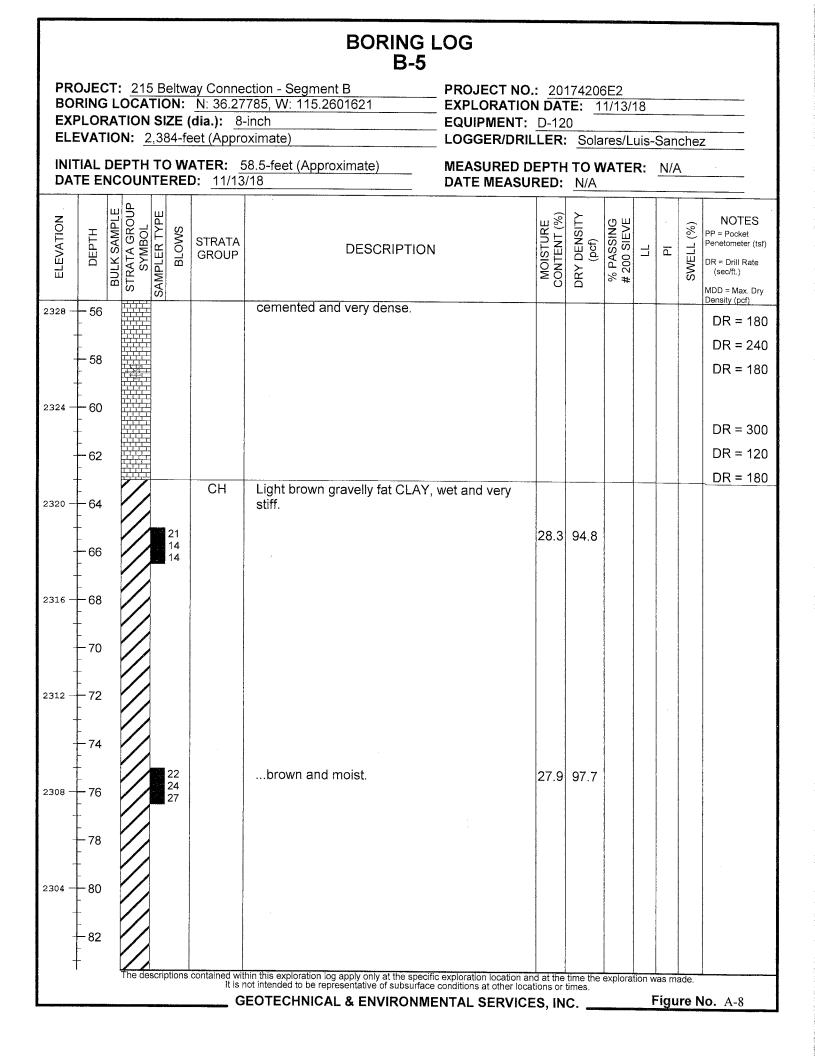
ELEVATION: 2,384-feet (Approximate)

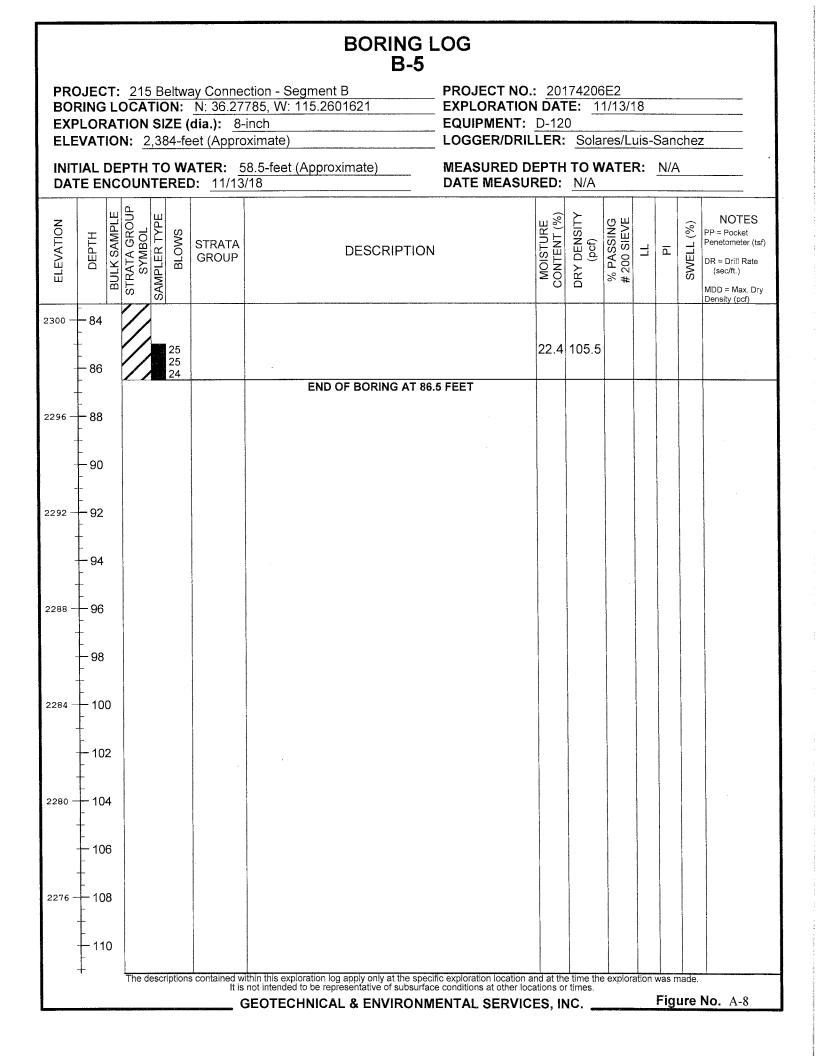
INITIAL DEPTH TO WATER: <u>58.5-feet (Approximate)</u> DATE ENCOUNTERED: <u>11/13/18</u>

PROJECT NO.: <u>20174206E2</u>

EXPLORATION DATE: 11/13/18

EQUIPMENT: D-120


LOGGER/DRILLER: Solares/Luis-Sanchez


MEASURED DEPTH TO WATER: N/A

DATE MEASURED: N/A

ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP	DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE		ā	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
2384	2					CL	<u>NATIVE</u> : Light brown sandy lean CLAY with gravel and dry.							
2380 —	- 4			÷.	12 22 22		brown and very stiff.							
2376	-													
- 2372	- 10 - - - 12 -				17 19 24		white to light brown, trace gravel and very stiff.	7.4	89.9	59	29	10		
	- 14 - -				19		gravelly and very stiff.	-						
2368 —	- 16 - - - 18				18 17									
2364 —	-				14 17 18	СН	Gray gravelly fat CLAY with white nodules, moist and very stiff.							
2360	- 22 - - - 24													
	- 26				50/4			-			and the second se	and a summary supervised ways where a standard standard standard standard standard standard standard standard s		
		Ţ	The de	scrip	otions		nin this exploration log apply only at the specific exploration location are of intended to be representative of subsurface conditions at other loca EOTECHNICAL & ENVIRONMENTAL SERVICE				ition v	vas m Ficu	ade. Ire N	lo. A-8

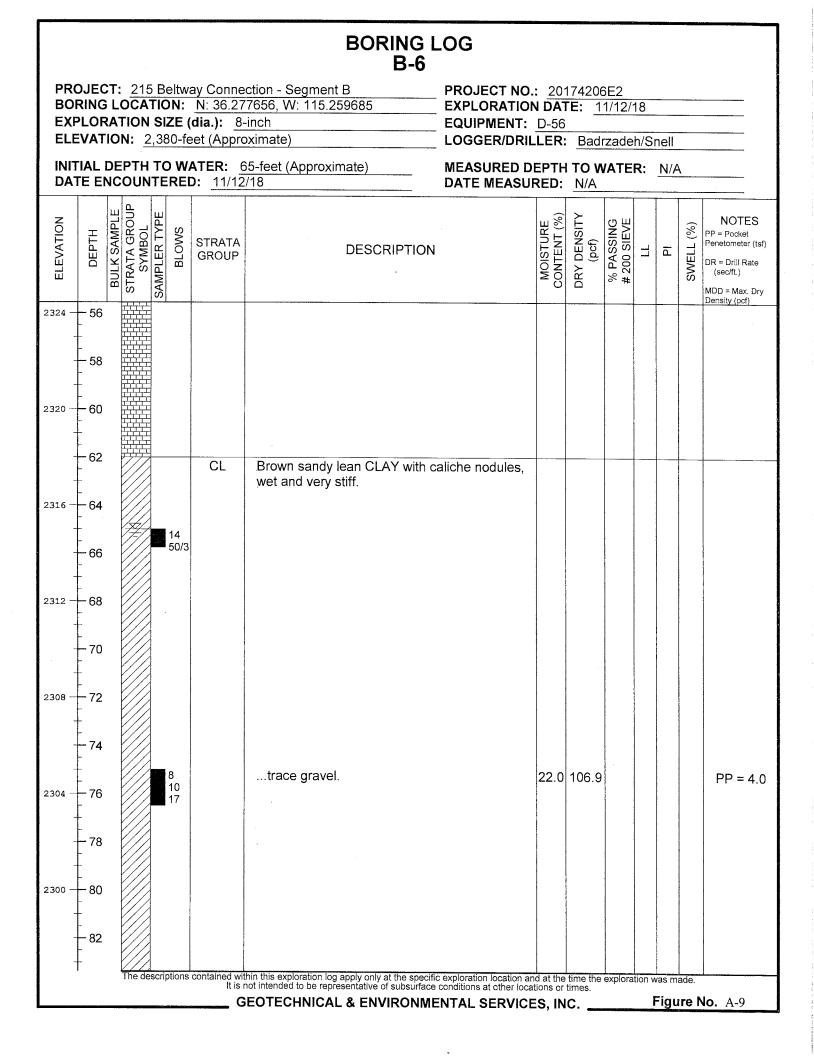
BORING LOG B-5 PROJECT: 215 Beltway Connection - Segment B PROJECT NO .: 20174206E2 BORING LOCATION: N: 36.27785, W: 115.2601621 EXPLORATION DATE: 11/13/18 EXPLORATION SIZE (dia.): 8-inch EQUIPMENT: D-120 **ELEVATION:** 2,384-feet (Approximate) LOGGER/DRILLER: Solares/Luis-Sanchez MEASURED DEPTH TO WATER: N/A **INITIAL DEPTH TO WATER:** 58.5-feet (Approximate) DATE ENCOUNTERED: 11/13/18 DATE MEASURED: N/A STRATA GROUP SYMBOL BULK SAMPLE DRY DENSITY (pcf) SAMPLER TYPE MOISTURE CONTENT (%) % PASSING # 200 SIEVE ELEVATION NOTES BLOWS DEPTH (%) PP = Pocket STRATA Penetometer (tsf) SWELL DESCRIPTION Ц Ē GROUP DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf) 2356 28 30 22 31 GW-GC Light brown and white well-graded GRAVEL 6.2 109.7 with clay and sand, moist and dense. 50/5 2352 - 32 CALI Gray to brown CALICHE, moist, moderately to DR = 420strongly cemented and very hard. DR = 180 34 DR = 180 25 34 CL Dark brown gravelly lean CLAY with sand, 2348 -- 36 moist and very stiff. 46 38 ...frequent gravel. 2344 40 46 ...brown. 43 38 42 2340 44 50/1 46 ...increased gravel amount. 2336 -48 SC Light brown clayey SAND with gravel, moist and dense. 50 12 30.5 87.5 18 73 40 28 17 2332 -52 54 50/1 CALI Brown CALICHE, moist, moderately to strongly The descriptions contained within this exploration log apply only at the specific exploration location and at the time the exploration was made It is not intended to be representative of subsurface conditions at other locations or times. **GEOTECHNICAL & ENVIRONMENTAL SERVICES, INC.** Figure No. A-8

PROJECT: 215 Beltway Connection - Segment B BORING LOCATION: N: 36.277656, W: 115.259685 EXPLORATION SIZE (dia.): 8-inch

ELEVATION: 2,380-feet (Approximate)

INITIAL DEPTH TO WATER: 65-feet (Approximate) DATE ENCOUNTERED: 11/12/18

PROJECT NO.: 20174206E2


EXPLORATION DATE: <u>11/12/18</u> EQUIPMENT: D-56

LOGGER/DRILLER: Badrzadeh/Snell

ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	SAMPLER TYPE		STRATA GROUP	DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE	ΓΓ	æ	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
2380	-2					SC	<u>NATIVE</u> : Brown clayey SAND with gravel and dry.	5.2						Denary (por)
2372				12 16 23	2	ML	Light brown sandy SILT, dry and very stiff.							PP = 4.5
	- 			6 9 13		CL-ML	Light brown clayey SILT with sand, dry and very stiff.							PP >4.5
2364 —				12 21 47		ML	Light brown SILT, dry and very stiff.	6.4	92.0	96	NV	NP		PP >4.5
2360	- 18 			19 23 37		CL-ML	Light brown to white silty CLAY with gravel, dry and very dense.							PP >4.5
2356	- 			18 20 35		CL	Brown to white lean CLAY with gravel, sand							PP >4.5
	- 26		he desc	35		ontained with It is n	Brown to white lean CLAY with gravel, sand and caliche nodules, weakly cemented, dry and very stiff. in this exploration log apply only at the specific exploration location an ot intended to be representative of subsurface conditions at other locat EOTECHNICAL & ENVIRONMENTAL SERVICE	d at the	time the times.	explora				PP >4.5

						· · · · · · · · · · · · · · · · · · ·	BORING L B-6	.OG							
BOI EXF	ring Plof	i LC RAT		TIC SI)N: ZE (ay Conne <u>N: 36.27</u> dia.): <u>8-</u> eet (Appro	ction - Segment B 7656, W: 115.259685 inch	PROJECT NO. EXPLORATION EQUIPMENT: LOGGER/DRIL	D-56	FE: <u>1</u>	1/12/		nell		
INIT DAT	IAL FE EI		PTH DUN	TC TE	RE	ATER: 6 D: <u>11/12</u>	5-feet (Approximate) /18	MEASURED D			/ATE	R:	<u>N/A</u>	۹	
ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP	DESCRIPTION		MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE		Ы	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
2352	- 28		\Box				, , , , , , , , , , , , , , , , , , ,								Density (pcr)
- 2348 —	- - - - - - - - - - - - - - - - - - -	уууданан			50/2	CALI	Light brown to white CALICHE, cemented, dry and hard.	strongly							
- -	- 34	-				CL	Brown gravelly lean CLAY, dry very stiff.	to moist and							
2344 —	- 36 -				15 20 34				11.2	109.3	-				PP >4.5
-	- 	ATH FLF				CALI	Light brown to white CALICHE, cemented, dry and hard.	•••							DR = 90
- 2340 —	- 40				44 50/3	CL	Light brown to white lean CLAY nodules, weakly to moderately moist and very stiff.	cemented, dry to)						
	- 	A H H H H H H H			50/5	CALI	Light brown CALICHE, strongly and very hard.	cemented, dry							PP >4.5 DR = 110
2336 —	- 44 - - - - 46				14 11	GC	Light brown clayey GRAVEL wi and medium dense.	th sand, moist	21.5	92.1	21	97	60		
- 2332 —	- - - - 48				14		cobbles.					A Bootstander Warmen Barton and Martin Ba	1		
-	- 50				50/0	CALI	Light brown CALICHE, strongly	cemented, dry							DR = 480
- 2328 —	- 52 	JEDEDECHUE					and very hard.								DR = 480 DR = 1500
	- - 54 -	סאטאטאטאנאנ			50/2										DR = 1500 DR = 780
	-			eorin	tions	contained with	in this evolution los apply only of the	amlandi I "	<u> </u>						DR = 140
				Jorip			nin this exploration log apply only at the specific ot intended to be representative of subsurface EOTECHNICAL & ENVIRONME				explora				lo. A-9

PROJECT:215 Beltway Connection - Segment BBORING LOCATION:N: 36.277656, W: 115.259685EXPLORATION SIZE (dia.):8-inchELEVATION:2,380-feet (Approximate)

PROJECT NO.: 20174206E2

EXPLORATION DATE: 11/12/18

EQUIPMENT: D-56

LOGGER/DRILLER: Badrzadeh/Snell

INITIAL DEPTH TO WATER: <u>65-feet (Approximate)</u> DATE ENCOUNTERED: 11/12/18

		T		r. r		,								
ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP	DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE	μ	Ы	SWELL	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
	-		\square											Denaity (por)
2296	- 84 - - - 86				7 10 15			26.3	100.4					PP = 4.5
	-						END OF BORING AT 86.5 FEET							
2292	- 88 - -													
	- 90 - -													
2288	- 92 - -										2 - -			
	- 94 													
2284	- 96 													
	98 													
2280	- 100 - -)												
	- 102 - -	2						,						
2276	- 104 - -	ł									- - -			
	 106 - -									-				
2272	- 108 - - -													
	- 110 - -		The de	scrip	otions	contained wit	hin this exploration log apply only at the specific exploration location an not intended to be representative of subsurface conditions at other locat	d at the	time the	explora	tion w	/as ma	ade.	
						It is r	not intended to be representative of subsurface conditions at other locat	ions or	times.					
L				-		G	EOTECHNICAL & ENVIRONMENTAL SERVICE	S, IN	с		1	-igu	re N	lo. A-9

PROJECT: 215 Beltway Connection - Segment B BORING LOCATION: N: 36.277489, W: 115.259137

EXPLORATION SIZE (dia.): 8-inch.

ELEVATION: 2,377-feet (Approximate)

INITIAL DEPTH TO WATER: <u>69-feet (Approximate)</u> DATE ENCOUNTERED: <u>11/14/18</u>

PROJECT NO.: 20174206E2

EXPLORATION DATE: 11/13/18 & 11/14/18 EQUIPMENT: D-50 & D-120

LOGGER/DRILLER: Badrzadeh/Snell

MEASURED DEPTH TO WATER: N/A

DATE MEASURED: N/A

ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	BLOWS		DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE	L L	Ρ	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
2376 —	2				CL	<u>NATIVE</u> : Dark brown sandy lean CLAY, trace gravel and dry.							
- 2372	- 4			25 41 21		less sand and very stiff.	9.5		81	30	12	4	
- 2368 — -				30 29		brown to white, gravelly, weakly cemented and very stiff.							PP >4.5
2364 —	- 												11 - 4.0
2360	- 16			13 16 19		white, with caliche nodules, weakly cemented.	18.2	92.6					PP >4.5
	- 18 - - 20			12 18		brown to white, gravelly, weakly cemented.							
	- 22			28	CL-ML	Brown to white silty CLAY with gravel and caliche nodules, dry and very stiff.							PP >4.5
2352 —	- 26			10 12 22	CL	Whitish brown gravelly CLAY with sand, weakly cemented, dry and very stiff.	15.3	98.9					PP >4.5
		Ľ	The desc	ription		hin this exploration log apply only at the specific exploration location an tot intended to be representative of subsurface conditions at other locat EOTECHNICAL & ENVIRONMENTAL SERVICE			l explora				lo. A-10

PROJECT: 215 Beltway Connection - Segment B BORING LOCATION: N: 36.277489, W: 115.259137 EXPLORATION SIZE (dia.): 8-inch

ELEVATION: 2,377-feet (Approximate)

PROJECT NO.: 20174206E2

EXPLORATION DATE: <u>11/13/18 & 11/14/18</u> EQUIPMENT: <u>D-50 & D-120</u>

LOGGER/DRILLER: Badrzadeh/Snell

INITIAL DEPTH TO WATER: <u>69-feet (Approximate)</u> **DATE ENCOUNTERED:** 11/14/18

	· · · · ·				,									······
ELEVATION		BULK SAMPLE STRATA GROUP	SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP	DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE	٦Ţ	Ъ	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
 2348	- 28					SC	Brown clayey SAND with gravel, slightly moist and dense.							
-	- 30 -				22 23 50/4		light brown to white.	12.7	73.2	41	32	12		
-	- 32 -				50/4	CALI	Brown CALICHE, dry, strongly cemented and very hard.							DR = 156
2344	- 34					- - - - - - - - - - - - - - - - - - -								
- - 2340 —	- 36				32 25 13	CL	Brown gravelly lean CLAY with sand, dry and very stiff.							
	38 				- 400 - 10 - 10 - 10 - 10 - 10 - 10 - 10									
- 2336 —	- 40 			Į,	50/4	CALI	Brown CALICHE, dry, strongly cemented and very dense.							DR = 60
_	- 42 -													
- 2332 —	- - 44 -			 ę	50/1									DR = 1000
-	- 46 													DR = 1000 DR = 1050
- 2328 —	48 													
_	- 50				50/0									DR = 900 DR = 1100
- 2324 —	- 52					CL	Brown lean CLAY with gravel, moist and very stiff.							
-	- 54 -													
		Th	e des	cript	tions		nin this exploration log apply only at the specific exploration location and ot intended to be representative of subsurface conditions at other loca EOTECHNICAL & ENVIRONMENTAL SERVICE			explora	tion w	ias ma	ade. re N	o . A-10
	GEOTECHNICAL & ENVIRONMENTAL SERVICES, INC. Figure No. A-10													

PROJECT:215 Beltway Connection - Segment BBORING LOCATION:N: 36.277489, W: 115.259137EXPLORATION SIZE (dia.):8-inch

ELEVATION: 2,377-feet (Approximate)

PROJECT NO.: 20174206E2

EXPLORATION DATE: 11/13/18 & 11/14/18

EQUIPMENT: D-50 & D-120

LOGGER/DRILLER: Badrzadeh/Snell

INITIAL DEPTH TO WATER: <u>69-feet (Approximate)</u> **DATE ENCOUNTERED:** 11/14/18

ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP	DESCRIPTION	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	% PASSING # 200 SIEVE	LL	Ы	SWELL (%)	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
- 2320 — -	- 56													
2316	- 													
- - 2312 — -	- - 64 - - 66						gravelly lean CLAY.							
- 2308 —	- 68						wet.							
- 2304 —	- 70 - - - 72													
- - 2300 —	- 74 - 76						stiff.							
	- 78 - 78 - 80													
2296 - -	- 82		The de	scrip	otions	contained wit	more gravel. hin this exploration log apply only at the specific exploration location an not intended to be representative of subsurface conditions at other locat	d at the	time the	explora	tion w	as ma	ade.	
						G		ions or i S, IN	umes. C		F	igu	re N	lo. A-10

PROJECT: 215 Beltway Connection - Segment B BORING LOCATION: N: 36.277489, W: 115.259137 EXPLORATION SIZE (dia.): 8-inch

ELEVATION: 2,377-feet (Approximate)

PROJECT NO.: 20174206E2

EXPLORATION DATE: 11/13/18 & 11/14/18 EQUIPMENT: D-50 & D-120

LOGGER/DRILLER: Badrzadeh/Snell

INITIAL DEPTH TO WATER: <u>69-feet (Approximate)</u> **DATE ENCOUNTERED:** 11/14/18

ELEVATION	DEPTH	BULK SAMPLE	STRATA GROUP SYMBOL	SAMPLER TYPE	BLOWS	STRATA GROUP	MOISTURE CONTENT (%) PRY DENSITY (pcf) # 200 SIEVE	L	ā	SWEL	NOTES PP = Pocket Penetometer (tsf) DR = Drill Rate (sec/ft.) MDD = Max. Dry Density (pcf)
-	84								-		
2292							END OF BORING AT 85.0 FEET				
	86										
-	- 88										
2288 —	-										
_	- 90										
-	-										
2284 —	- 92										
	- 94										
-	-										
-	- 96								Ì		
2280 —	- 98										
_	- 90										
-	- 100)									
2276 —						-					
	- 102	2									
-	- 104										
2272 —	-										
_	- 106	;						1			
_											
	- 108 -	3									
2268 —	- 110										
	-		The i'								
			i ne des	script	lions (contained with It is r	nin this exploration log apply only at the specific exploration location and at the time the exploration intended to be representative of subsurface conditions at other locations or times.	on was	s ma	de.	a A 10
							EOTECHNICAL & ENVIRONMENTAL SERVICES, INC.	L I	yul		o. A-10

APPENDIX B LABORATORY TEST RESULTS Laboratory tests were conducted on representative soil samples for the purpose of classification and to evaluate their engineering and physical properties. The amount and selection of the types of testing for a given study are based on the geotechnical conditions of the project. A summary of the various laboratory tests conducted for this project are presented below.

1. IN-PLACE MOISTURE CONTENT AND DENSITY

The in-place moisture content and density of soil samples obtained from the borings were measured in general accordance with ASTM D2937. The in-place moisture content and density are a qualitative indication of soil consistency and compressibility. The results of these tests are presented on the boring logs in Appendix A (Figure A-4 through Figure A-10) at the respective sampling depths.

2. GRAIN SIZE DISTRIBUTION

Grain size distribution tests were performed by sieve analysis in general accordance with AASHTO T27. Soil samples are oven dried to a constant weight and sorted by a number of different sized sieves. The amount of material retained on each sieve is measured and the percent of material passing each sieve is evaluated. The test results are presented as particle size distribution curves on Figure B-1 through Figure B-4.

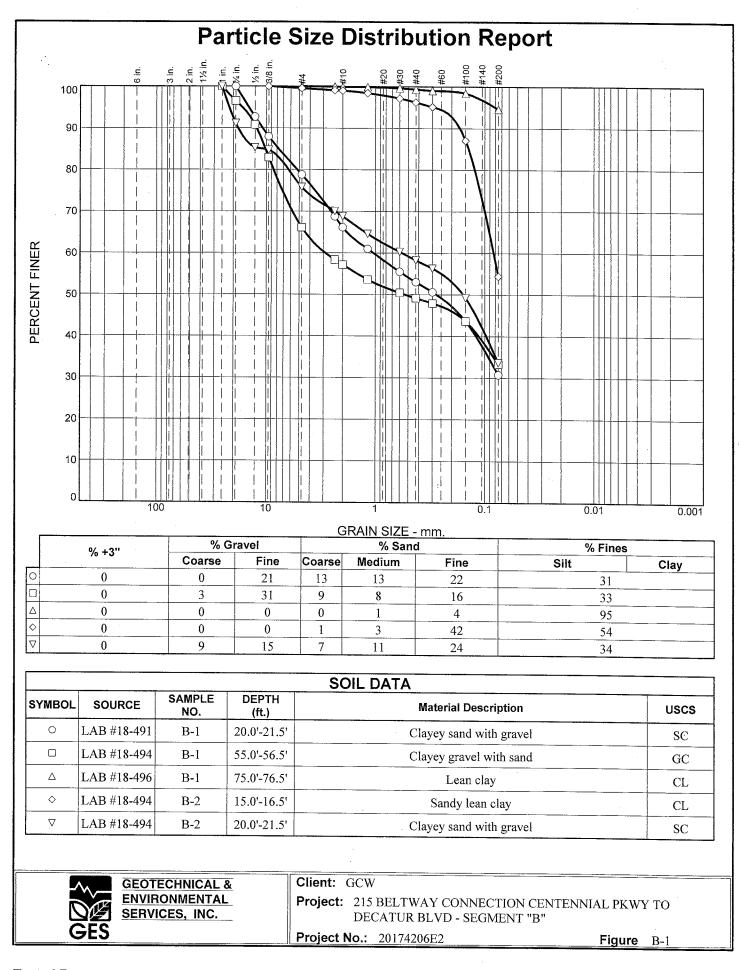
3. ATTERBERG LIMITS

Atterberg limit tests were performed on selected samples in general accordance with AASHTO T89 and T90. The results of the tests are shown at the respective sampling depths on the exploration logs in Appendix A and on the grain size distribution curves in this appendix. The results are also presented in Figures B-5 and B-8.

4. CONSOLIDATION

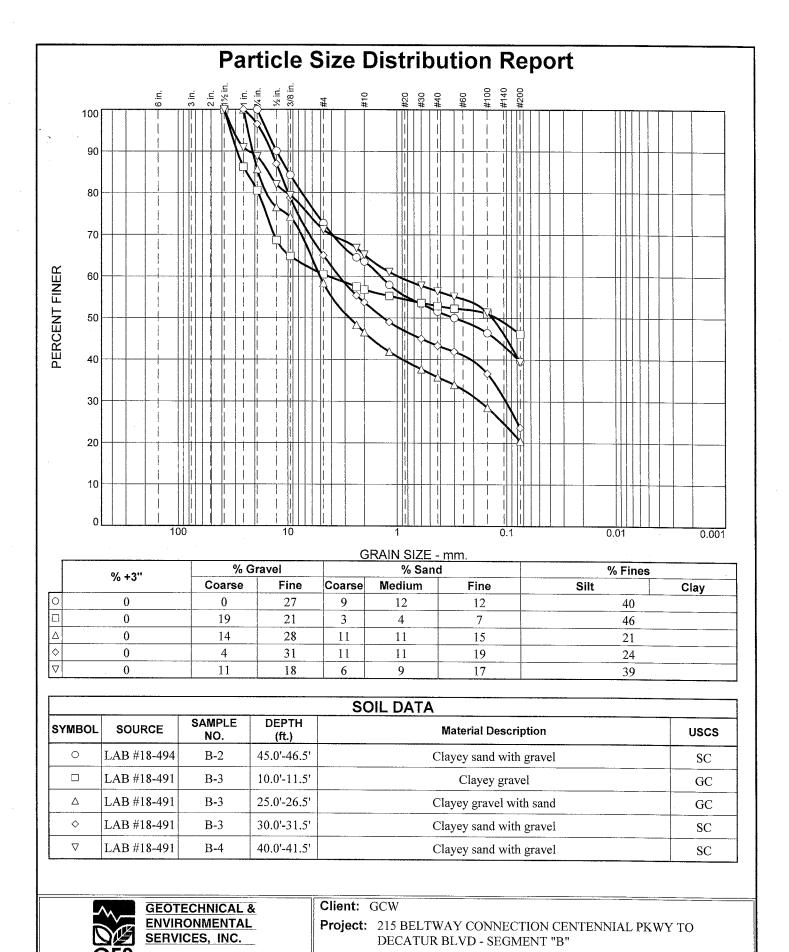
Two one-dimensional consolidation tests were performed on relatively undisturbed samples in general accordance with AASHTO T216. The tests were performed on 1-inch high samples having a diameter of 2.42 inches obtained from a ring-lined sampler. The samples were placed in the consolidometer, loaded incrementally, and then incrementally unloaded. The samples were saturated near the estimated overburden pressure during the loading process. The sample deformation was measured during each load increment. Results of the consolidation tests are presented on Figures B-9 and B-10.

5. DIRECT SHEAR STRENGTH


Direct shear strength tests were performed on selected soil samples obtained from a thick-walled ring-lined sampler using a constant strain rate direct shear machine in general accordance with AASHTO T236. In the shear machine, the samples were inundated with water, loaded to successive normal pressures, and then sheared beyond the peak shear strength until the residual shear strength was obtained. The results of the tests are presented graphically as Mohr-Coulomb failure surfaces and stress-strain diagrams on Figure B-11 through Figure B-13.

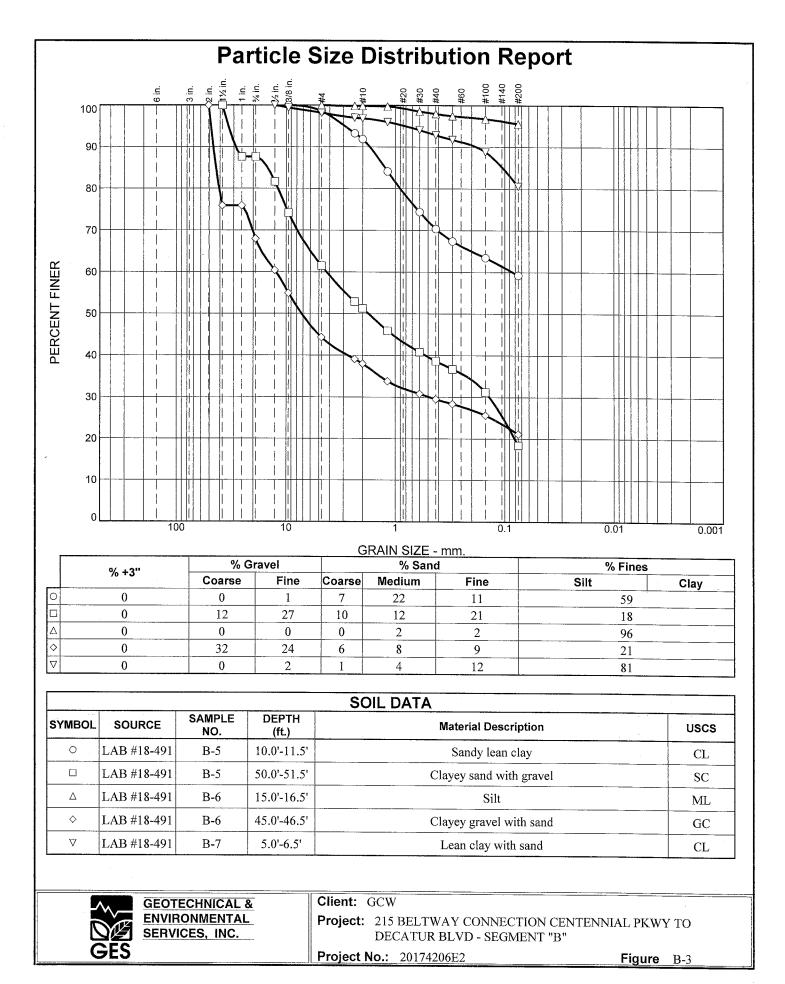
6. SWELL POTENTIAL

Swell tests were performed on selected soil samples obtained from a thick-walled ring-lined sampler in general accordance with Section 1803.5.3.2 of the SNA to the 2012 IBC. A vertical confining pressure of approximately 60 pounds per square foot was applied to each oven-dried sample and then the sample was inundated with water. The deformation of each sample was recorded until 3 consecutive readings were the same. The results of the swell tests are presented on Figure B-14.


7. CHEMICAL TESTS

Soil samples were tested with a suite of chemical corrosivity tests to aid in evaluating the potential for concrete degradation and corrosion of buried metal. The suite of chemical corrosivity tests included sodium content, water soluble sulfate, total available water soluble sodium sulfate, total salts (solubility), sulfide content, pH, reduction-oxidation (red-ox) potential, and soluble soil chlorides. The tests were performed by Silver State Analytical Laboratories. The results of the tests are presented on Figure B-15 and Figure B-22.

Tested By: <u>○ K. MARIN</u> □ C. BYER △ C. BYER ◇ C. BYER ⊽ C. BYER



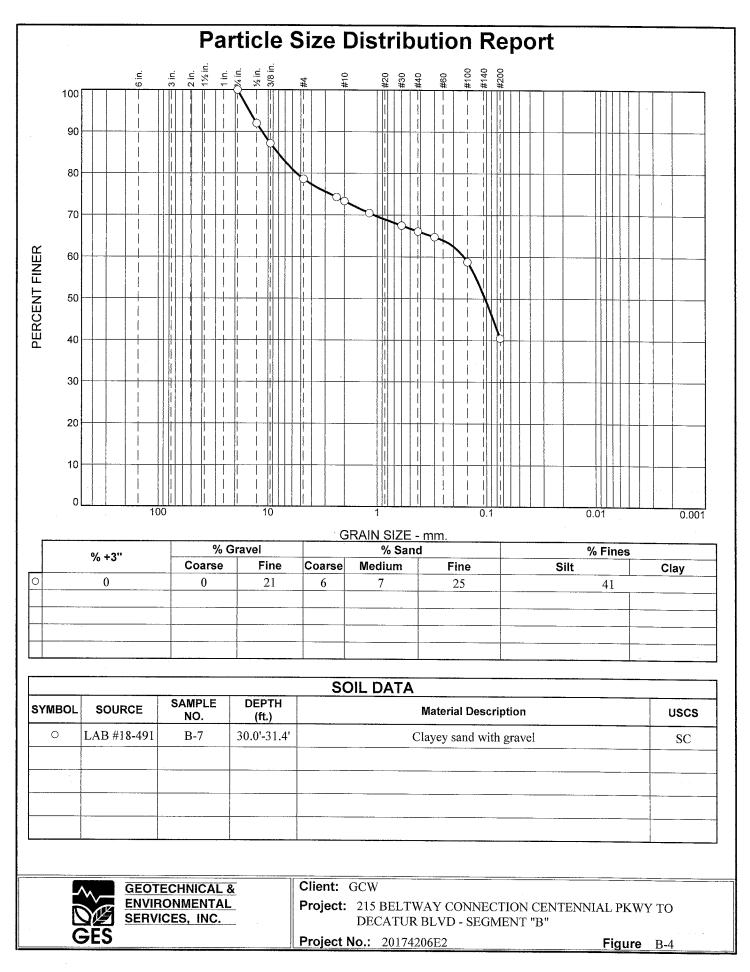
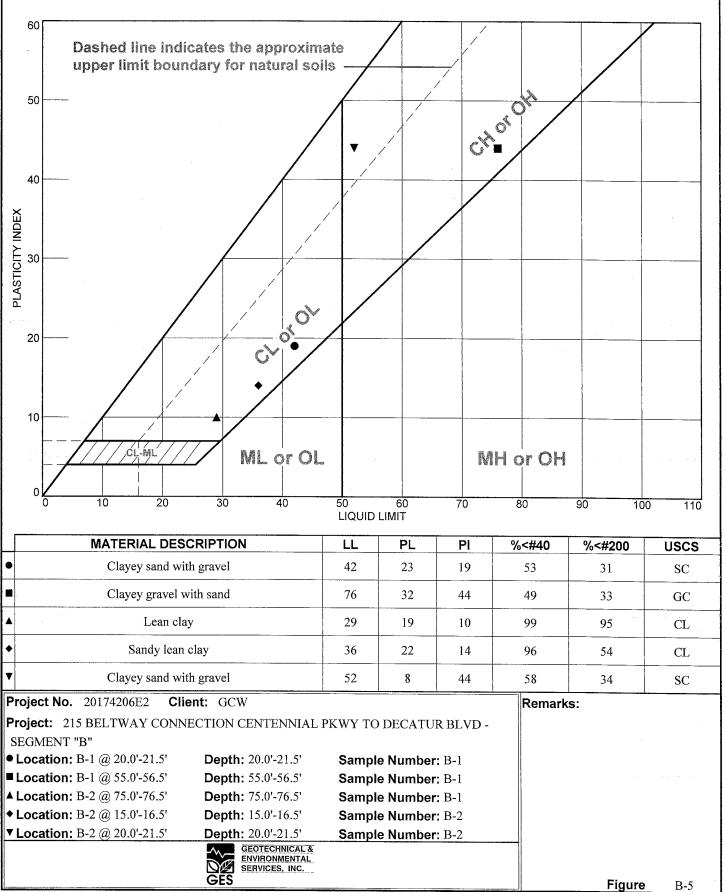
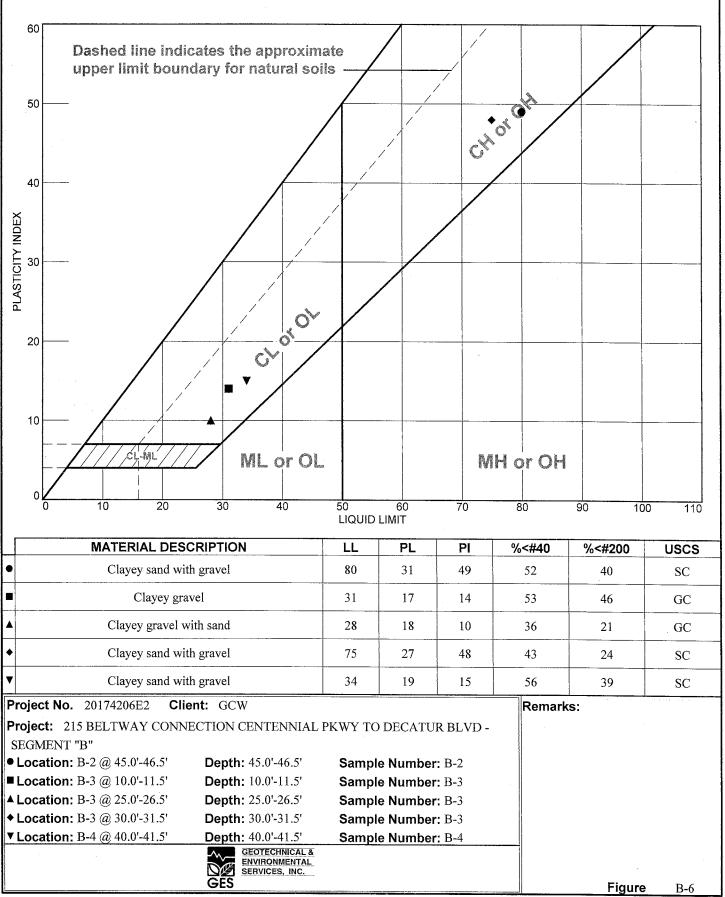

Project No.: 20174206E2

Figure B-2

Tested By: \bigcirc C. BYER \square C. BYER \triangle K. MARIN \diamond K. MARIN \bigtriangledown K. MARIN



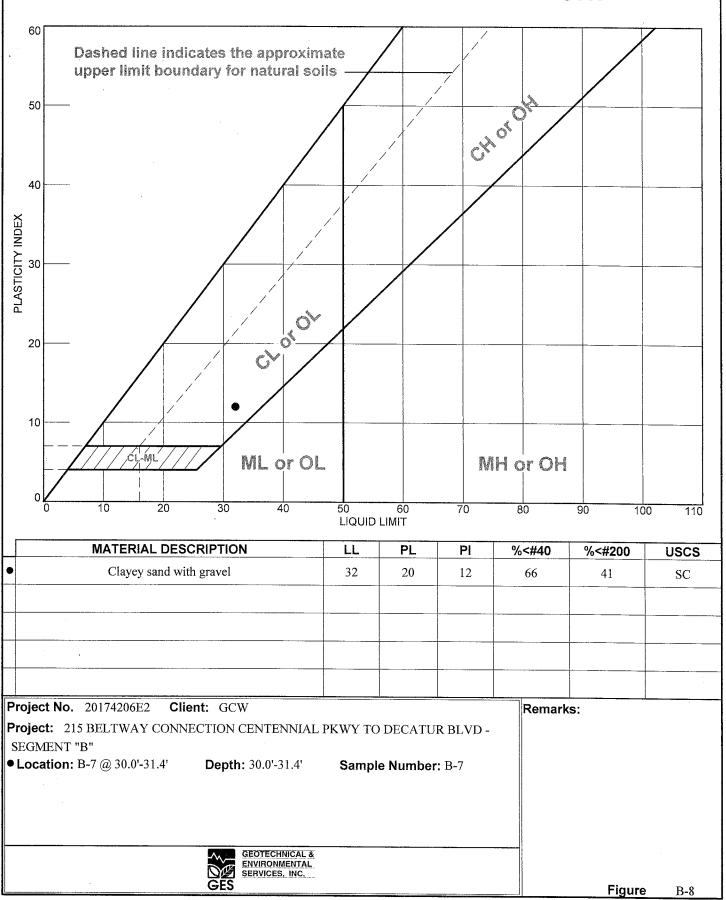
Tested By: K. MARIN

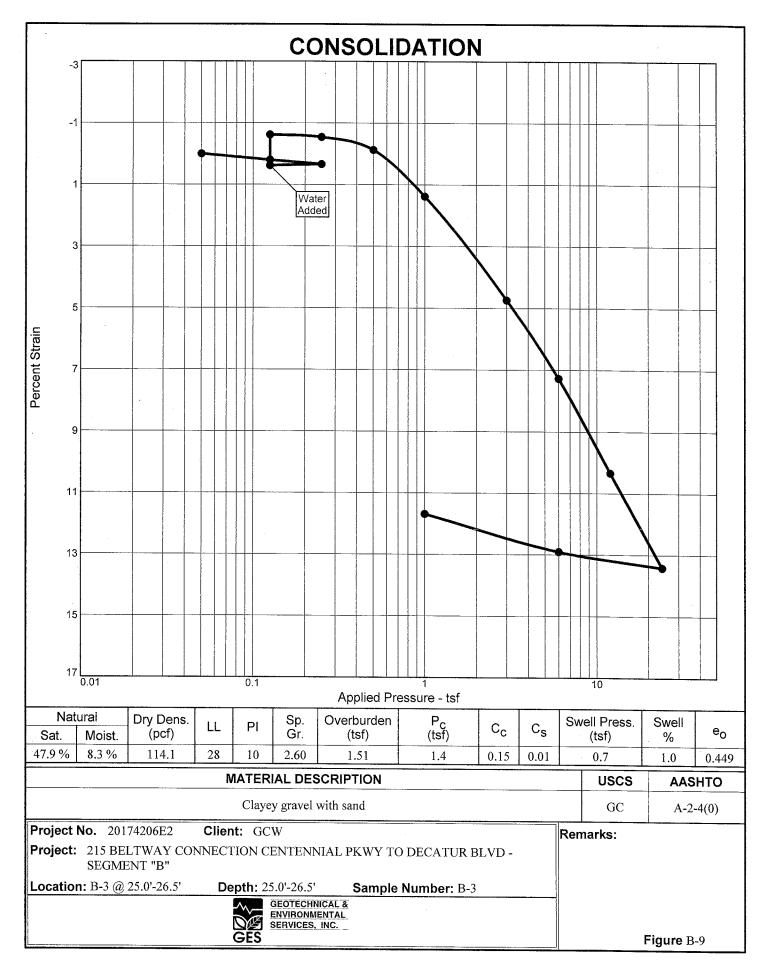


Tested By: K. MARIN

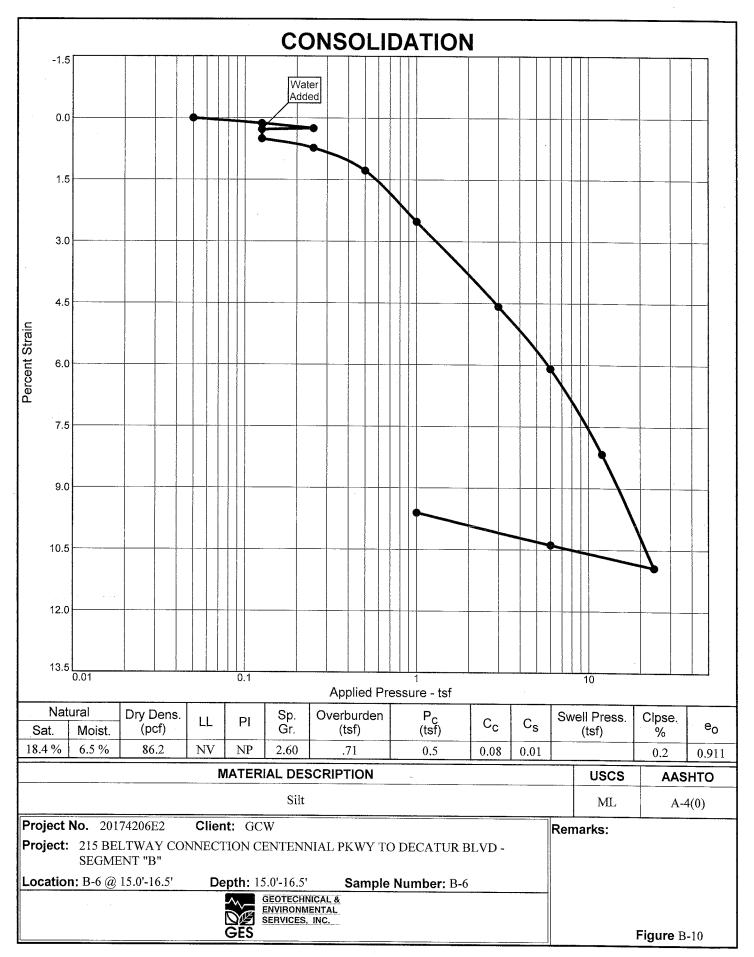
LIQUID AND PLASTIC LIMITS TEST REPORT

LIQUID AND PLASTIC LIMITS TEST REPORT

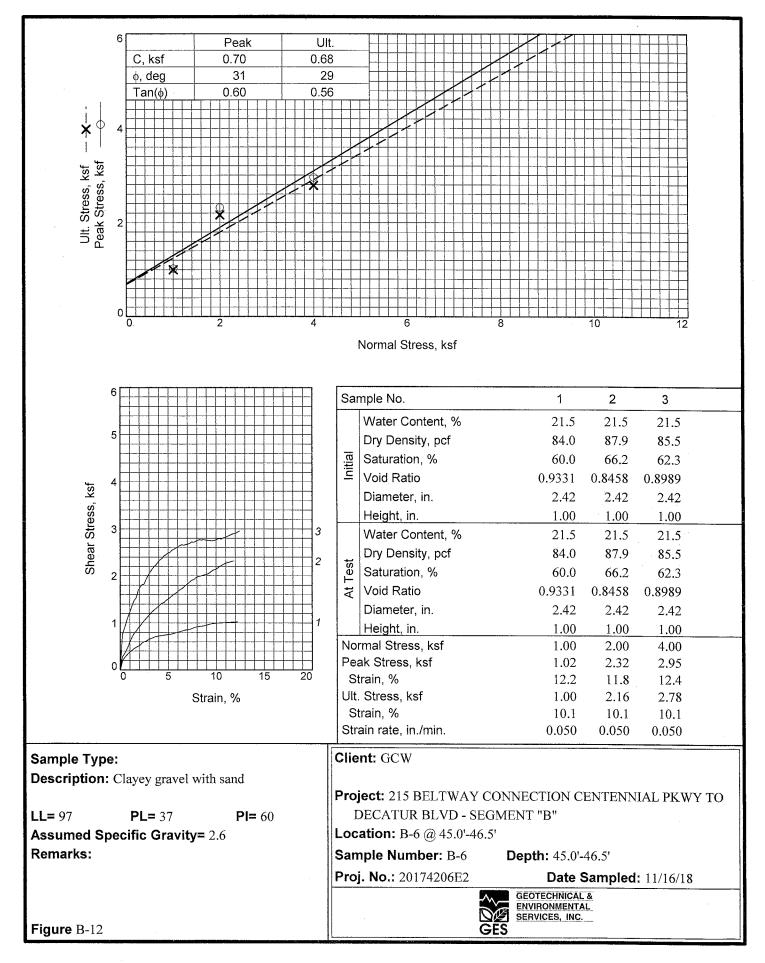

Tested By: K. MARIN


LIQUID AND PLASTIC LIMITS TEST REPORT

-						
Dashed line indicates the approxim upper limit boundary for natural so						
50 40 40 30 30 20 40 40 30 40 40 40 40 40 40 40 40 40 4		60 LIMIT		H or OH	90 10	D 110
MATERIAL DESCRIPTION	LL	PL	PI	%<#40	%<#200	USCS
• Sandy lean clay	29	19	10	70	59	CL
Clayey sand with gravel	73	33	40	39	18	SC
▲ Silt	NV	NP	NP	98	96	ML
Clayey gravel with sand	97	37	60	30	21	GC
▼ Lean clay with sand	30	18	12	93	81	CL
Project No. 20174206E2 Client: GCW Project: 215 BELTWAY CONNECTION CENTENNIAL SEGMENT "B" Depth: 10.0'-11.5' ● Location: B-5 @ 10.0'-11.5' Depth: 10.0'-11.5' ■ Location: B-5 @ 50.0'-51.5' Depth: 50.0'-51.5' ▲ Location: B-6 @ 15.0'-16.5' Depth: 15.0'-16.5' ▲ Location: B-6 @ 45.0'-46.5' Depth: 4.5.0'-46.5' ▲ Location: B-7 @ 5.0'-6.5' Depth: 5.0'-6.5' ▲ Location: B-7 @ 5.0'-6.5' Depth: 5.0'-6.5'	Sampi Sampi Sampi Sampi) DECATU e Number e Number e Number e Number umber: B-7	": B-5 ": B-5 ": B-6 ": B-6	Remar	KS:	
SERVICES INC						


Tested By: K. MARIN

LIQUID AND PLASTIC LIMITS TEST REPORT


Tested By: A. SANDERS

Tested By: <u>A. SANDERS</u>

³ Peak U	lt	
C, ksf 0.33 0.3		
	28	
Tan(φ) 0.54 0.5		
X ϕ 2		
s, s,		
Ult. Stress, ksf		
0		
0 1 2	3 4	5 6
	Normal Stress, ksf	
3	Sample No.	1 2 3
	Water Content, %	
2.5	Dry Density, pcf	7.4 7.4 7.4 91.5 86.1 89.0
	Saturation, %	24.8 21.7 23.3
		0.7744 0.8845 0.8238
l 1.5 kg/	Diameter, in.	2.42 2.42 2.42
	Height, in.	1.00 1.00 1.00
	Water Content, %	7.4 7.4 7.4
	Dry Density, pcf	91.5 86.1 89.0
5 1 / / / · · · · · · · · · · · · · · · ·	Saturation, %	24.8 21.7 23.3
	문 文 Void Ratio	0.7744 0.8845 0.8238
	Diameter, in.	2.42 2.42 2.42
0.5	Height, in.	1.00 1.00 1.00
	Normal Stress, ksf	1.00 2.00 4.00
	Peak Stress, ksf	0.82 1.50 2.47
0 5 10 15 20	Strain, %	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Strain, %	Ult. Stress, ksf	0.82 1.50 2.46
Guain, 70	Strain, %	9.3 10.1 10.1
	Strain rate, in./min.	0.050 0.050 0.050
Sample Type:	Client: GCW	
Description: Sandy lean clay	Proto et ol 5 ppr muter ser	
	Project: 215 BELTWAY CONNE	
LL= 29 PL= 19 Pi= 10	DECATUR BLVD - SEGMENT	Г "В"
Assumed Specific Gravity= 2.6	Location: B-5 @ 10.0'-11.5'	
Remarks:	Sample Number: B-5 Dep	oth: 10.0'-11.5'
	Proj. No.: 20174206E2	Date Sampled: 11/16/18
	GE	OTECHNICAL &
	SEI	VIRONMENTAL RVICES, INC.
Figure B-11	GES	

Tested By: C. BYER

Tested By: C. BYER

3					<u>, 1-3-1-1-1-1</u>	·····	
reak	Ult.						
C, ksf 0.11 (0.10 31						
	0.60						
Š Ž							
		_					
Ult. Stress, ksf							
	2		3 4		5	6	
			Normal Stress, ksf				
3	1						
		Sar	nple No.	1	2	3	
			Water Content, %	15.3	15.3	15.3	
2.5	3		Dry Density, pcf	96.0	92.6	91.1	
		Initial	Saturation, %	57.4	52.7	50.7	
		in	Void Ratio	0.6916	0.7535	0.7827	
Shear Stress kst			Diameter, in.	2.42	2.42	2.42	
			Height, in.	1.00	1.00	1.00	
5 1.5 1.5			Water Content, %	15.3	15.3	15.3	
	2	.	Dry Density, pcf	96.0	92.6	91.1	
あ ₁		At Test	Saturation, %	57.4	52.7	50.7	
		At	Void Ratio	0.6916	0.7535	0.7827	
	1		Diameter, in.	2.42	2.42	2.42	
0.5			Height, in.	1.00	1.00	1.00	
			mal Stress, ksf	1.00	2.00	4.00	
			ak Stress, ksf	0.72	1.31	2.52	
			rain, %	2.5	11.0	12.4	
Strain, %			Stress, ksf	0.71	1.30	2.51	
			rain, % ain rate, in./min.	10.1 0.050	9.7	9.7	
				0.030	0.050	0.050	
Sample Type:		Clie	nt: GCW		_		
Description: Clayey sand with gravel							
			ect: 215 BELTWAY CONNEC		ENTENN	IAL PKWY	TO
LL= 32 PL= 20 Pl= 12			DECATUR BLVD - SEGMENT	"B"			
Assumed Specific Gravity= 2.6		_oc	ation: B-7 @ 30.0'-31.4'				
Remarks:		Sam	ple Number: B-7 Dep	t h: 30.0'-	31.4'		
		Proj	. No.: 20174206E2	Date S	Sampled	: 11/26/18	
			GEC	TECHNICAL	. &		
			ENV	IRONMENTA	¥L		ł
Figure B-13			GES				

Tested By: C. BYER

SWELL TEST SUMMARY

7150 PLACID STREET LAS VEGAS NV, 89119 1-702-365-1001

4

Project Name:	215 Beltway Connection Centen	nial Pkwy to D	Decatur Blvd	- Segment "B"	Client:	GCW			
Project No .:	20174206E1				Test Method:	SNBC 1803.5	.3.2		
Sample Dates:	nple Dates: 11/16/2018					11/30/2018			
	· · · · · · · · · · · · · · · · · · ·		1					·····	·
LAB NUMBER	SAMPLE LOCATION	SAMPLE DEPTH (feet)	SOIL TYPE (USCS)	TEST CONDITION	SURCHARGE	INITIAL DRY DENSITY ¹ (pcf)	INITIAL MOISTURE CONTENT ² (%)	FINAL MOISTURE CONTENT (%)	EXPANSION ³ (%)

Remolded

LOAD (psf)

60

9.0

15.4

118.7

1 Remolded samples were remolded to approximately 95% of the estimated soil maximum dry density (ASTM D 1557).

5.0-6.5

CL

2 Moisture content prior to oven drying.

18-491

3 Positive values refer to swell. Negative values refer to collapse.

B-7

Silver State Labs-Las Vegas 3626 E. Sunset Road, Suite 100

Las Vegas, NV 89120 **Analytical Laboratories** (702) 873-4478 FAX: (702) 873-7967 Sierra Environmental Monitoring www.ssalabs.com

Analytical Report

WO#: 18111057 Date Reported: 11/29/2018

Collection Date: CLIENT: GES **Project:** 20174206E2 SOIL Matrix: Lab ID: 18111057-01 Client Sample ID: 18-491, B-1@0.0'-5.0' DF Result **RL Qual Units** Date Analyzed Analyses SOIL 6. CORROSION SUITE W/RES-AASHTO, SOL. SM 4500S2 F Analyst: SBK SULFIDE - SOILS Sulfide ND 1.00 mg/L 1 11/29/2018 4:40:00 PM SOIL 6. CORROSION SUITE W/RES-AASHTO, SOL. SM 4500CL B Analyst: SBK **CHLORIDE - SOILS** 11/28/2018 1:31:00 PM ND 50 mg/Kg 5 Chloride SOIL 6. CORROSION SUITE W/RES-AASHTO, SOL. CALCULATION Analyst: SBK SODIUM SULFATES - CALCULATION ONLY. 11/28/2018 3:21:00 PM Sodium Sulfate as Na2SO4 0.0220 0 % 1 SM 9045C Analyst: SBK SOIL 6. CORROSION SUITE W/RES-AASHTO, SOL. PH - SOILS pH Units 11/28/2018 4:30:00 PM pН 8.41 0 1 SM 2580 B Analyst: SBK SOIL 6. CORROSION SUITE W/RES-AASHTO, SOL. **REDUCTION - OXIDATION POTENTIAL - SOILS Oxidation-Reduction Potential** 1.00 mV 1 11/29/2018 1:26:00 PM 350 AASHTO T288 Analyst: SBK SOIL 6. CORROSION SUITE W/RES-AASHTO, SOL. **RESISTIVITY BY AASHTO T-288** 0 Ohms-cm 11/28/2018 1:59:00 PM 785 1 Resistivity, Minimum SM 4500 SO4 E Analyst: SBK SOIL 6. CORROSION SUITE W/RES-AASHTO, SOL. WATER SOLUBLE SULFATE (SO4) 11/28/2018 1:30:36 PM Sulfate 0.0900 0,0100 % 1 **ASTM D2791** Analyst: SBK SOIL 6. CORROSION SUITE W/RES-AASHTO, SOL. WATER SOLUBLE SODIUM (NA) 0.0100 1 11/28/2018 1:32:00 PM 0.0100 % Sodium SM 2540 C SOIL 6, CORROSION SUITE W/RES-AASHTO, SOL. Analyst: SBK TOTAL SALTS (SOLUBILITY) Value is below Minimum Compound Limit. Qualifiers: * Value exceeds Maximum Contaminant Level. С (Qual)

Dilution Factor.

MCL Maximum Contaminant Level.

POL Practical Quantitation Limit.

DF

Holding times for preparation or analysis exceeded. Н

ND Not Detected at the PQL.

		Silver State Labs-Las Vegas	Δ.
	SilverState Analytical Laboratories	3626 E. Sunset Road, Suite 100	A
	Analytical Laboratories	Las Vegas, NV 89120	
¥ ¥	Sierra Environmental Monitoring	(702) 873-4478 FAX: (702) 873-7967	۱. ۱
-	•	www.ssalabs.com	I

Analytical Report

 WO#:
 18111057

 Date Reported:
 11/29/2018

CLIENT:	GES			Collection	Date:	
Project:	20174206E2					
Lab ID:	18111057-01			Matrix:	S	OIL
Client Sampl	e ID: 18-491, B-1@0.0'-5.0	,				
Analyses		Result	RL Qual	Units	DF	Date Analyzed
			-			•
					<u> </u>	Analyst: SPK
	ROSION SUITE W/RES-A4 TS (SOLUBILITY)	ASHTO,SOL.		SM 2540	с	Analyst: SBK

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	
(Qual)	DF	Dilution Factor.	

- MCL Maximum Contaminant Level.
- PQL Practical Quantitation Limit.

- C Value is below Minimum Compound Limit.
- H Holding times for preparation or analysis exceeded.
- ND Not Detected at the PQL.

Silver State Labs-Las Vegas

SilverState 3626 E. Sunset Road, Suite 100 Analytical Laboratories Las Vegas, NV 89120

Sierra Environmental Monitoring (702) 873-4478 FAX: (702) 873-7967 www.ssalabs.com

Analytical Report

WO#: 18111057 Date Reported: 11/29/2018

CLIENT:	GES			Collectio	n Date:	
Project:	20174206E2					
Lab ID:	18111057-02			Matrix:	S	OIL
Client Sample	e ID: 18-491, B-3@0.0-'5	.0'				
Analyses		Result	RL Qu	al Units	DF	Date Analyzed
SOIL 6. COR SULFIDE - S	ROSION SUITE W/RES-/ OILS	ASHTO,SOL.		SM 4500	S2 F	Analyst: SBK
Sulfide		ND	1.00	mg/L	1	11/29/2018 4:40:00 PM
SOIL 6. COR CHLORIDE -	ROSION SUITE W/RES-/ SOILS	ASHTO,SOL.		SM 4500	CL B	Analyst: SBK
Chloride		89	50	mg/Kg	5	11/28/2018 1:31:00 PM
	ROSION SUITE W/RES-/ _FATES - CALCULATION			CALCULA	TION	Analyst: SBK
Sodium Sulfa	ite as Na2SO4	0.0160	0	%	1	11/28/2018 3:21:00 PM
SOIL 6. COR PH - SOILS	ROSION SUITE W/RES-/	AASHTO,SOL.		SM 904	5C	Analyst: SBK
pН		8.15	0	pH Units	1	11/28/2018 4:30:00 PM
	ROSION SUITE W/RES-/ - OXIDATION POTENTI/	•		SM 258	0 B	Analyst: SBK
Oxidation-Re	duction Potential	339	1.00	mV	1	11/29/2018 1:26:00 PM
	ROSION SUITE W/RES-/ Y BY AASHTO T-288	AASHTO,SOL.		AASHTO	T288	Analyst: SBK
Resistivity, M	linimum	878	0	Ohms-cm	1	11/28/2018 1:59:00 PM
	ROSION SUITE W/RES- UBLE SULFATE (SO4)	AASHTO,SOL.		SM 4500 \$	SO4 E	Analyst: SBK
Sulfate		0.0800	0.0100	%	1	11/28/2018 1:30:36 PM
	ROSION SUITE W/RES- UBLE SODIUM (NA)	AASHTO,SOL.		ASTM D	2791	Analyst: SBK
Sodium		0.0100	0.0100	%	1	11/28/2018 1:32:00 PM
	ROSION SUITE W/RES-/ IS (SOLUBILITY)	AASHTO,SOL.		SM 254	0 C	Analyst: SBK
Qualifiers: (Qual)	 Value exceeds Maximum DF Dilution Factor. 	Contaminant Level.				n Compound Limit. ation or analysis exceeded.

MCL Maximum Contaminant Level.

PQL Practical Quantitation Limit.

ND Not Detected at the PQL.

	A 11 A 1	Silver State Labs-Las Vegas
	SilverState Analytical Laboratories	3626 E. Sunset Road, Suite 100
	Analytical Laboratories	Las Vegas, NV 89120
	Sierra Environmental Monitoring	(702) 873-4478 FAX: (702) 873-7967
-	.	www.ssalabs.com

Analytical Report

 WO#:
 18111057

 Date Reported:
 11/29/2018

	.74206E2 11057-02 491, B-3@0.0-'5.0'			Matrix:	S	OIL
Client Sample ID: 18-				Matrix:	S	OIL
	491, B-3@0.0-'5.0'					
Analyses		D				
		Result	RL Qual	Units	DF	Date Analyzed
SOIL 6. CORROSION		SHTO,SOL.		SM 2540	с	Analyst: SBK
TOTAL SALTS (SOLU Solubility		0.110	0.0100	%		11/28/2018 11:26:00 AM

Qualifiers: (Qual) * Value exceeds Maximum Contaminant Level.

DF Dilution Factor.

MCL Maximum Contaminant Level.

PQL Practical Quantitation Limit.

- C Value is below Minimum Compound Limit.
- H Holding times for preparation or analysis exceeded.

ND Not Detected at the PQL.

Silver State Labs-Las Vegas Analytical Laboratories

www.ssalabs.com

Sierra Environmental Monitoring

MCL Maximum Contaminant Level.

PQL Practical Quantitation Limit.

(702) 873-4478 FAX: (702) 873-7967

Analytical Report

WO#: 18111057 Date Reported: 11/29/2018

20174206E2 18111057-04 18-491, B-6@0.0'-5.()'		Matrix:	Q	
)'		Matrix:	SI	0.TT
18-491, B-6@0.0'-5.0)'			50	OIL
	Result	RL Q	ual Units	DF	Date Analyzed
ON SUITE W/RES-A/	ASHTO,SOL.		SM 4500	S2 F	Analyst: SBK
	ND	1.00	mg/L	1	11/29/2018 4:40:00 PM
	ASHTO,SOL.		SM 4500	CL B	Analyst: SBK
	300	100	mg/Kg	10	11/28/2018 1:31:00 PM
			CALCULA	TION	Analyst: SBK
Na2SO4	0.0590	0	%	1	11/28/2018 3:21:00 PM
ON SUITE W/RES-A	ASHTO,SOL.		SM 904	5C	Analyst: SBK
	8.27	0	pH Units	1	11/28/2018 4:30:00 PM
			SM 258	0 B	Analyst: SBK
n Potential	354	1.00	mV	1	11/29/2018 1:26:00 PM
	ASHTO,SOL.		AASHTO	T288	Analyst: SBK
n	400	0	Ohms-cm	1	11/28/2018 1:59:00 PM
	ASHTO,SOL.		SM 4500 \$	SO4 E	Analyst: SBK
	0.350	0.0100	%	1	11/28/2018 1:30:36 PM
	ASHTO,SOL.		ASTM D	2791	Analyst: SBK
	0.0200	0.0100	%	1	11/28/2018 1:32:00 PM
	ASHTO,SOL.		SM 254	0 C	Analyst: SBK
	S ON SUITE W/RES-A/ ES - CALCULATION Na2SO4 ON SUITE W/RES-A/ IDATION POTENTIAL n Potential ON SUITE W/RES-A/ AASHTO T-288 m ON SUITE W/RES-A/ E SULFATE (SO4) ON SUITE W/RES-A/ E SODIUM (NA) ON SUITE W/RES-A/ DLUBILITY)	ON SUITE W/RES-AASHTO,SOL. S 300 ON SUITE W/RES-AASHTO,SOL. ES - CALCULATION 0NLY. Na2SO4 0.0590 ON SUITE W/RES-AASHTO,SOL. IDATION POTENTIAL - SOILS IN P	ON SUITE W/RES-AASHTO,SOL. 300 100 ON SUITE W/RES-AASHTO,SOL. ES - CALCULATION 0NLY. Na2SO4 0.0590 ON SUITE W/RES-AASHTO,SOL. 8.27 0 ON SUITE W/RES-AASHTO,SOL. IDATION POTENTIAL - SOILS n Potential 354 1.00 ON SUITE W/RES-AASHTO,SOL. IDATION POTENTIAL - SOILS n Potential 354 1.00 ON SUITE W/RES-AASHTO,SOL. AASHTO T-288 m 400 0 ON SUITE W/RES-AASHTO,SOL. 200 0.350 0.0100 ON SUITE W/RES-AASHTO,SOL. 200 0.0100 ON SUITE W/RES-AASHTO,SOL. 200 0.0200 0.0200 0.0200 0.0200 0.0100 ON SUITE W/RES-AASHTO,SOL. 200 0.0200 0.0200 0.0200 0.0200 0.0100 ON SUITE W/RES-AASHTO,SOL. 200 0.0200 0.0200 0.0100	ON SUITE W/RES-AASHTO,SOL. SM 45000 S 300 100 mg/Kg ON SUITE W/RES-AASHTO,SOL. CALCULA ES - CALCULATION ONLY. CALCULA Na2SO4 0.0590 0 ON SUITE W/RES-AASHTO,SOL. SM 904 8.27 0 DN SUITE W/RES-AASHTO,SOL. SM 258 IDATION POTENTIAL - SOILS SM 258 IDATION POTENTIAL - SOILS mV ON SUITE W/RES-AASHTO,SOL. AASHTO AASHTO T-288 0.00 0 m 400 0 Ohms-cm ON SUITE W/RES-AASHTO,SOL. SM 4500 S SM 4500 S assure to the solution of the soluti	ON SUITE W/RES-AASHTO,SOL. S SM 4500CL B 300 100 mg/Kg 10 ON SUITE W/RES-AASHTO,SOL. ES - CALCULATION 0NLY. CALCULATION Na2SO4 O.0590 0 % 1 Na2SO4 0.0590 0 % 1 ON SUITE W/RES-AASHTO,SOL. SM 9045C SM 9045C 8.27 0 pH Units 1 ON SUITE W/RES-AASHTO,SOL. SM 2580 B Indation potential - soils SM 2580 B In Potential 354 1.00 mV 1 ON SUITE W/RES-AASHTO,SOL. AASHTO T-288 AASHTO T288 AASHTO T288 M 400 0 Ohms-cm 1 ON SUITE W/RES-AASHTO,SOL. E SULFATE (SO4) SM 4500 SO4 E I ON SUITE W/RES-AASHTO,SOL. E SODIUM (NA) ASTM D2791 ASTM D2791 0.0200 0.0100 % 1 ON SUITE W/RES-AASHTO,SOL. E SODIUM (NA) SM 2540 C SM 2540 C Value exceeds Maximum Contaminant Level. C Value is below Minimum

ND Not Detected at the PQL.

	A	Silver State Labs-Las Vegas
	SilverState	3626 E. Sunset Road, Suite 100
	SilverState Analytical Laboratories	Las Vegas, NV 89120
¥ v	Sierra Environmental Monitoring	
-	U	www.ssalabs.com

Analytical Report

 WO#:
 18111057

 Date Reported:
 11/29/2018

CLIENT:	GES			Collection	Date:	
Project:	20174206E2					
Lab ID:	18111057-04			Matrix:	SC	DIL
Client Sample	e ID: 18-491, B-6@0.0'-5.0	ŧ				
Analyses		Result	RL Qual	Units	DF	Date Analyzed
SOIL 6. COR	ROSION SUITE W/RES-AA IS (SOLUBILITY)	SHTO,SOL.		SM 2540		Analyst: SBK

Qualifiers: (Qual) * Value exceeds Maximum Contaminant Level.

DF Dilution Factor.

MCL Maximum Contaminant Level.

PQL Practical Quantitation Limit.

- C Value is below Minimum Compound Limit.
- H Holding times for preparation or analysis exceeded.
- ND Not Detected at the PQL.

Silver State Labs-Las Vegas

SilverState State Laboratories 3626 E. Sunset Road, Suite 100 Analytical Laboratories Las Vegas, NV 89120 Sierra Environmental Monitoring (702) 873-4478 FAX: (702) 873-7967 www.ssalabs.com

Analytical Report

WO#: 18111057 Date Reported: 11/29/2018

			concern	on Date:	
20174206E2					
18111057-03			Matrix:	S	OIL
D: 18-491, B-4@0.0'-5.0)'				
	Result	RL	Qual Units	DF	Date Analyzed
	ASHTO,SOL.		SM 4500	9S2 F	Analyst: SBK
	1.60	1.00	mg/L	1	11/29/2018 4:40:00 PM
	ASHTO,SOL.		SM 4500	CL B	Analyst: SBK
	140	50	mg/Kg	5	11/28/2018 1:31:00 PM
			CALCULA	ATION	Analyst: SBK
as Na2SO4	0.0380	0	%	1	11/28/2018 3:21:00 PM
SION SUITE W/RES-A	ASHTO,SOL.		SM 904	45C	Analyst: SBK
	8.23	0	pH Units	1	11/28/2018 4:30:00 PM
			SM 258	30 B	Analyst: SBK
tion Potential	350	1.00	mV	1	11/29/2018 1:26:00 PM
	ASHTO,SOL.		AASHTO	T288	Analyst: SBK
num	507	0	Ohms-cm	1	11/28/2018 1:59:00 PM
	ASHTO,SOL.		SM 4500	SO4 E	Analyst: SBK
	0.210	0.0100	%	1	11/28/2018 1:30:36 PM
	ASHTO,SOL.		ASTM D	2791	Analyst: SBk
	0.0100	0.0100	%	1	11/28/2018 1:32:00 PM
	ASHTO,SOL.		SM 254	10 C	Analyst: SBK
	18111057-03 D: 18-491, B-4@0.0'-5.0 DSION SUITE W/RES-AA DSION SUITE W/RES-AA DILS DSION SUITE W/RES-AA DSION SUITE W/RES-AA DSION SUITE W/RES-AA DSION SUITE W/RES-AA DSION SUITE W/RES-AA DSION SUITE W/RES-AA DSION SUITE W/RES-AA SION SUITE W/RES-AA SION SUITE W/RES-AA DSION SUITE W/RES-AA DSION SUITE W/RES-AA DSION SUITE W/RES-AA SLE SULFATE (SO4)	18111057-03 D: 18-491, B-4@0.0'-5.0' Result DSION SUITE W/RES-AASHTO,SOL. SION SUITE W/RES-AASHTO,SOL. ATES - CALCULATION 0NLY. as Na2SO4 0.0380 DSION SUITE W/RES-AASHTO,SOL. ATES - CALCULATION 0NLY. as Na2SO4 0.0380 DSION SUITE W/RES-AASHTO,SOL. 8.23 DSION SUITE W/RES-AASHTO,SOL. 2.10 DSION SUITE W/RES-AASHTO,SOL. DSION SUITE W/RES-AASHTO,SOL. DSION SUITE W/RES-AASHTO,SOL. 2.10 DSION SUITE W/RES-AASHTO,SOL. 3.10 DSION SUITE W/RES-AASHTO,SOL. 3.10 DSION SUITE W/RES-AASHTO,SOL. 3.10 D.210 DSION SUITE W/RES-AASHTO,SOL. 3.10 0.210 0.210 0.0100 DSION SUITE W/RES-AASHTO,SOL.	I8111057-03 Result RL Result RL SION SUITE W/RES-AASHTO,SOL. SION SUITE W/RES-AASHTO,SOL. DILS 140 SION SUITE W/RES-AASHTO,SOL. SION SUITE W/RES-AASHTO,SOL. ATES - CALCULATION ONLY. as Na2SO4 0.0380 0 DISION SUITE W/RES-AASHTO,SOL. 8.23 0 SION SUITE W/RES-AASHTO,SOL. 8.23 0 DISION SUITE W/RES-AASHTO,SOL. 8.23 0 DISION SUITE W/RES-AASHTO,SOL. 1.00 DISION SUITE W/RES-AASHTO,SOL. 0.00 0.00 DISION SUITE W/RES-AASHTO,SOL. 0.00 0.000 DISION SUITE W/RES-AASHTO,SOL. 0.00 0.000 DISION SUITE W/RES-AASHTO,SOL. 0.000 0.000 DISION SUITE W/RES-AASHTO,SOL. 0.000 0.0000 DISION SUITE W/RES-AASHTO,SOL. 0.000 0.0000 DISION SUITE W/RES-AASHTO,SOL. 0.000 0.0000 DISION SUITE W/RES-AASHTO,SOL. 0.0000 0.0000 DISION SUITE W/RES-AASHTO,SOL. 0.0000 0.0000	18111057-03 Matrix: D: 18-491, B-4@0.0'-5.0' Result RL Qual Units PSION SUITE W/RES-AASHTO,SOL. S SM 4500 SM 4500 DSION SUITE W/RES-AASHTO,SOL. S SM 4500 SM 4500 PSION SUITE W/RES-AASHTO,SOL. SION SUITE W/RES-AASHTO,SOL. ATES - CALCULATION 0NLY. as Na2SO4 CALCULA 0.0380 SM 904 PSION SUITE W/RES-AASHTO,SOL. ATES - CALCULATION 0NLY. as Na2SO4 SM 904 SM 904 PSION SUITE W/RES-AASHTO,SOL. DXIDATION POTENTIAL - SOILS SM 904 PSION SUITE W/RES-AASHTO,SOL. DXIDATION POTENTIAL - SOILS SM 258 DISION SUITE W/RES-AASHTO,SOL. DXIDATION POTENTIAL - SOILS SM 4500 PSION SUITE W/RES-AASHTO,SOL. DXIDATION POTENTIAL - SOILS SM 4500 PSION SUITE W/RES-AASHTO,SOL. BLE SULFATE (SO4) SM 4500 OLITE W/RES-AASHTO,SOL. BLE SODIUM (NA) SM 4500 OLITE W/RES-AASHTO,SOL. BLE SODIUM (NA) ASTM D OLITE W/RES-AASHTO,SOL. ASTM D SION SUITE W/RES-AASHTO,SOL. BLE SODIUM (NA) ASTM D OLITE W/RES-AASHTO,SOL. ASTM D OLITE W/RES-AASHTO,SOL. ASTM D OLITE W/RES-AASHTO,SOL. ASTM D OLITE W/RES-AASHTO,SOL. ASTM D O	18111057-03 Matrix: S D: 18-491, B-4@0.0'-5.0' Result RL Qual Units DF Result RL Qual Units DF SSION SUITE W/RES-AASHTO,SOL. S SM 4500S2 F 1 SSION SUITE W/RES-AASHTO,SOL. SOLS SM 4500CL B 1 SSION SUITE W/RES-AASHTO,SOL. SOLS SM 4500CL B 1 SSION SUITE W/RES-AASHTO,SOL. SATES - CALCULATION ONLY. As Na2SO4 0.0380 0 % 1 SSION SUITE W/RES-AASHTO,SOL. SATES - CALCULATION ONLY. As Na2SO4 SM 9045C SM 9045C SSION SUITE W/RES-AASHTO,SOL. SXIDATION POTENTIAL - SOILS SM 2580 B 1 SSION SUITE W/RES-AASHTO,SOL. YAASHTO T-288 SM 2580 S 1 Num 507 0 Ohms-cm 1 SSION SUITE W/RES-AASHTO,SOL. YAASHTO T-288 SM 4500 SO4 E 1 SSION SUITE W/RES-AASHTO,SOL. SALE SULFATE (SO4) Quito 0,0100 % 1 OLITO 0.0100 % 1 SSION SUITE W/RES-AASHTO,SOL. SM 4500 SO4 E 1 SSION SUITE W/RES-AASHTO,SOL. SALE SOLIM (NA) QUITO % 1 OLITO 0.0100 %

PQL Practical Quantitation Limit.

ND Not Detected at the PQL.

	Silver State Labs-Las Vegas
SilverState	3626 E. Sunset Road, Suite 100
SilverState	Las Vegas, NV 89120
Sierra Environmental Monitoring	(702) 873-4478 FAX: (702) 873-7967
	www.ssalabs.com

Analytical Report

 WO#:
 18111057

 Date Reported:
 11/29/2018

CLIENT:	GES			Collection	Date:	
Project:	20174206E2					
Lab ID:	18111057-03			Matrix:	S	OIL
Client Sample	e ID: 18-491, B-4@0.0'-	5.0'				
Analyses		Result	RL Qual	Units	DF	Date Analyzed
	ROSION SUITE W/RES S (SOLUBILITY)	-AASHTO,SOL.		SM 2540	С	Analyst: SBK
Solubility	- (,	0.340	0.0100	%	4	11/28/2018 11:26:00 AM

Qualifiers: (Qual) * Value exceeds Maximum Contaminant Level.

DF Dilution Factor.

MCL Maximum Contaminant Level.

PQL Practical Quantitation Limit.

- C Value is below Minimum Compound Limit.
- H Holding times for preparation or analysis exceeded.

ND Not Detected at the PQL.

Revision v1

Figure B-22

APPENDIX C DESIGN CALCULATIONS

Nominal Bearing Resistance - Strength Limit

Soil Parameters:

γ	0.130	kcf	= total unit weight of soil
φ	34 0.593	degrees radians	= internal angle of friction of soil

General Nominal Bearing Resistance Equation

q _n =	$cN_{cm} + \gamma D_fN_q$	$_{\rm m}{\rm C}_{\rm wq}$ + 0.5 $\gamma{\rm BN}_{\gamma m}{\rm C}_{\rm wy}$	Equation 10.6.3.1.2a-1 (Nominal Bearing Resistance, ksf)
c =	0	ksf	Cohesion neglected for calculation
Dw =	50	ft	design groundwater Depth
C _{wq} =	1		
$C_{wy} =$	0.5 to 1.0		per Table 10.6.3.1.2a-2

General Nominal Bearing Resistance Equation reduces to:

$$q_n = \gamma D_f N_{qm} + 0.5 \gamma B N_{\gamma m}$$

Bearing Capacity Factors

$\mathrm{S}_{q}\mathrm{d}_{q}\mathrm{i}_{q}$ Equation 10.6.3.1.2a-3 (Modified Surcharge Bearing Capacity Factor, dir	$= N_q s_q d_q i_q$	N_{qm}
γ_{γ}^{i} Equation 10.6.3.1.2a-4 (Modified Unit Weight Bearing Capacity Factor, dir	$= N_{\gamma}s_{\gamma}i_{\gamma}$	$N_{\gamma m}$
Depth Correction Factor taken as 1.0 per discusion beneath Table 10.6.3.1.2a	= 1.0	dq
Load Inclination Factors rediected per Commentary Section C10.6.3.1.2	= 1.0 = 1.0	i _q i _γ
Shape Correction Factors per Table 10.6.3.1.2a	= 1 + (B/L) tan φ = 1 - 0.4 (B/L)	s _q s _γ

By substitution, General Nominal Bearing Resistance Equation further reduces to:

 $q_n = \gamma D_f N_q C_{wq} [1+(B/L) \tan \phi_f] + 0.5 \gamma B N_\gamma C_{wy} [1-0.4(B/L)]$

Bearing Capacity Factors from ASSHTO LRFD Bridge Design Specifications Table 10.6.3.1.2a-1

Nq	29.4
Nγ	41.1

Figure C-1 Soil Parameters and Formulas for Bearing Resistance

Nominal Bearing Resistances for various depths to bottom of footing

Depth, D_f 2 ft

Effective	Nominal Bearing Resistance (ksf)				
Footing	Effect	ive Length to	Effective Wid	dth Ratio, L'/E	3' (dim)
Width, B' (ft)	1	2	3	4	≥ 5
6	22.4	23.0	23.3	23.4	23.4
8	25.6	27.3	27.9	28.2	28.3
10	28.8	31.6	32.5	33.0	33.3
12	32.0	35.9	37.1	37.8	38.2
14	35.2	40.1	41.8	42.6	43.1
16	38.4	44.4	46.4	47.4	48.0
18	41.6	48.7	51.0	52.2	52.9

Depth, D_f 5 ft

Effective	Nominal Bearing Resistance (ksf)				
Footing	Effect	ive Length to	Effective Wid	Ith Ratio, L'/E	3' (dim)
Width, B' (ft)	1	2	3	4	≥ 5
6	41.6	38.4	37.3	36.8	36.4
8	44.8	42.6	41.9	41.6	41.3
10	48.0	46.9	46.6	46.4	46.3
12	51.2	51.2	51.2	51.2	51.2
14	54.4	55.5	55.8	56.0	56.1
16	57.6	59.7	60.4	60.8	61.0
18	60.8	64.0	65.1	65.6	65.9

Depth, D_f 8 ft

Effective	Nominal Bearing Resistance (ksf)				
Footing	Effect	ive Length to	Effective Wic	Ith Ratio, L'/E	8' (dim)
Width, B' (ft)	1	2	3	4	≥ 5
6	60.8	53.7	51.3	50.2	49.4
8	64.0	58.0	56.0	55.0	54.4
10	67.2	62.3	60.6	59.8	59.3
12	70.4	66.5	65.2	64.6	64.2
14	73.6	70.8	69.9	69.4	69.1
16	76.8	75.1	74.5	74.2	74.0
18	80.0	79.3	79.1	79.0	78.9

Linear interpolation may be used for intermediate values of bottom of footing depth (D_f), effective footing width (B'), and effective footing length (L'). A resistance factor, ϕ_b , of 0.45 should be used for factored resistance.

Limiting settlement at the service limit state

Settlement of footings bearing on soil per AASHTO LRFD Bridge Design Specifications Section 10.6.2.4

St	$= S_e + S_c + S_s$	Equation 10.6.2.4.1-1 (Total Settlement, ft)
S _e	$=\frac{\left[q_0\left(1-\nu^2\right)\sqrt{A'}\right]}{144E_s\beta_z}$	Equation 10.6.2.4.2-1 (Elastic Settlement, ft)
S _c S _s	= 0 = 0	Consolidation Settlement is not applicable for the soils encountered Secondary Settlement is not applicable for the soils encountered
A' β _z	= effective area of footing in ft ² from Table 10.6.2.4.2-1 based on L/B, as	suming rigid footing

Table 10.6.2.4.2-1 with linear interpolations included for intermediate L/B

L/B	βz	
1	1.08	given
2	1.1	given
3	1.15	given
4	1.195	interpolated
5	1.24	given
6	1.274	interpolated
7	1.308	interpolated
8	1.342	interpolated
9	1.376	interpolated
10	1.41	given

Elastic Constants for lower end of "Dense Sand" per Table C10.4.6.3-1

ν	0.30		= Poisson's ratio
Es	6.94	ksi	= Young's modulus

Allowable Net Bearing Resistance Equation

$$q_{all} = \frac{144S_e E_s \beta_z}{(1-\nu^2)\sqrt{A'}}$$

Equation 10.6.2.4.2-1 (Solved for Bearing Pressure, ksf)

Limiting Settlement Assumed

S_{max} 1 in x (1 ft/12 in) = 0.083 ft

Figure C-3 Soil Parameters and Formulas for Settlement of Footing

Effective		Nominal	Bearing Res	sistance (ksf)	for a Limitin	a Settlement	of 1-inch							
Footing		Nominal Bearing Resistance (ksf) for a Limiting Settlement of 1-inch Effective Length to Effective Width Ratio, L'/B' (dim)												
Width, B' (ft)	1	2	4	8	15	20	25	30						
66	16.47	11.86	9.11	7.24	5.55	4.81	4.30	3.93						
88	12.35	8.90	6.84	5.43	4.16	3.61	3.23	2.94						
10	9.88	7.12	5.47	4.34	3.33	2.89	2.58	2.34						
12	8.24	5.93	4.56	3.62	2.78	2.40	2.15	1.96						
14	7.06	5.08	3.91	3.10	2.38	2.06	1.84	1.68						
16	6.18	4.45	3.42	2.71	2.08	1.80	1.61	1.08						

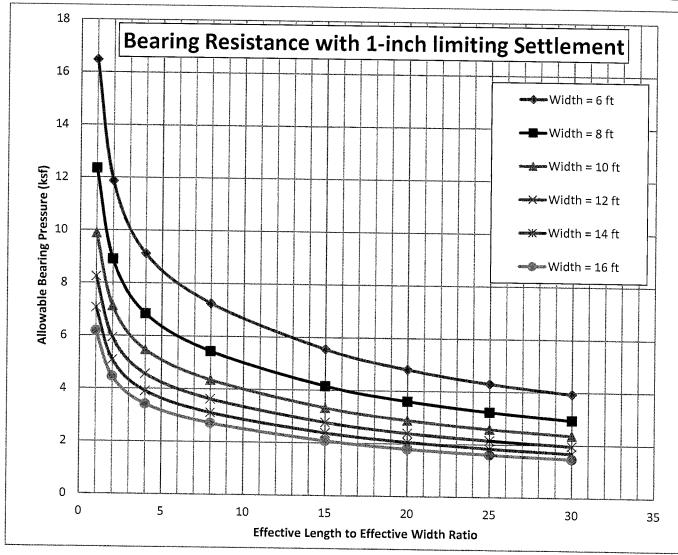


Figure C-4 Nominal Bearing Resistance for Limiting Settlement of 1 inch

Drilled Shaft Axial Resi	stance per	AASHTO LRFD Bridge Des	ign Specifications Section	10.8	Abutment 1 - 3	ft diameter				
Factored Vertical Loads	s provided	by the Structural Engineer			Drilled Shaft Pro	operties				
Q _{service} = 600	kips	= maximum factored service	ce limit vertical load		Shaft Diameter	3.00	ft	shaft diameter	36	inches
				Ground Si	urface Elevation	2394.0	ft			
				Top of	Shaft Elevation	2391.0	ft			
Q _{strength} = 780	kips	= maximum factored streng	gth limit vertical load	Ground	lwater Elevation	2331.0	ft			
		single shaft per pier	Load Test Performed	Top of I	Native Elevation	2394.0	ft			
input cells					Ap	7.07	_ft ²	= area of shaft tip		
		Cap firmly on at least fi	rm/medium dense soil, no po	tential scour	As	9.42	ft²/ft	= area of shaft side su	face pe	r unit length
Soil Model	, based on	<u>: B-2</u>			f'c	4.50	ksi	= concrete compressiv	e strenç	Jth
Notes:					Ec	3860.8	ksi	= concrete elastic mod	ulus (Ec	1. C5.4.2.4-1)
					D ₀	3.0	ft	= depth to top of shaft		
					γο	0.120	kcf	= unit weight of soil ab	ove top	of shaft
					C-T-C	4.0	x Diameter	= center to center space	ing	
					Configuration	Single Row	_			

Soil Layer No.	Depth* to Top of Layer	Depth to Bottom of Layer	Soil Type	Soil Type per Table 10.5.5.2.4-1	Unit Weight, γ_t (kcf)	Undrained Shear Strength for Clay, S _u (ksf)	SPT Blow Count Adjusted for Hammer Effeciency, N ₆₀ (blows/foot)	Uniaxial Compressive Strength of Rock, q _u (ksf)	Estimated Young's Modulus from Table C10.4.6.3-1, E_s (ksi)	at Top of	Elevation at Bottom of Layer
1	0	17	Clay	Clay	0.1100	2.75	20	n/a	10	2391	2374
2	17	30	Sand	Sand	0.1150	n/a	30	n/a	6	2374	2361
3	30	33	Caliche	Rock	0.1400	12	50	n/a	30	2361	2358
4	33	45	Clay	Clay	0.1240	4	40	n/a	12	2358	2346
5	45	47	Caliche	Rock	0.1400	n/a	50	n/a	30	2346	2344
6	47	52	Clay	Clay	0.1160	3	53	n/a	12	2344	2339
7	52	57	Caliche	Rock	0.1400	n/a	50	n/a	30	2339	2334
8	57	67	Clay	Clay	0.1100	2.5	30	n/a	10	2334	2324
9	67	77	Caliche	Rock	0.1400	n/a	50	n/a	30	2324	2314
10			None	None	n/a	n/a	n/a	n/a	n/a		
11			None	None	n/a	n/a	n/a	n/a	n/a		
12			None	None	n/a	n/a	n/a	n/a	n/a		
13			None	None	n/a	n/a	n/a	n/a	n/a		
14			None	None	n/a	n/a	n/a	n/a	n/a		
15			None	None	n/a	n/a	n/a	n/a	n/a		
16			None	None	n/a	n/a	n/a	n/a	n/a		
17			None	None	n/a	n/a	n/a	n/a	n/a		
18			None	None	n/a	n/a	n/a	n/a	n/a		
19			None	None	n/a	n/a	n/a	n/a	n/a		
20			None	None	n/a	n/a	n/a	n/a	n/a		

*Zero is at the Top of the Drilled Shaft, which is no higher than the surrounding finished grade.

Equations and Constants

		Zor	e of Excluded Side Friction at top of Shaft: Depth to Construction Joint/bottom of CMP	0 ft
			Permanent Casing Length	0 ft
			Depth of Exclusion Zone	5 ft
			Maximum Side Resistance in Exclusion Zone	0 ksf
	Factored Resistance			Constants
$R_R = \eta \phi R_n = \eta \phi_{ap} R_p + \eta \phi_{as} R_s$		Eq. 10.8.3.5-1	p _a = atmospheric pressure =	2.12 ksf
$\eta R_p = \eta q_p A_p$		Eq. 10.8.3.5-2		
$\eta R_s = \eta q_s A_s$		Eq. 10.8.3.5-3		
	Unit Side Resistance		U	nit Tip Resistance*
Cohesive Soil (clay)			Cohesive Soil (clay)	
$q_s = \alpha S_u$		Eq. 10.8.3.5.1b-1	$q_p = N_c S_u \le 80 \text{ ksf}$	
α = 0.55	for $S_u/p_a \le 1.5$	Eq. 10.8.3.5.1b-2	$N_c = 6[1+0.2(Z/D)] \le 9$	
$\alpha = 0.55 - 0.1(S_u/p_a - 1.5)$	for $1.5 \le S_u/p_a \le 2.5$	Eq. 10.8.3.5.1b-3		
$\alpha = 0$ for top five feet from	m the ground surface			
Cohesionless Soil (sand and	gravel)		Cohesionless Soil (sand and grave	el)
$q_s = \beta \sigma'_v$		Eq. 10.8.3.5.2b-1	$q_p = 1.2N_{60} \le 60 \text{ ksf}$	for N ₆₀ ≤ 50
$\beta = (1-\sin\phi'_f)(\sigma'_p/\sigma'_v)^{\sin\phi'f}\tan\phi'_f$		Eq. 10.8.3.5.2b-2		
φ' _f = 27.5 + 9.2 log[(N ₁) ₆₀]		Eq. 10.8.3.5.2b-3		
$\sigma'_{p} = p_{a} 0.47 (N_{60})^{m}$	for sand	Eq. 10.8.3.5.2b-4		
$\sigma'_{p} = p_{a} 0.15 (N_{60})$	for gravel	Eq. 10.8.3.5.2b-5		
Rock			Rock	
$q_s = p_a C[min(q_u, f'_c)/p_a]^{0.5}$	C = 1.0	Eq. 10.8.3.5.4b-1 not used	$q_p = 2.5q_u$	
$q_s = p_a 0.65 \alpha_E (q_u/p_a)^{0.5}$ $\alpha_E = joint modification factor$		Eq. 10.8.3.5.4b-2 used in ca	lculations	

Table	<u>10.8.3.5.4b-1</u>	Estimation of $\alpha_{\rm E}$

	α	value		
RQD (%)	Closed Joints	Open or Gouge-Filled Joints		ratio of rock mass intact rock modulus
100	1.00	0.85		
70	0.85	0.55		
50	0.60	0.55		
30	0.50	0.50		
20	0.45	0.45	\leftarrow	With no specific d

*Unit tip resistance presented in the table below is the lesser of the unit tip resistance of the current layer or the average unit tip resistance for the layers in the range of 2 diameters below the tip of the shaft, to account for weaker layers within the zone of influence of the shaft tip.

With no specific data on RQD, etc., assume worst case

from Table 10.5.5.2.4-1 Resistance Factors for Geotechnical Resistance of Drilled Shafts (abbreviated for ease of display)

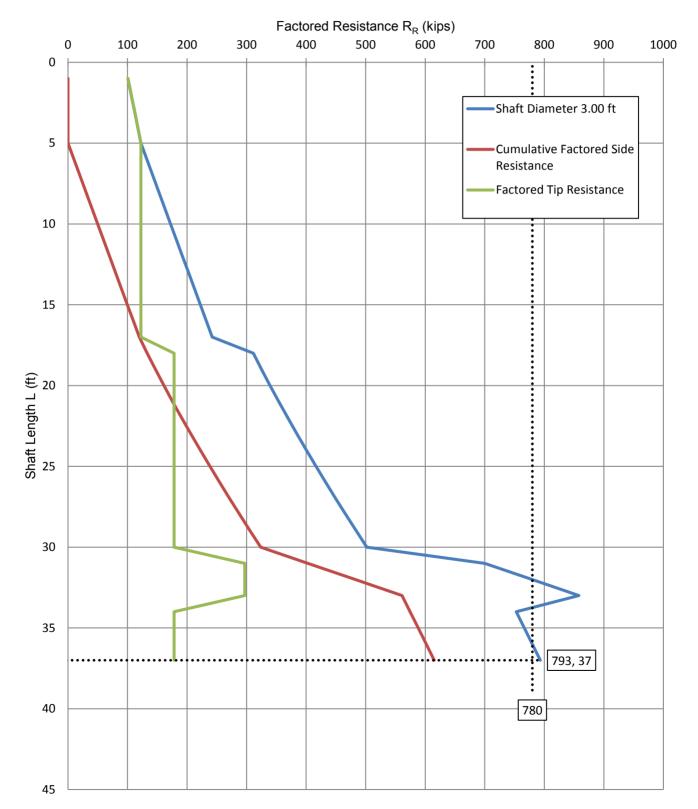
	Resistance Factors for Shaft Side Resistance	Resistance Factors for Shaft Tip Resistance*	Q _{strength}	780	kips	= maximum factored strength limit vertical load
Soil Type	φ _{qs}	φ _{qp}	L _{min}	37	ft	=minimum required shaft length
Clay	0.70	0.70	-			
IGM	0.70	0.70	R _R	793	kips	= factored resistance for the strength limit state at L_{min}
Rock	0.70	0.70	-			
Sand	0.70	0.70		615	kips	= factored side resistance for the strength limit state at L_{min}
	ce Factors used for Shaft bad testing that was perfo		R _n	1133	kips	= nominal resistance at L _{min}
Group effi	ciency factor for firm, sof	t, and very soft clays	Group effic	ciency factor	for sands	Linearly interpolated, based on Table 10.8.3.6.3-1 (AASHTO, 2014)

Oroup cill	Since and the second seco														
Linearly in	nterpolated, b	based on Section 10.7.3.9) (AASHTO, 2	2014)					C-T-C	η	I			Single Row	1.00
C-T-C	η						C-T-C	η	2.50	0.67					
2.50	0.65	C-T-C	4.00	\rightarrow	η =	1.00	2.00	0.90	3.00	0.80	C-T-C	4.00	\rightarrow	η =	1.00
6.00	1.00						3.00	1.00	4.00	1.00			-		

Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit State Stre			rength Limit St	ength Limit State		
Shaft Length	Soil Layer No.	Soil Type per Table 10.5.5.2.4-1	Total Vertical Effective Stress	Unit Side Resistance	Nominal Side Resistance per Unit Length	Cumulative Nominal Side Resistance	Unit Tip Resistance	Nominal Tip Resistance	Total Nominal Resistance	Resistance Factor for Shaft Side & Tip Resistance	Factored Resistance	Resistance Factor for Shaft Side Resistance	Resistance Factor for Shaft Tip Resistance	Cumulative Factored Side Resistance	Factored Tip Resistance	Factored Resistance
L	,		σ'ν	q _{si}	ηR _{si}	ηR _s	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	φ _{qp}	$η R_s φ_{qs}$	$\eta R_p \phi_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
1	1	Clay	0.415	0.0	0.0	0.0	20.4	143.9	143.9	1	143.9	0.70	0.70	0	101	101
2	1	Clay	0.525	0.0	0.0	0.0	21.5	151.7	151.7	1	151.7	0.70	0.70	0	106	106
3	1	Clay	0.635	0.0	0.0	0.0	22.6	159.4	159.4	1	159.4	0.70	0.70	0	112	112
4	1	Clay	0.745	0.0	0.0	0.0	23.7	167.2	167.2	1	167.2	0.70	0.70	0	117	117
5	1	Clay	0.855	0.0	0.0	0.0	24.8	175.0	175.0	1	175.0	0.70	0.70	0	122	122
6	1	Clay	0.965	1.5	14.2	14.2	24.8	175.0	189.2	1	189.2	0.70	0.70	10	122	132
7	1	Clay	1.075	1.5	14.2	28.5	24.8	175.0	203.5	1	203.5	0.70	0.70	20	122	142

LRFD Drilled Shaft Axial Analysis - Abut 1- 6'-dia updated loads 6-19-19.xlsx Calculations for Factored Geotechncial Resistance of Drilled Shafts


										Service Limit	State		St	rength Limit St	ate	
					Nominal Side							Resistance	Resistance	Cumulative		
		Soil Type per			Resistance	Cumulative				Resistance Factor for	Fratricia	Factor for	Factor for	Factored	Factors of The	Enstand
Ch a th L a mark	Cell Leven Ne	Table	Total Vertical	Unit Side	per Unit	Nominal Side	Unit Tip	Nominal Tip Resistance	Total Nominal Resistance	Shaft Side & Tip Resistance	Factored Resistance	Shaft Side Resistance	Shaft Tip Resistance	Side Resistance	Factored Tip Resistance	Factored Resistance
Shart Length	Soil Layer No.	10.5.5.2.4-1	Effective Stress	Resistance	Length nRsi	Resistance nRs	Resistance	ηR _p	η R _n		ηR _R					R _R
-			-	q _{si}	1 0/	1 0	q _{pi}	· · ·		φ		ϕ_{qs}	φ _{qp}	ηR _s φ _{qs}	ηR _p φ _{qp}	
(ft) 8	1	Clav	(ksf)	(ksf) 1.5	(kips/ft) 14.2	(kips) 42.7	(ksf) 24.8	(kips) 175.0	(kips) 217.7	1	(kips) 217.7	0.70	0.70	(kips) 30	(kips) 122	(kips) 152
8 9	1	Clay	1.185	1.5	14.2	42.7	24.8	175.0	217.7	1	217.7	0.70	0.70	40	122	162
9 10	1	Clay	1.295	1.5	14.2	57.0 71.2	24.8	175.0	232.0	1	232.0	0.70	0.70	40 50	122	162
10	1	Clay	1.405	1.5	14.2	85.5	24.8	175.0	240.2	1	246.2	0.70	0.70	50 60	122	172
12	1	Clay	1.625	1.5	14.2	99.7	24.0	175.0	274.7	1	274.7	0.70	0.70	70	122	192
12	1	Clay	1.735	1.5	14.2	99.7 114.0	24.0	175.0	274.7	1	289.0	0.70	0.70	80	122	202
13	1	Clay	1.845	1.5	14.2	128.2	24.8	175.0	303.2	1	303.2	0.70	0.70	90	122	202
14	1	Clay	1.955	1.5	14.2	142.5	24.8	175.0	317.5	1	317.5	0.70	0.70	100	122	212
15	1	Clay	2.065	1.5	14.2	142.5	24.8	175.0	331.5	1	331.7	0.70	0.70	110	122	232
17	1	Clay	2.175	1.5	14.2	171.0	24.8	175.0	346.0	1	346.0	0.70	0.70	120	122	242
17	2	Sand	2.173	2.0	19.2	190.1	36.0	254.5	444.6	1	444.6	0.70	0.70	133	178	311
10	2	Sand	2.403	2.0	19.2	209.9	36.0	254.5	464.4	1	464.4	0.70	0.70	147	178	325
20	2	Sand	2.518	2.2	20.4	230.3	36.0	254.5	484.8	1	484.8	0.70	0.70	161	178	339
20	2	Sand	2.633	2.2	21.0	251.3	36.0	254.5	505.8	1	505.8	0.70	0.70	176	178	354
22	2	Sand	2.748	2.3	21.5	272.8	36.0	254.5	527.3	1	527.3	0.70	0.70	191	178	369
23	2	Sand	2.863	2.3	22.1	294.9	36.0	254.5	549.4	1	549.4	0.70	0.70	206	178	385
24	2	Sand	2.978	2.4	22.6	317.4	36.0	254.5	572.0	1	572.0	0.70	0.70	222	178	400
25	2	Sand	3.093	2.4	23.1	340.5	36.0	254.5	595.0	1	595.0	0.70	0.70	238	178	417
26	2	Sand	3.208	2.5	23.5	364.1	36.0	254.5	618.6	1	618.6	0.70	0.70	255	178	433
27	2	Sand	3.323	2.5	24.0	388.0	36.0	254.5	642.6	1	642.6	0.70	0.70	272	178	450
28	2	Sand	3.438	2.6	24.4	412.5	36.0	254.5	667.0	1	667.0	0.70	0.70	289	178	467
29	2	Sand	3.553	2.6	24.8	437.3	36.0	254.5	691.8	1	691.8	0.70	0.70	306	178	484
30	2	Sand	3.668	2.7	25.2	462.6	36.0	254.5	717.1	1	717.1	0.70	0.70	324	178	502
31	3	Rock	3.795	12.0	113.0	575.6	60.0	424.2	999.8	1	999.8	0.70	0.70	403	297	700
32	3	Rock	3.935	12.0	113.0	688.6	60.0	424.2	1112.8	1	1112.8	0.70	0.70	482	297	779
33	3	Rock	4.075	12.0	113.0	801.7	60.0	424.2	1225.9	1	1225.9	0.70	0.70	561	297	858
34	4	Clay	4.207	2.0	19.3	820.9	36.0	254.5	1075.5	1	1075.5	0.70	0.70	575	178	753
35	4	Clay	4.331	2.0	19.3	840.2	36.0	254.5	1094.7	1	1094.7	0.70	0.70	588	178	766
36	4	Clay	4.455	2.0	19.3	859.5	36.0	254.5	1114.0	1	1114.0	0.70	0.70	602	178	780
37	4	Clay	4.579	2.0	19.3	878.7	36.0	254.5	1133.3	1	1133.3	0.70	0.70	615	178	793

LRFD Drilled Shaft Axial Analysis - Abut 1- 6'-dia updated loads 6-19-19.xlsx Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit	State		St	rength Limit St	ate	
Shaft Length	Soil Layer No.	Soil Type per Table 10.5.5.2.4-1	Total Vertical Effective Stress	Unit Side Resistance	Nominal Side Resistance per Unit Length	Cumulative Nominal Side Resistance	Unit Tip Resistance	Nominal Tip Resistance	Total Nominal Resistance	Resistance Factor for Shaft Side & Tip Resistance	Factored Resistance	Resistance Factor for Shaft Side Resistance	Resistance Factor for Shaft Tip Resistance	Cumulative Factored Side Resistance	Factored Tip Resistance	Factored Resistance
L			σ'ν	q _{si}	ηR _{si}	ηRs	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	φ _{qp}	$\eta R_{s} \phi_{qs}$	$\eta R_p \phi_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
38	4	Clay	4.703											#N/A	#N/A	#N/A
39	4	Clay	4.827											#N/A	#N/A	#N/A
40	4	Clay	4.951											#N/A	#N/A	#N/A
41	4	Clay	5.075											#N/A	#N/A	#N/A
42	4	Clay	5.199											#N/A	#N/A	#N/A
43	4	Clay	5.323											#N/A	#N/A	#N/A
44	4	Clay	5.447											#N/A	#N/A	#N/A
45	4	Clay	5.571											#N/A	#N/A	#N/A
46	5	Rock	5.703											#N/A	#N/A	#N/A
47	5	Rock	5.843											#N/A	#N/A	#N/A
48	6	Clay	5.971											#N/A	#N/A	#N/A

Drilled Shaft Factored Axial Resistance - Strength Limit State

Drilled Shaft Axial Resistance	e per AASHTO LRFD Bridge Design Specifications Section 10.	<u>Pier 1 - 6 ft dia</u>	meter	
Factored Vertical Loads prov	vided by the Structural Engineer	Drilled Shaft Pro	operties	
Q _{service} = 1110 kips	= maximum factored service limit vertical load	Shaft Diameter	6.00	ft shaft diameter 72 inches
		Ground Surface Elevation	2396.0	ft
		Top of Shaft Elevation	2391.0	ft
Q _{strength} = <u>1485</u> kips	= maximum factored strength limit vertical load	Groundwater Elevation	2331.0	ft
	✓ single shaft per pier ✓ Load Test Performed	Top of Native Elevation	2396.0	ft
input cells	_ 3 , ,	Ap	28.27	ft ² = area of shaft tip
	Cap firmly on at least firm/medium dense soil, no potenti	al scour A _s	18.85	ft ² /ft = area of shaft side surface per unit length
Soil Model, base	ed on: B-3	f'c	4.50	ksi = concrete compressive strength
Notes: stror	gest profile	E _c	3860.8	ksi = concrete elastic modulus (Eq. C5.4.2.4-1)
		D ₀	5.0	ft = depth to top of shaft
		γο	0.120	kcf = unit weight of soil above top of shaft
		C-T-C	0.0	x Diameter = center to center spacing
		Configuration	Single Row	<u> </u>

Soil Layer No.	Depth* to Top of Layer	Depth to Bottom of Layer	Soil Type	Soil Type per Table 10.5.5.2.4-1	Unit Weight, γ_t (kcf)	Undrained Shear Strength for Clay, S _u (ksf)	SPT Blow Count Adjusted for Hammer Effeciency, N ₆₀ (blows/foot)		Estimated Young's Modulus from Table C10.4.6.3-1, E _s (ksi)	at Top of	Elevation at Bottom of Layer
1	0	5	Clay	Clay	0.1150	2.75	29	n/a	10	2391	2386
2	5	15	Sand	Sand	0.1230	n/a	39	n/a	10	2386	2376
3	15	20	Clay	Clay	0.1150	4	50	n/a	10	2376	2371
4	20	28	Sand	Sand	0.1130	n/a	35	n/a	6	2371	2363
5	28	35	Caliche	Rock	0.1400	n/a	50	n/a	30	2363	2356
6	35	45	Clay	Clay	0.1160	3	36	n/a	10	2356	2346
7	45	50	Sand	Sand	0.1250	n/a	50	n/a	10	2346	2341
8	50	66	Caliche	Rock	0.1400	n/a	50	n/a	30	2341	2325
9	66	76	Caliche	Rock	0.0770	n/a	50	n/a	30	2325	2315
10			None	None	n/a	n/a	n/a	n/a	n/a		
11			None	None	n/a	n/a	n/a	n/a	n/a		
12			None	None	n/a	n/a	n/a	n/a	n/a		
13			None	None	n/a	n/a	n/a	n/a	n/a		
14			None	None	n/a	n/a	n/a	n/a	n/a		
15			None	None	n/a	n/a	n/a	n/a	n/a		
16			None	None	n/a	n/a	n/a	n/a	n/a		
17			None	None	n/a	n/a	n/a	n/a	n/a		
18			None	None	n/a	n/a	n/a	n/a	n/a		
19			None	None	n/a	n/a	n/a	n/a	n/a		
20			None	None	n/a	n/a	n/a	n/a	n/a		

*Zero is at the Top of the Drilled Shaft, which is no higher than the surrounding finished grade.

Equations and Constants

		Zor	e of Excluded Side Friction at top of Shaft: Depth to Construction Joint/bottom of CMP	0 ft
			Permanent Casing Length	0 ft
			Depth of Exclusion Zone	5 ft
			Maximum Side Resistance in Exclusion Zone	0 ksf
	Factored Resistance			Constants
$R_R = \eta \phi R_n = \eta \phi_{ap} R_p + \eta \phi_{as} R_s$		Eq. 10.8.3.5-1	p _a = atmospheric pressure =	2.12 ksf
$\eta R_p = \eta q_p A_p$		Eq. 10.8.3.5-2		
$\eta R_s = \eta q_s A_s$		Eq. 10.8.3.5-3		
	Unit Side Resistance		U	nit Tip Resistance*
Cohesive Soil (clay)			Cohesive Soil (clay)	
$q_s = \alpha S_u$		Eq. 10.8.3.5.1b-1	$q_p = N_c S_u \le 80 \text{ ksf}$	
α = 0.55	for $S_u/p_a \le 1.5$	Eq. 10.8.3.5.1b-2	$N_c = 6[1+0.2(Z/D)] \le 9$	
$\alpha = 0.55 - 0.1(S_u/p_a - 1.5)$	for $1.5 \le S_u/p_a \le 2.5$	Eq. 10.8.3.5.1b-3		
$\alpha = 0$ for top five feet from	m the ground surface			
Cohesionless Soil (sand and	gravel)		Cohesionless Soil (sand and grave	el)
$q_s = \beta \sigma'_v$		Eq. 10.8.3.5.2b-1	$q_p = 1.2N_{60} \le 60 \text{ ksf}$	for N ₆₀ ≤ 50
$\beta = (1-\sin\phi'_f)(\sigma'_p/\sigma'_v)^{\sin\phi'f}\tan\phi'_f$		Eq. 10.8.3.5.2b-2		
φ' _f = 27.5 + 9.2 log[(N ₁) ₆₀]		Eq. 10.8.3.5.2b-3		
$\sigma'_{p} = p_{a} 0.47 (N_{60})^{m}$	for sand	Eq. 10.8.3.5.2b-4		
$\sigma'_{p} = p_{a} 0.15 (N_{60})$	for gravel	Eq. 10.8.3.5.2b-5		
Rock			Rock	
$q_s = p_a C[min(q_u, f'_c)/p_a]^{0.5}$	C = 1.0	Eq. 10.8.3.5.4b-1 not used	$q_p = 2.5q_u$	
$q_s = p_a 0.65 \alpha_E (q_u/p_a)^{0.5}$ $\alpha_E = joint modification factor$		Eq. 10.8.3.5.4b-2 used in ca	lculations	

l able	10.8.3.5.4b-1	Estimation of $\alpha_{\rm E}$

	α _Ε	value		
RQD (%)	Closed Joints	Open or Gouge-Filled Joints		ratio of rock mass intact rock modulus
100	1.00	0.85		
70	0.85	0.55		
50	0.60	0.55		
30	0.50	0.50		
20	0.45	0.45	\leftarrow	With no specific d

*Unit tip resistance presented in the table below is the lesser of the unit tip resistance of the current layer or the average unit tip resistance for the layers in the range of 2 diameters below the tip of the shaft, to account for weaker layers within the zone of influence of the shaft tip.

With no specific data on RQD, etc., assume worst case

from Table 10.5.5.2.4-1 Resistance Factors for Geotechnical Resistance of Drilled Shafts (abbreviated for ease of display and reduced by 20% for lack of redundancy)

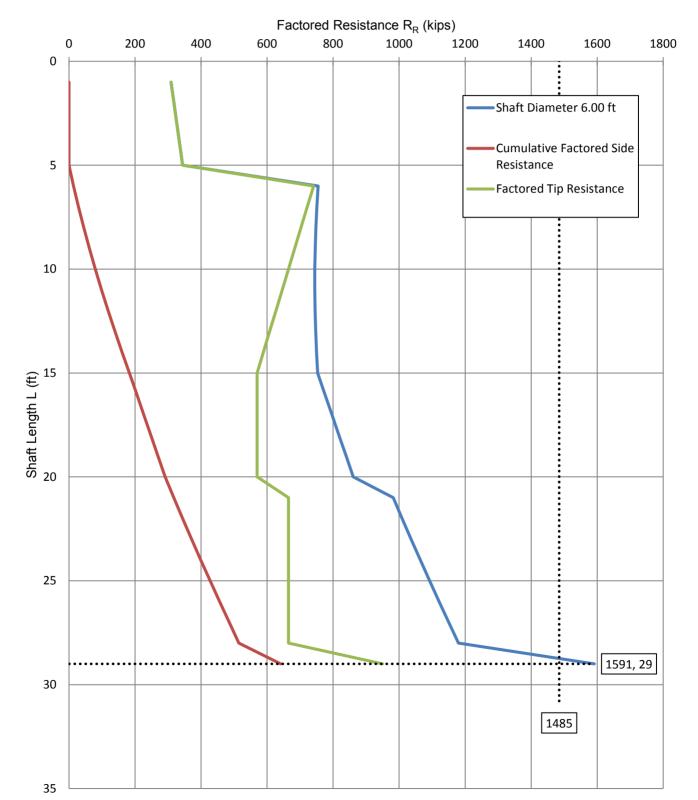
	Resistance Factors for Shaft Side Resistance	Resistance Factors for Shaft Tip Resistance*	Q _{streng}	_{th} 1485	kips	= maximu	m factored strength limit vertical load
Soil Type	φ _{qs}	φ _{qp}	L _{min}	29	ft	=minimun	n required shaft length
Clay	0.56	0.56					
IGM	0.56	0.56	R _R	1591	kips	= factored	I resistance for the strength limit state at L _{min}
Rock	0.56	0.56			—		
Sand	0.56	0.56		641	kips	= factored	I side resistance for the strength limit state at L_{min}
	ce Factors used for Shaft bad testing that was perfe	•	R _n	2842	kips	= nominal	resistance at L _{min}
Group effic	ciency factor for firm, sof	ft, and very soft clays	Group e	efficiency factor	for sands	Linearly in	terpolated, based on Table 10.8.3.6.3-1 (AASHTO, 2014)
Linearly in	terpolated, based on Sec	ction 10.7.3.9 (AASHTO, 20	4)		C-T-C	η	Single Row 1.00

C-T-C	η						C-T-C	η	2.50	0.67					
2.50	0.65	C-T-C	0.00	\rightarrow	η =	1.00	2.00	0.90	3.00	0.80	C-T-C	0.00	\rightarrow	η =	1.00
6.00	1.00						3.00	1.00	4.00	1.00	1				

Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit	State		St	rength Limit St	ate	
Shaft Length	Soil Layer No.	Soil Type per Table 10.5.5.2.4-1	Total Vertical Effective Stress	Unit Side Resistance	Nominal Side Resistance per Unit Length	Cumulative Nominal Side Resistance	Unit Tip Resistance	Nominal Tip Resistance	Total Nominal Resistance	Resistance Factor for Shaft Side & Tip Resistance	Factored Resistance	Resistance Factor for Shaft Side Resistance	Resistance Factor for Shaft Tip Resistance	Cumulative Factored Side Resistance	Factored Tip Resistance	Factored Resistance
L	,		σ'ν	q _{si}	ηR _{si}	ηR _s	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	φ _{qp}	$\eta R_s \phi_{qs}$	$η R_p φ_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
1	1	Clay	0.658	0.0	0.0	0.0	19.5	552.0	552.0	1	552.0	0.56	0.56	0	309	309
2	1	Clay	0.773	0.0	0.0	0.0	20.1	567.5	567.5	1	567.5	0.56	0.56	0	318	318
3	1	Clay	0.888	0.0	0.0	0.0	20.6	583.1	583.1	1	583.1	0.56	0.56	0	327	327
4	1	Clay	1.003	0.0	0.0	0.0	21.2	598.6	598.6	1	598.6	0.56	0.56	0	335	335
5	1	Clay	1.118	0.0	0.0	0.0	21.7	614.2	614.2	1	614.2	0.56	0.56	0	344	344
6	2	Sand	1.237	1.3	24.8	24.8	46.8	1323.0	1347.8	1	1347.8	0.56	0.56	14	741	755
7	2	Sand	1.360	1.4	26.7	51.5	45.6	1289.1	1340.6	1	1340.6	0.56	0.56	29	722	751

LRFD Drilled Shaft Axial Analysis - Pier 1- 6'-dia updated loads 6-13-19.xlsx Calculations for Factored Geotechncial Resistance of Drilled Shafts


										Service Limit	State		St	rength Limit St	ate	
					Nominal Side							Resistance	Resistance	Cumulative		
		Soil Type per			Resistance	Cumulative				Resistance Factor for		Factor for	Factor for	Factored		
		Table	Total Vertical	Unit Side		Nominal Side	Unit Tip	Nominal Tip	Total Nominal	Shaft Side & Tip	Factored	Shaft Side	Shaft Tip	Side	Factored Tip	
Shaft Length	Soil Layer No.	10.5.5.2.4-1	Effective Stress	Resistance	Length	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance
L			σ'ν	q _{si}	ηR _{si}	ηR_s	q _{pi}	ηR _p	ηR _n	φ	ηR _R	φ _{qs}	φ _{qp}	$\eta R_{s}\phi_{qs}$	$\eta R_p \phi_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
8	2	Sand	1.483	1.5	28.6	80.1	44.4	1255.2	1335.2	1	1335.2	0.56	0.56	45	703	748
9	2	Sand	1.606	1.6	30.4	110.4	43.2	1221.3	1331.7	1	1331.7	0.56	0.56	62	684	746
10	2	Sand	1.729	1.7	32.1	142.6	42.0	1187.3	1329.9	1	1329.9	0.56	0.56	80	665	745
11	2	Sand	1.852	1.8	33.8	176.4	40.8	1153.4	1329.8	1	1329.8	0.56	0.56	99	646	745
12	2	Sand	1.975	1.9	35.4	211.8	39.6	1119.5	1331.3	1	1331.3	0.56	0.56	119	627	746
13	2	Sand	2.098	2.0	37.0	248.8	38.4	1085.6	1334.3	1	1334.3	0.56	0.56	139	608	747
14	2	Sand	2.221	2.0	38.5	287.2	37.2	1051.6	1338.9	1	1338.9	0.56	0.56	161	589	750
15	2	Sand	2.344	2.1	39.9	327.2	36.0	1017.7	1344.9	1	1344.9	0.56	0.56	183	570	753
16	3	Clay	2.463	2.0	38.6	365.7	36.0	1017.7	1383.4	1	1383.4	0.56	0.56	205	570	775
17	3	Clay	2.578	2.0	38.6	404.3	36.0	1017.7	1422.0	1	1422.0	0.56	0.56	226	570	796
18	3	Clay	2.693	2.0	38.6	442.8	36.0	1017.7	1460.5	1	1460.5	0.56	0.56	248	570	818
19	3	Clay	2.808	2.0	38.6	481.4	36.0	1017.7	1499.1	1	1499.1	0.56	0.56	270	570	839
20	3	Clay	2.923	2.0	38.6	519.9	36.0	1017.7	1537.7	1	1537.7	0.56	0.56	291	570	861
21	4	Sand	3.037	2.5	46.8	566.8	42.0	1187.3	1754.1	1	1754.1	0.56	0.56	317	665	982
22	4	Sand	3.150	2.5	47.8	614.6	42.0	1187.3	1801.9	1	1801.9	0.56	0.56	344	665	1009
23	4	Sand	3.263	2.6	48.7	663.3	42.0	1187.3	1850.6	1	1850.6	0.56	0.56	371	665	1036
24	4	Sand	3.376	2.6	49.6	712.9	42.0	1187.3	1900.2	1	1900.2	0.56	0.56	399	665	1064
25	4	Sand	3.489	2.7	50.4	763.3	42.0	1187.3	1950.6	1	1950.6	0.56	0.56	427	665	1092
26	4	Sand	3.602	2.7	51.2	814.5	42.0	1187.3	2001.8	1	2001.8	0.56	0.56	456	665	1121
27	4	Sand	3.715	2.8	52.0	866.5	42.0	1187.3	2053.8	1	2053.8	0.56	0.56	485	665	1150
28	4	Sand	3.828	2.8	52.7	919.2	42.0	1187.3	2106.5	1	2106.5	0.56	0.56	515	665	1180
29	5	Rock	3.954	12.0	226.2	1145.4	60.0	1696.2	2841.6	1	2841.6	0.56	0.56	641	950	1591
30	5	Rock	4.094											#N/A	#N/A	#N/A
31	5	Rock	4.234											#N/A	#N/A	#N/A
32	5	Rock	4.374											#N/A	#N/A	#N/A
33	5	Rock	4.514											#N/A	#N/A	#N/A
34	5	Rock	4.654											#N/A	#N/A	#N/A
35	5	Rock	4.794											#N/A	#N/A	#N/A

LRFD Drilled Shaft Axial Analysis - Pier 1- 6'-dia updated loads 6-13-19.xlsx Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit	State		St	rength Limit St	ate	
Shaft Length	Soil Layer No.	Soil Type per Table 10.5.5.2.4-1	Total Vertical Effective Stress	Unit Side Resistance		Cumulative Nominal Side		Nominal Tip Resistance		Resistance Factor for Shaft Side & Tip Resistance	Factored Resistance	Resistance Factor for Shaft Side Resistance	Resistance Factor for Shaft Tip Resistance	Cumulative Factored Side Resistance	Factored Tip Resistance	Factored Resistance
L			σ'ν	q _{si}	ηR _{si}	ηRs	q _{pi}	ηR _p	ηR _n	φ	ηR _R	φ _{qs}	φ _{qp}	$\eta R_s \phi_{qs}$	$\eta R_p \phi_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
36	6	Clay	4.922											#N/A	#N/A	#N/A
37	6	Clay	5.038											#N/A	#N/A	#N/A
38	6	Clay	5.154											#N/A	#N/A	#N/A

Drilled Shaft Factored Axial Resistance - Strength Limit State

Drilled Shaft Axial Resistance	e per AASHTO LRFD Bridge Design Specifications Section 10.8	Pier 2 - 6 ft dia	meter	
Factored Vertical Loads pro	vided by the Structural Engineer	Drilled Shaft Pro	operties	
Q _{service} = 1110 kips	= maximum factored service limit vertical load	Shaft Diameter	6.00	ft shaft diameter 72 inches
		Ground Surface Elevation	2388.0	ft
		Top of Shaft Elevation	2387.0	ft
Q _{strength} = 1485 kips	= maximum factored strength limit vertical load	Groundwater Elevation	2331.0	ft
	✓ single shaft per pier ✓ Load Test Performed	Top of Native Elevation	2388.0	ft
input cells		Ap	28.27	ft ² = area of shaft tip
	Cap firmly on at least firm/medium dense soil, no potential	scour A _s	18.85	ft ² /ft = area of shaft side surface per unit length
Soil Model, bas	<u>ed on:</u> <u>B-4</u>	f'c	4.50	ksi = concrete compressive strength
Notes:		Ec	3860.8	ksi = concrete elastic modulus (Eq. C5.4.2.4-1)
		D ₀	1.0	ft = depth to top of shaft
		γο	0.120	kcf = unit weight of soil above top of shaft
		C-T-C	0.0	x Diameter = center to center spacing
		Configuration	Single Row	<u> </u>

Soil Layer No.	Depth* to Top of Layer	Depth to Bottom of Layer	Soil Type	Soil Type per Table 10.5.5.2.4-1	Unit Weight, γ_t (kcf)	Undrained Shear Strength for Clay, S _u (ksf)	SPT Blow Count Adjusted for Hammer Effeciency, N ₆₀ (blows/foot)		Estimated Young's Modulus from Table C10.4.6.3-1, E _s (ksi)	at Top of	Elevation at Bottom of Layer
1	0	10	Clay	Clay	0.1000	3	34	n/a	10	2387	2377
2	10	23	Gravel	Sand	0.1110	n/a	45	n/a	12	2377	2364
3	23	39	Clay	Clay	0.1100	4.3	40	n/a	10	2364	2348
4	39	45	Sand	Sand	0.1100	n/a	50	n/a	12	2348	2342
5	45	48	Caliche	Rock	0.1400	n/a	50	n/a	30	2342	2339
6	48	55	Clay	Clay	0.1140	4.5	50	n/a	10	2339	2332
7	55	70	Caliche	Rock	0.0800	n/a	50	n/a	30	2332	2317
8	70	80	Clay	Clay	0.0600	3	25	n/a	8	2317	2307
9			None	None	n/a	n/a	n/a	n/a	n/a		
10			None	None	n/a	n/a	n/a	n/a	n/a		
11			None	None	n/a	n/a	n/a	n/a	n/a		
12			None	None	n/a	n/a	n/a	n/a	n/a		
13			None	None	n/a	n/a	n/a	n/a	n/a		
14			None	None	n/a	n/a	n/a	n/a	n/a		
15			None	None	n/a	n/a	n/a	n/a	n/a		
16			None	None	n/a	n/a	n/a	n/a	n/a		
17			None	None	n/a	n/a	n/a	n/a	n/a		
18			None	None	n/a	n/a	n/a	n/a	n/a		
19			None	None	n/a	n/a	n/a	n/a	n/a		
20			None	None	n/a	n/a	n/a	n/a	n/a		

*Zero is at the Top of the Drilled Shaft, which is no higher than the surrounding finished grade.

Equations and Constants

				1
		Zor	e of Excluded Side Friction at top of Shaft: Depth to Construction Joint/bottom of CMP	0 ft
			Permanent Casing Length	0 ft
			Depth of Exclusion Zone	5 ft
			Maximum Side Resistance in Exclusion Zone	0 ksf
	Factored Resistance			Constants
$R_R = ηφR_n = ηφ_{qp}R_p + ηφ_{qs}R_s$		Eq. 10.8.3.5-1	p _a = atmospheric pressure =	2.12 ksf
$\eta R_p = \eta q_p A_p$		Eq. 10.8.3.5-2		
$\eta R_s = \eta q_s A_s$		Eq. 10.8.3.5-3		
	Unit Side Resistance		U	nit Tip Resistance*
Cohesive Soil (clay)			Cohesive Soil (clay)	
$q_s = \alpha S_u$		Eq. 10.8.3.5.1b-1	$q_p = N_c S_u \le 80 \text{ ksf}$	
α = 0.55	for $S_u/p_a \le 1.5$	Eq. 10.8.3.5.1b-2	$N_c = 6[1+0.2(Z/D)] \le 9$	
α = 0.55-0.1(S _u /p _a -1.5)	for $1.5 \le S_u/p_a \le 2.5$	Eq. 10.8.3.5.1b-3		
$\alpha = 0$ for top five feet from	m the ground surface			
Cohesionless Soil (sand and g	gravel)		Cohesionless Soil (sand and grave	el)
$q_s = \beta \sigma'_v$		Eq. 10.8.3.5.2b-1	$q_p = 1.2N_{60} \le 60 \text{ ksf}$	for N ₆₀ ≤ 50
$\beta = (1-\sin\phi'_{f})(\sigma'_{p}/\sigma'_{v})^{\sin\phi'f}\tan\phi'_{f}$		Eq. 10.8.3.5.2b-2		
$\phi'_{f} = 27.5 + 9.2 \log[(N_{1})_{60}]$		Eq. 10.8.3.5.2b-3		
$\sigma'_{p} = p_{a} 0.47 (N_{60})^{m}$	for sand	Eq. 10.8.3.5.2b-4		
$\sigma'_{p} = p_{a} 0.15 (N_{60})$	for gravel	Eq. 10.8.3.5.2b-5		
Rock			Rock	
$q_{s} = p_{a}C[min(q_{u},f_{c})/p_{a}]^{0.5}$	C = 1.0	Eq. 10.8.3.5.4b-1 not used	$q_p = 2.5q_u$	
$q_s = p_a 0.65 \alpha_E (q_u/p_a)^{0.5}$ α_E = joint modification factor		Eq. 10.8.3.5.4b-2 used in ca	culations	

I able	10.8.3.5.4b-1	Estimation	of $\alpha_{\rm E}$

	α	value		
RQD (%)		Open or Gouge-Filled Joints		ratio of rock mass intact rock modulus
100	1.00	0.85		
70	0.85	0.55		
50	0.60	0.55		
30	0.50	0.50		
20	0.45	0.45	\leftarrow	With no specific of
			-	

*Unit tip resistance presented in the table below is the lesser of the unit tip resistance of the current layer or the average unit tip resistance for the layers in the range of 2 diameters below the tip of the shaft, to account for weaker layers within the zone of influence of the shaft tip.

With no specific data on RQD, etc., assume worst case

from Table 10.5.5.2.4-1 Resistance Factors for Geotechnical Resistance of Drilled Shafts (abbreviated for ease of display and reduced by 20% for lack of redundancy)

	Resistance Factors for Shaft Side Resistance	Resistance Factors for Shaft Tip Resistance*	Q _{strength}	1485	kips	= maximum factored strength limit vertical load					
Soil Type	φ _{qs}	φ _{qp}	L _{min}	40	ft	=minimun	n required shaft length				
Clay	0.56	0.56									
IGM	0.56	0.56	R _R	1799	kips	= factored	d resistance for the strength limit state at L _{min}				
Rock	0.56	0.56			—						
Sand	0.56	0.56		849	kips	= factored	d side resistance for the strength limit state at L_{min}				
	ce Factors used for Shaft bad testing that was perfo	•	R _n	3213	kips	= nominal	I resistance at L _{min}				
Group effi	ciency factor for firm, sof	ft, and very soft clays	Group eff	ficiency factor f	or sands	Linearly ir	nterpolated, based on Table 10.8.3.6.3-1 (AASHTO, 2014)				
Linearly in	terpolated, based on Sec	ction 10.7.3.9 (AASHTO, 20			C-T-C	η	Single Row 1.00				

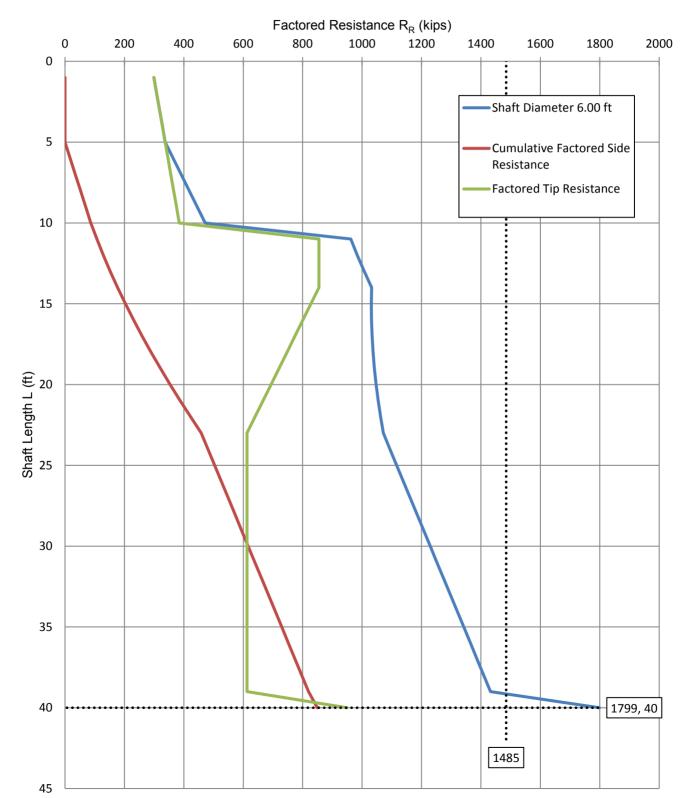
C-T-C	η							C-T-C	η	2.50	0.67						
2.50	0.65	C-T-	С	0.00	\rightarrow	η =	1.00	2.00	0.90	3.00	0.80	C-T-C	0.00	\rightarrow	η =	1.00	
6.00	1.00							3.00	1.00	4.00	1.00	T					

Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit	State		St	rength Limit St	ate	
Shaft Length	Soil Layer No.	Soil Type per Table 10.5.5.2.4-1	Total Vertical Effective Stress	Unit Side Resistance	Nominal Side Resistance per Unit Length	Cumulative Nominal Side Resistance	Unit Tip Resistance	Nominal Tip Resistance	Total Nominal Resistance	Resistance Factor for Shaft Side & Tip Resistance	Factored Resistance	Resistance Factor for Shaft Side Resistance	Resistance Factor for Shaft Tip Resistance	Cumulative Factored Side Resistance	Factored Tip Resistance	Factored Resistance
L	,		σ'ν	q _{si}	ηR _{si}	ηR _s	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	φ _{qp}	$\eta R_s \phi_{qs}$	$\eta R_p \phi_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
1	1	Clay	0.170	0.0	0.0	0.0	18.9	534.3	534.3	1	534.3	0.56	0.56	0	299	299
2	1	Clay	0.270	0.0	0.0	0.0	19.5	551.3	551.3	1	551.3	0.56	0.56	0	309	309
3	1	Clay	0.370	0.0	0.0	0.0	20.1	568.2	568.2	1	568.2	0.56	0.56	0	318	318
4	1	Clay	0.470	0.0	0.0	0.0	20.7	585.2	585.2	1	585.2	0.56	0.56	0	328	328
5	1	Clay	0.570	0.0	0.0	0.0	21.3	602.2	602.2	1	602.2	0.56	0.56	0	337	337
6	1	Clay	0.670	1.7	31.1	31.1	21.9	619.1	650.2	1	650.2	0.56	0.56	17	347	364
7	1	Clay	0.770	1.7	31.1	62.2	22.5	636.1	698.3	1	698.3	0.56	0.56	35	356	391

LRFD Drilled Shaft Axial Analysis - Pier 2- 6'-dia updated loads 6-13-19.xlsx Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit	State		St	rength Limit St	ate	
					Nominal Side							Resistance	Resistance	Cumulative		
		Soil Type per			Resistance	Cumulative				Resistance Factor for		Factor for	Factor for	Factored		
		Table	Total Vertical	Unit Side	per Unit	Nominal Side	Unit Tip	Nominal Tip	Total Nominal	Shaft Side & Tip	Factored	Shaft Side	Shaft Tip	Side	Factored Tip	
Shaft Length	Soil Layer No.	10.5.5.2.4-1	Effective Stress	Resistance	Length	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance
L			σ'ν	q _{si}	ηR _{si}	ηR _s	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	ϕ_{qp}	$\eta R_{s} \phi_{qs}$	$\eta R_p \phi_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
8	1	Clay	0.870	1.7	31.1	93.3	23.1	653.0	746.3	1	746.3	0.56	0.56	52	366	418
9	1	Clay	0.970	1.7	31.1	124.4	23.7	670.0	794.4	1	794.4	0.56	0.56	70	375	445
10	1	Clay	1.070	1.7	31.1	155.5	24.3	687.0	842.5	1	842.5	0.56	0.56	87	385	472
11	2	Sand	1.176	1.9	36.0	191.5	54.0	1526.6	1718.1	1	1718.1	0.56	0.56	107	855	962
12	2	Sand	1.287	2.1	38.8	230.4	54.0	1526.6	1756.9	1	1756.9	0.56	0.56	129	855	984
13	2	Sand	1.398	2.2	41.6	271.9	54.0	1526.6	1798.5	1	1798.5	0.56	0.56	152	855	1007
14	2	Sand	1.509	2.3	44.2	316.1	54.0	1526.6	1842.7	1	1842.7	0.56	0.56	177	855	1032
15	2	Sand	1.620	2.5	46.7	362.8	52.3	1478.5	1841.4	1	1841.4	0.56	0.56	203	828	1031
16	2	Sand	1.731	2.6	49.2	412.1	50.6	1430.5	1842.5	1	1842.5	0.56	0.56	231	801	1032
17	2	Sand	1.842	2.7	51.6	463.7	48.9	1382.4	1846.1	1	1846.1	0.56	0.56	260	774	1034
18	2	Sand	1.953	2.9	53.9	517.6	47.2	1334.3	1851.9	1	1851.9	0.56	0.56	290	747	1037
19	2	Sand	2.064	3.0	56.1	573.7	45.5	1286.3	1860.0	1	1860.0	0.56	0.56	321	720	1042
20	2	Sand	2.175	3.1	58.3	632.0	43.8	1238.2	1870.2	1	1870.2	0.56	0.56	354	693	1047
21	2	Sand	2.286	3.2	60.4	692.4	42.1	1190.2	1882.5	1	1882.5	0.56	0.56	388	666	1054
22	2	Sand	2.397	3.3	62.3	754.7	40.4	1142.1	1896.8	1	1896.8	0.56	0.56	423	640	1062
23	2	Sand	2.508	3.4	64.3	819.0	38.7	1094.0	1913.0	1	1913.0	0.56	0.56	459	613	1071
24	3	Clay	2.618	2.1	40.3	859.3	38.7	1094.0	1953.3	1	1953.3	0.56	0.56	481	613	1094
25	3	Clay	2.728	2.1	40.3	899.6	38.7	1094.0	1993.6	1	1993.6	0.56	0.56	504	613	1116
26	3	Clay	2.838	2.1	40.3	939.9	38.7	1094.0	2033.9	1	2033.9	0.56	0.56	526	613	1139
27	3	Clay	2.948	2.1	40.3	980.2	38.7	1094.0	2074.2	1	2074.2	0.56	0.56	549	613	1162
28	3	Clay	3.058	2.1	40.3	1020.5	38.7	1094.0	2114.5	1	2114.5	0.56	0.56	571	613	1184
29	3	Clay	3.168	2.1	40.3	1060.8	38.7	1094.0	2154.8	1	2154.8	0.56	0.56	594	613	1207
30	3	Clay	3.278	2.1	40.3	1101.1	38.7	1094.0	2195.1	1	2195.1	0.56	0.56	617	613	1229
31	3	Clay	3.388	2.1	40.3	1141.4	38.7	1094.0	2235.4	1	2235.4	0.56	0.56	639	613	1252
32	3	Clay	3.498	2.1	40.3	1181.6	38.7	1094.0	2275.7	1	2275.7	0.56	0.56	662	613	1274
33	3	Clay	3.608	2.1	40.3	1221.9	38.7	1094.0	2316.0	1	2316.0	0.56	0.56	684	613	1297
34	3	Clay	3.718	2.1	40.3	1262.2	38.7	1094.0	2356.3	1	2356.3	0.56	0.56	707	613	1320
35	3	Clay	3.828	2.1	40.3	1302.5	38.7	1094.0	2396.6	1	2396.6	0.56	0.56	729	613	1342


LRFD Drilled Shaft Axial Analysis - Pier 2- 6'-dia updated loads 6-13-19.xlsx Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit	State		St	rength Limit St	ate	
Shaft Length	Soil Layer No.	Soil Type per Table 10.5.5.2.4-1	Total Vertical Effective Stress	Unit Side Resistance	Nominal Side Resistance per Unit Length	Cumulative Nominal Side Resistance	Unit Tip Resistance	Nominal Tip Resistance	Total Nominal Resistance	Resistance Factor for Shaft Side & Tip Resistance	Factored Resistance	Resistance Factor for Shaft Side Resistance	Resistance Factor for Shaft Tip Resistance	Cumulative Factored Side Resistance	Factored Tip Resistance	Factored Resistance
L			σ'ν	q _{si}	ηR _{si}	ηRs	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	φ _{qp}	$\eta R_s \phi_{qs}$	$η R_p φ_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
36	3	Clay	3.938	2.1	40.3	1342.8	38.7	1094.0	2436.9	1	2436.9	0.56	0.56	752	613	1365
37	3	Clay	4.048	2.1	40.3	1383.1	38.7	1094.0	2477.2	1	2477.2	0.56	0.56	775	613	1387
38	3	Clay	4.158	2.1	40.3	1423.4	38.7	1094.0	2517.5	1	2517.5	0.56	0.56	797	613	1410
39	3	Clay	4.268	2.1	40.3	1463.7	38.7	1094.0	2557.8	1	2557.8	0.56	0.56	820	613	1432
40	4	Sand	4.378	2.8	52.9	1516.6	60.0	1696.2	3212.8	1	3212.8	0.56	0.56	849	950	1799
41	4	Sand	4.488											#N/A	#N/A	#N/A
42	4	Sand	4.598											#N/A	#N/A	#N/A
43	4	Sand	4.708											#N/A	#N/A	#N/A
44	4	Sand	4.818											#N/A	#N/A	#N/A
45	4	Sand	4.928											#N/A	#N/A	#N/A
46	5	Rock	5.053											#N/A	#N/A	#N/A
47	5	Rock	5.193											#N/A	#N/A	#N/A
48	5	Rock	5.333											#N/A	#N/A	#N/A
49	6	Clay	5.460											#N/A	#N/A	#N/A
50	6	Clay	5.574											#N/A	#N/A	#N/A
51	6	Clay	5.688											#N/A	#N/A	#N/A

Page 6 of 6

LRFD Drilled Shaft Axial Analysis - Pier 2- 6'-dia updated loads 6-13-19.xlsx

Drilled Shaft Factored Axial Resistance - Strength Limit State

LRFD Drilled Shaft Axial Analysis - Pier 3- 6' -dia updated loads 6-13-19.xlsx

Drilled Shaft Axial Resis	ance per AASHTO LRFD Bri	idge Design Specifications Section 1	Pier 3 based or	n Boring B-5			
Factored Vertical Loads	provided by the Structural Er	ngineer		Drilled Shaft Pro	operties		
Q _{service} = 765	ps = maximum factor	ed service limit vertical load		Shaft Diameter	6	ft	shaft diameter 72 inches
			Ground S	urface Elevation	2384.0	ft	
			Top of	Shaft Elevation	2381.0	ft	
Q _{strength} = <u>1014</u> ł	ps = maximum factor	ed strength limit vertical load	Ground	lwater Elevation	2331.0	ft	
	✓ single shaft period	er pier 🗹 Load Test Performed	Top of I	Native Elevation	2384.0	ft	
input cells			which a second	Ap	28.27	_ft ²	= area of shaft tip
		at least firm/medium dense soil, no pote	ential scour	As	18.85	ft²/ft	= area of shaft side surface per unit length
Soil Model,	based on: B-5			f'c	4.00	ksi	= concrete compressive strength
Notes:				Ec	3640.0	ksi	= concrete elastic modulus (Eq. C5.4.2.4-1)
				D ₀	3.0	ft	= depth to top of shaft
				γο	0.120	kcf	= unit weight of soil above top of shaft
				C-T-C	0.0	x Diameter	= center to center spacing
				Configuration	Single Row	_	

Soil Layer No.	Depth* to Top of Layer	Depth to Bottom of Layer	Soil Type	Soil Type per Table 10.5.5.2.4-1	Unit Weight, γ_t (kcf)	Undrained Shear Strength for Clay, S _u (ksf)	SPT Blow Count Adjusted for Hammer Effeciency, N ₆₀ (blows/foot)	Uniaxial Compressive Strength of Rock, q _u (ksf)	Estimated Young's Modulus from Table C10.4.6.3-1, E _s (ksi)	at Top of	Elevation at Bottom of Layer
1	0	27	Clay	Clay	0.1000	3	31	n/a	10	2381	2354
2	27	32	Caliche	Rock	0.1400	n/a	50	n/a	30	2354	2349
3	32	46	Clay	Clay	0.1150	4.3	50	n/a	12	2349	2335
4	46	52	Sand	Sand	0.0600	n/a	35	n/a	7	2335	2329
5	52	60	Caliche	Rock	0.0800	n/a	50	n/a	30	2329	2321
6	60	62	Caliche	Rock	0.0700	n/a	50	n/a	30	2321	2319
7	62	86	Clay	Clay	0.0540	4.8	18	n/a	10	2319	2295
8	86	91	Clay	Clay	0.0540	4.8	30	n/a	10	2295	2290
9	91	97	Clay	Clay	0.0540	4.8	18	n/a	10	2290	2284
10	97	107	Clay	Clay	0.0540	4.8	18	n/a	10	2284	2274
11			None	None	n/a	n/a	n/a	n/a	n/a		
12			None	None	n/a	n/a	n/a	n/a	n/a		
13			None	None	n/a	n/a	n/a	n/a	n/a		
14			None	None	n/a	n/a	n/a	n/a	n/a		
15			None	None	n/a	n/a	n/a	n/a	n/a		
16			None	None	n/a	n/a	n/a	n/a	n/a		
17			None	None	n/a	n/a	n/a	n/a	n/a		
18			None	None	n/a	n/a	n/a	n/a	n/a		
19			None	None	n/a	n/a	n/a	n/a	n/a		
20			None	None	n/a	n/a	n/a	n/a	n/a		

*Zero is at the Top of the Drilled Shaft, which is no higher than the surrounding finished grade.

LRFD Drilled Shaft Axial Analysis - Pier 3- 6' -dia updated loads 6-13-19.xlsx

Equations and Constants

		Zor	e of Excluded Side Friction at top of Shaft: Depth to Construction Joint/bottom of CMP	0 ft
			Permanent Casing Length	0 ft
			Depth of Exclusion Zone	5 ft
			Maximum Side Resistance in Exclusion Zone	0 ksf
	Factored Resistance			Constants
$R_R = \eta \phi R_n = \eta \phi_{ap} R_p + \eta \phi_{as} R_s$		Eq. 10.8.3.5-1	p _a = atmospheric pressure =	2.12 ksf
$\eta R_p = \eta q_p A_p$		Eq. 10.8.3.5-2		
$\eta R_s = \eta q_s A_s$		Eq. 10.8.3.5-3		
	Unit Side Resistance		U	nit Tip Resistance*
Cohesive Soil (clay)			Cohesive Soil (clay)	
$q_s = \alpha S_u$		Eq. 10.8.3.5.1b-1	$q_p = N_c S_u \le 80 \text{ ksf}$	
α = 0.55	for $S_u/p_a \le 1.5$	Eq. 10.8.3.5.1b-2	$N_c = 6[1+0.2(Z/D)] \le 9$	
$\alpha = 0.55 - 0.1(S_u/p_a - 1.5)$	for $1.5 \le S_u/p_a \le 2.5$	Eq. 10.8.3.5.1b-3		
$\alpha = 0$ for top five feet from	m the ground surface			
Cohesionless Soil (sand and	gravel)		Cohesionless Soil (sand and grave	el)
$q_s = \beta \sigma'_v$		Eq. 10.8.3.5.2b-1	$q_p = 1.2N_{60} \le 60 \text{ ksf}$	for N ₆₀ ≤ 50
$\beta = (1-\sin\phi'_f)(\sigma'_p/\sigma'_v)^{\sin\phi'f}\tan\phi'_f$		Eq. 10.8.3.5.2b-2		
φ' _f = 27.5 + 9.2 log[(N ₁) ₆₀]		Eq. 10.8.3.5.2b-3		
$\sigma'_{p} = p_{a} 0.47 (N_{60})^{m}$	for sand	Eq. 10.8.3.5.2b-4		
$\sigma'_{p} = p_{a} 0.15 (N_{60})$	for gravel	Eq. 10.8.3.5.2b-5		
Rock			Rock	
$q_s = p_a C[min(q_u, f'_c)/p_a]^{0.5}$	C = 1.0	Eq. 10.8.3.5.4b-1 not used	$q_p = 2.5q_u$	
$q_s = p_a 0.65 \alpha_E (q_u/p_a)^{0.5}$ $\alpha_E = joint modification factor$		Eq. 10.8.3.5.4b-2 used in ca	lculations	

LRFD Drilled Shaft Axial Analysis - Pier 3- 6' -dia updated loads 6-13-19.xlsx Table 10.8.3.5.4b-1 Estimation of $\alpha_{\rm E}$

E	$01 \alpha_{\rm F}$	Estimation	10.8.3.5.40-1	Table

	α	value	
RQD (%)	Closed Joints	Open or Gouge-Filled Joints	E _m /E _i is the ratio of rock mass modulus to intact rock modulus
100	1.00	0.85	
70	0.85	0.55	
50	0.60	0.55	
30	0.50	0.50	
20	0.45	0.45	With no specific of the spe

*Unit tip resistance presented in the table below is the lesser of the unit tip resistance of the current layer or the average unit tip resistance for the layers in the range of 2 diameters below the tip of the shaft, to account for weaker layers within the zone of influence of the shaft tip.

With no specific data on RQD, etc., assume worst case

from Table 10.5.5.2.4-1 Resistance Factors for Geotechnical Resistance of Drilled Shafts (abbreviated for ease of display and reduced by 20% for lack of redundancy)

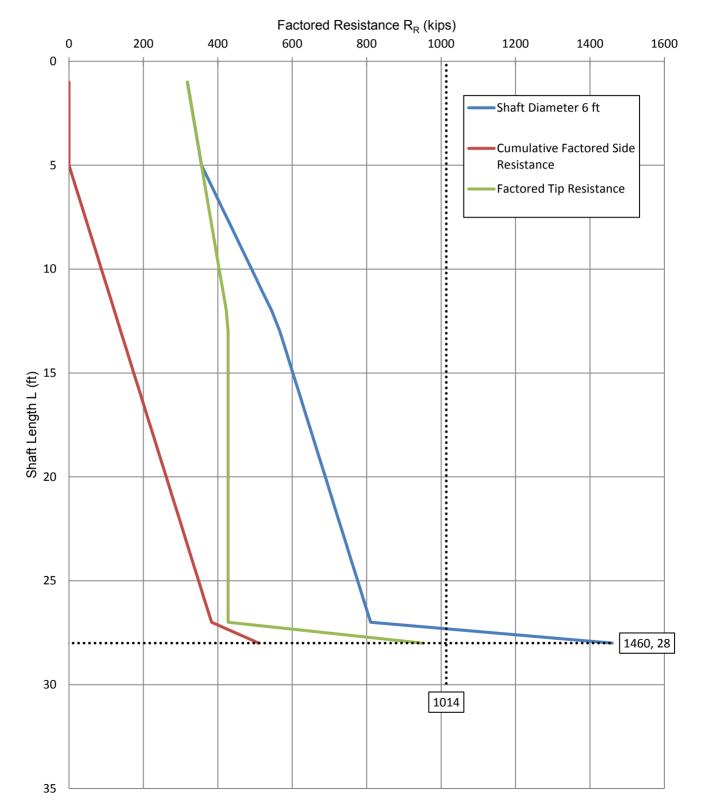
	Resistance Factors for Shaft Side Resistance	Resistance Factors for Shaft Tip Resistance
Soil Type	φ _{qs}	φ _{qp}
Clay	0.56	0.56
IGM	0.56	0.56
Rock	0.56	0.56
Sand	0.56	0.56

Q _{strength}	1014	kips	= maximum factored strength limit vertical load
L _{min}	28	ft	=minimum required shaft length
R _R	1460	kips	= factored resistance for the strength limit state at $\ensuremath{L_{min}}$
	510	kips	= factored side resistance for the strength limit state at $\ensuremath{L_{min}}$
R _n	2607	kips	= nominal resistance at L_{min}

Group effi	Group efficiency factor for firm, soft, and very soft clays							ciency factor for	sands	Linearly interpolated, based on Table 10.8.3.6.3-1 (AASHTO, 2014)						
Linearly in	terpolated, b	based on Section 10.7.3.9	(AASHTO, 2	014)					C-T-C	η	[Single Row	1.00	
C-T-C	η						C-T-C	η	2.50	0.67						
2.50	0.65	C-T-C	0.00	\rightarrow	η =	1.00	2.00	0.90	3.00	0.80	C-T-C	0.00	\rightarrow	η =	1.00	
6.00	1.00						3.00	1.00	4.00	1.00						

Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit	State		St	rength Limit St	ate	
Shaft Length	Soil Layer No.	Soil Type per Table 10.5.5.2.4-1	Total Vertical Effective Stress	Unit Side Resistance	Nominal Side Resistance per Unit Length	Cumulative Nominal Side Resistance	Unit Tip Resistance	Nominal Tip Resistance	Total Nominal Resistance	Resistance Factor for Shaft Side & Tip Resistance	Factored Resistance	Resistance Factor for Shaft Side Resistance	Resistance Factor for Shaft Tip Resistance	Cumulative Factored Side Resistance	Factored Tip Resistance	Factored Resistance
L			σ'ν	q _{si}	ηR _{si}	ηR _s	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	ϕ_{qp}	$\eta R_{s} \phi_{qs}$	$\eta R_p \phi_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
1	1	Clay	0.410	0.0	0.0	0.0	20.1	568.2	568.2	1	568.2	0.56	0.56	0	318	318
2	1	Clay	0.510	0.0	0.0	0.0	20.7	585.2	585.2	1	585.2	0.56	0.56	0	328	328
3	1	Clay	0.610	0.0	0.0	0.0	21.3	602.2	602.2	1	602.2	0.56	0.56	0	337	337
4	1	Clay	0.710	0.0	0.0	0.0	21.9	619.1	619.1	1	619.1	0.56	0.56	0	347	347
5	1	Clay	0.810	0.0	0.0	0.0	22.5	636.1	636.1	1	636.1	0.56	0.56	0	356	356
6	1	Clay	0.910	1.7	31.1	31.1	23.1	653.0	684.1	1	684.1	0.56	0.56	17	366	383
7	1	Clay	1.010	1.7	31.1	62.2	23.7	670.0	732.2	1	732.2	0.56	0.56	35	375	410



LRFD Drilled Shaft Axial Analysis - Pier 3- 6' -dia updated loads 6-13-19.xlsx Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit	State		St	rength Limit St	ate	
					Nominal Side							Resistance	Resistance	Cumulative		
		Soil Type per			Resistance	Cumulative				Resistance Factor for		Factor for	Factor for	Factored		
		Table	Total Vertical	Unit Side		Nominal Side	Unit Tip	Nominal Tip	Total Nominal	Shaft Side & Tip	Factored	Shaft Side	Shaft Tip	Side	Factored Tip	
Shaft Length	Soil Layer No.	10.5.5.2.4-1	Effective Stress	Resistance	Length	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance
L			σ'ν	q _{si}	ηR _{si}	ηR _s	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	φ _{qp}	ηR _s φ _{qs}	$\eta R_p \phi_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
8	1	Clay	1.110	1.7	31.1	93.3	24.3	687.0	780.3	1	780.3	0.56	0.56	52	385	437
9	1	Clay	1.210	1.7	31.1	124.4	24.9	703.9	828.3	1	828.3	0.56	0.56	70	394	464
10	1	Clay	1.310	1.7	31.1	155.5	25.5	720.9	876.4	1	876.4	0.56	0.56	87	404	491
11	1	Clay	1.410	1.7	31.1	186.6	26.1	737.8	924.5	1	924.5	0.56	0.56	105	413	518
12	1	Clay	1.510	1.7	31.1	217.7	26.7	754.8	972.5	1	972.5	0.56	0.56	122	423	545
13	1	Clay	1.610	1.7	31.1	248.8	27.0	763.3	1012.1	1	1012.1	0.56	0.56	139	427	567
14	1	Clay	1.710	1.7	31.1	279.9	27.0	763.3	1043.2	1	1043.2	0.56	0.56	157	427	584
15	1	Clay	1.810	1.7	31.1	311.0	27.0	763.3	1074.3	1	1074.3	0.56	0.56	174	427	602
16	1	Clay	1.910	1.7	31.1	342.1	27.0	763.3	1105.4	1	1105.4	0.56	0.56	192	427	619
17	1	Clay	2.010	1.7	31.1	373.2	27.0	763.3	1136.5	1	1136.5	0.56	0.56	209	427	636
18	1	Clay	2.110	1.7	31.1	404.3	27.0	763.3	1167.6	1	1167.6	0.56	0.56	226	427	654
19	1	Clay	2.210	1.7	31.1	435.4	27.0	763.3	1198.7	1	1198.7	0.56	0.56	244	427	671
20	1	Clay	2.310	1.7	31.1	466.5	27.0	763.3	1229.8	1	1229.8	0.56	0.56	261	427	689
21	1	Clay	2.410	1.7	31.1	497.6	27.0	763.3	1260.9	1	1260.9	0.56	0.56	279	427	706
22	1	Clay	2.510	1.7	31.1	528.7	27.0	763.3	1292.0	1	1292.0	0.56	0.56	296	427	724
23	1	Clay	2.610	1.7	31.1	559.8	27.0	763.3	1323.1	1	1323.1	0.56	0.56	314	427	741
24	1	Clay	2.710	1.7	31.1	590.9	27.0	763.3	1354.2	1	1354.2	0.56	0.56	331	427	758
25	1	Clay	2.810	1.7	31.1	622.1	27.0	763.3	1385.3	1	1385.3	0.56	0.56	348	427	776
26	1	Clay	2.910	1.7	31.1	653.2	27.0	763.3	1416.4	1	1416.4	0.56	0.56	366	427	793
27	1	Clay	3.010	1.7	31.1	684.3	27.0	763.3	1447.5	1	1447.5	0.56	0.56	383	427	811
28	2	Rock	3.130	12.0	226.2	910.5	60.0	1696.2	2606.7	1	2606.7	0.56	0.56	510	950	1460

LRFD Drilled Shaft Axial Analysis - Pier 3- 6' -dia updated loads 6-13-19.xlsx

Drilled Shaft Factored Axial Resistance - Strength Limit State

LRFD Drilled Shaft Axial Analysis - Pier 4- 6'-dia updated loads 6-13-19.xlsx

Drilled Shaft Axial Resistan	ce per AASHTO LRFD Bridge Design Specifications Section 10.8	Pier 4 - 6 ft dia	meter	
Factored Vertical Loads pro	ovided by the Structural Engineer	Drilled Shaft Pro	operties	
Q _{service} = 1085 kips	= maximum factored service limit vertical load	Shaft Diameter	6.00	ft shaft diameter 72 inches
		Ground Surface Elevation	2380.0	ft
		Top of Shaft Elevation	2380.0	ft
Q _{strength} = <u>1452</u> kips	= maximum factored strength limit vertical load	Groundwater Elevation	2331.0	ft
	✓ single shaft per pier ✓ Load Test Performed	Top of Native Elevation	2380.0	ft
input cells		Ap	28.27	_ft ² = area of shaft tip
	Cap firmly on at least firm/medium dense soil, no potential	scour A _s	18.85	ft ² /ft = area of shaft side surface per unit length
Soil Model, bas	sed on: <u>B-6</u>	f'c	4.50	ksi = concrete compressive strength
Notes:		Ec	3860.8	ksi = concrete elastic modulus (Eq. C5.4.2.4-1)
		D ₀	0.0	ft = depth to top of shaft
		γο	0.120	kcf = unit weight of soil above top of shaft
		C-T-C	0.0	x Diameter = center to center spacing
		Configuration	Single Row	_

Soil Layer No.	Depth* to Top of Layer	Depth to Bottom of Layer	Soil Type	Soil Type per Table 10.5.5.2.4-1	Unit Weight, γ_t (kcf)	Undrained Shear Strength for Clay, S _u (ksf)	SPT Blow Count Adjusted for Hammer Effeciency, N ₆₀ (blows/foot)		Estimated Young's Modulus from Table C10.4.6.3-1, E _s (ksi)	at Top of	Elevation at Bottom of Layer
1	0	11	Sand	Sand	0.1150	n/a	40	n/a	10	2380	2369
2	11	30	Clay	Clay	0.1000	4	40	n/a	12	2369	2350
3	30	33	Caliche	Rock	0.1400	n/a	50	n/a	30	2350	2347
4	33	37	Clay	Clay	0.1100	4	50	n/a	10	2347	2343
5	37	38	Caliche	Rock	0.1400	n/a	50	n/a	30	2343	2342
6	38	41	Clay	Clay	0.1100	4.8	50	n/a	10	2342	2339
7	41	44	Caliche	Rock	0.1400	n/a	50	n/a	30	2339	2336
8	44	50	Gravel	Sand	0.0600	n/a	50	n/a	9	2336	2330
9	50	60	Caliche	Rock	0.0800	n/a	50	n/a	30	2330	2320
10			None	None	n/a	n/a	n/a	n/a	n/a		
11			None	None	n/a	n/a	n/a	n/a	n/a		
12			None	None	n/a	n/a	n/a	n/a	n/a		
13			None	None	n/a	n/a	n/a	n/a	n/a		
14			None	None	n/a	n/a	n/a	n/a	n/a		
15			None	None	n/a	n/a	n/a	n/a	n/a		
16			None	None	n/a	n/a	n/a	n/a	n/a		
17			None	None	n/a	n/a	n/a	n/a	n/a		
18			None	None	n/a	n/a	n/a	n/a	n/a		
19			None	None	n/a	n/a	n/a	n/a	n/a		
20			None	None	n/a	n/a	n/a	n/a	n/a		

*Zero is at the Top of the Drilled Shaft, which is no higher than the surrounding finished grade.

LRFD Drilled Shaft Axial Analysis - Pier 4- 6'-dia updated loads 6-13-19.xlsx

Equations and Constants

		Zor	e of Excluded Side Friction at top of Shaft: Depth to Construction Joint/bottom of CMP	0 ft
			Permanent Casing Length	0 ft
			Depth of Exclusion Zone	5 ft
			Maximum Side Resistance in Exclusion Zone	0 ksf
	Factored Resistance			Constants
$R_R = \eta \phi R_n = \eta \phi_{ap} R_p + \eta \phi_{as} R_s$		Eq. 10.8.3.5-1	p _a = atmospheric pressure =	2.12 ksf
$\eta R_p = \eta q_p A_p$		Eq. 10.8.3.5-2		
$\eta R_s = \eta q_s A_s$		Eq. 10.8.3.5-3		
	Unit Side Resistance		U	nit Tip Resistance*
Cohesive Soil (clay)			Cohesive Soil (clay)	
$q_s = \alpha S_u$		Eq. 10.8.3.5.1b-1	$q_p = N_c S_u \le 80 \text{ ksf}$	
α = 0.55	for $S_u/p_a \le 1.5$	Eq. 10.8.3.5.1b-2	$N_c = 6[1+0.2(Z/D)] \le 9$	
$\alpha = 0.55 - 0.1(S_u/p_a - 1.5)$	for $1.5 \le S_u/p_a \le 2.5$	Eq. 10.8.3.5.1b-3		
$\alpha = 0$ for top five feet from	m the ground surface			
Cohesionless Soil (sand and	gravel)		Cohesionless Soil (sand and grave	el)
$q_s = \beta \sigma'_v$		Eq. 10.8.3.5.2b-1	$q_p = 1.2N_{60} \le 60 \text{ ksf}$	for N ₆₀ ≤ 50
$\beta = (1-\sin\phi'_f)(\sigma'_p/\sigma'_v)^{\sin\phi'f}\tan\phi'_f$		Eq. 10.8.3.5.2b-2		
φ' _f = 27.5 + 9.2 log[(N ₁) ₆₀]		Eq. 10.8.3.5.2b-3		
$\sigma'_{p} = p_{a} 0.47 (N_{60})^{m}$	for sand	Eq. 10.8.3.5.2b-4		
$\sigma'_{p} = p_{a} 0.15 (N_{60})$	for gravel	Eq. 10.8.3.5.2b-5		
Rock			Rock	
$q_s = p_a C[min(q_u, f'_c)/p_a]^{0.5}$	C = 1.0	Eq. 10.8.3.5.4b-1 not used	$q_p = 2.5q_u$	
$q_s = p_a 0.65 \alpha_E (q_u/p_a)^{0.5}$ $\alpha_E = joint modification factor$		Eq. 10.8.3.5.4b-2 used in ca	lculations	

2.50

6.00

0.65

1.00

LRFD Drilled Shaft Axial Analysis - Pier 4- 6'-dia updated loads 6-13-19.xlsx

Table	10.8.3.5.4b-1	Estimation of α_{E}

	α	value		
RQD (%)	Closed Joints	Open or Gouge-Filled Joints		ratio of rock mass intact rock modulus
100	1.00	0.85		
70	0.85	0.55		
50	0.60	0.55		
30	0.50	0.50		
20	0.45	0.45	\leftarrow	With no specific da

*Unit tip resistance presented in the table below is the lesser of the unit tip resistance of the current layer or the average unit tip resistance for the layers in the range of 2 diameters below the tip of the shaft, to account for weaker layers within the zone of influence of the shaft tip.

With no specific data on RQD, etc., assume worst case

from Table 10.5.5.2.4-1 Resistance Factors for Geotechnical Resistance of Drilled Shafts (abbreviated for ease of display and reduced by 20% for lack of redundancy)

1.00

η =

	Resistance Factors for Shaft Side Resistance	Resistance Factors for Shaft Tip Resistance*		Q _{strength}	1452	kips	= maximu	m factored strength limit vertical load
Soil Type	ϕ_{qs}	φ _{qp}		L _{min}	35	ft	=minimum	n required shaft length
Clay	0.56	0.56				—		
IGM	0.56	0.56		R _R	1468	kips	= factored	resistance for the strength limit state at Lmin
Rock	0.56	0.56				=		
Sand	0.56	0.56			898	kips	= factored	I side resistance for the strength limit state at L_{min}
	e Factors used for Shaft bad testing that was perfe			R _n	2622	kips	= nominal	resistance at L _{min}
Group effic	ciency factor for firm, sof	t, and very soft clays		Group effi	ciency factor for	or sands	Linearly in	terpolated, based on Table 10.8.3.6.3-1 (AASHTO, 2014)
Linearly in	terpolated, based on Sec	ction 10.7.3.9 (AASHTO, 20 [.]	14)			C-T-C	η	Single Row 1.00
C-T-C	η			C-T-C	η	2.50	0.67	Ĩ

Calculations for Factored Geotechncial Resistance of Drilled Shafts

C-T-C

0.00

 \rightarrow

										Service Limit	State		St	rength Limit St	ate	
Shaft Length	Soil Layer No.	Soil Type per Table 10.5.5.2.4-1	Total Vertical Effective Stress	Unit Side Resistance	Nominal Side Resistance per Unit Length	Cumulative Nominal Side Resistance	Unit Tip Resistance	Nominal Tip Resistance	Total Nominal Resistance	Resistance Factor for Shaft Side & Tip Resistance	Factored Resistance	Resistance Factor for Shaft Side Resistance	Resistance Factor for Shaft Tip Resistance	Cumulative Factored Side Resistance	Factored Tip Resistance	Factored Resistance
L			σ'ν	q _{si}	ηR _{si}	ηR _s	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	φ _{qp}	$\eta R_{s} \phi_{qs}$	$η R_p φ_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
1	1	Sand	0.058	0.0	0.0	0.0	48.0	1357.0	1357.0	1	1357.0	0.56	0.56	0	760	760
2	1	Sand	0.173	0.0	0.0	0.0	48.0	1357.0	1357.0	1	1357.0	0.56	0.56	0	760	760
3	1	Sand	0.288	0.0	0.0	0.0	46.4	1310.5	1310.5	1	1310.5	0.56	0.56	0	734	734
4	1	Sand	0.403	0.0	0.0	0.0	44.7	1264.0	1264.0	1	1264.0	0.56	0.56	0	708	708
5	1	Sand	0.518	0.0	0.0	0.0	43.1	1217.5	1217.5	1	1217.5	0.56	0.56	0	682	682
6	1	Sand	0.633	0.7	14.1	14.1	41.4	1171.0	1185.1	1	1185.1	0.56	0.56	8	656	664
7	1	Sand	0.748	0.9	16.3	30.4	39.8	1124.5	1154.9	1	1154.9	0.56	0.56	17	630	647

2.00

3.00

0.90

1.00

3.00

4.00

0.80

1.00

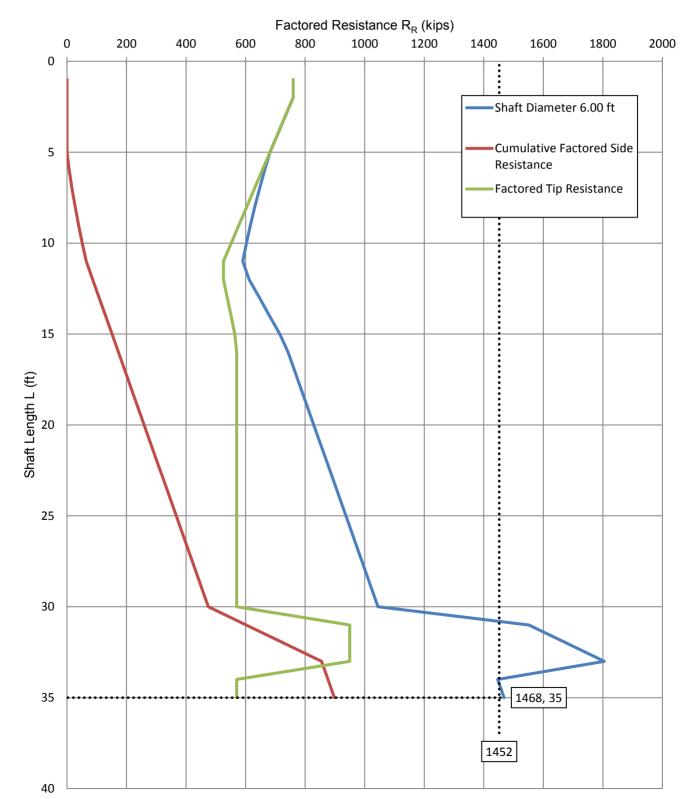
C-T-C 0.00 →

1.00

η=

LRFD Drilled Shaft Axial Analysis - Pier 4- 6'-dia updated loads 6-13-19.xlsx Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit	State		St	rength Limit St	ate	
					Nominal Side							Resistance	Resistance	Cumulative		
		Soil Type per			Resistance	Cumulative				Resistance Factor for		Factor for	Factor for	Factored		
		Table	Total Vertical	Unit Side	per Unit	Nominal Side	Unit Tip	Nominal Tip	Total Nominal	Shaft Side & Tip	Factored	Shaft Side	Shaft Tip	Side	Factored Tip	Factored
Shaft Length	Soil Layer No.	10.5.5.2.4-1	Effective Stress	Resistance	Length	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance
L			σ'ν	q _{si}	ηR _{si}	ηR _s	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	φ _{qp}	ηR _s φ _{qs}	$\eta R_p \phi_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
8	1	Sand	0.863	1.0	18.4	48.8	38.1	1078.0	1126.8	1	1126.8	0.56	0.56	27	604	631
9	1	Sand	0.978	1.1	20.4	69.2	36.5	1031.5	1100.7	1	1100.7	0.56	0.56	39	578	616
10	1	Sand	1.093	1.2	22.3	91.5	34.8	985.1	1076.5	1	1076.5	0.56	0.56	51	552	603
11	1	Sand	1.208	1.3	24.2	115.7	33.2	938.6	1054.2	1	1054.2	0.56	0.56	65	526	590
12	2	Clay	1.315	2.0	38.6	154.2	33.2	938.6	1092.8	1	1092.8	0.56	0.56	86	526	612
13	2	Clay	1.415	2.0	38.6	192.8	34.0	961.2	1154.0	1	1154.0	0.56	0.56	108	538	646
14	2	Clay	1.515	2.0	38.6	231.3	34.8	983.8	1215.1	1	1215.1	0.56	0.56	130	551	680
15	2	Clay	1.615	2.0	38.6	269.9	35.6	1006.4	1276.3	1	1276.3	0.56	0.56	151	564	715
16	2	Clay	1.715	2.0	38.6	308.4	36.0	1017.7	1326.2	1	1326.2	0.56	0.56	173	570	743
17	2	Clay	1.815	2.0	38.6	347.0	36.0	1017.7	1364.7	1	1364.7	0.56	0.56	194	570	764
18	2	Clay	1.915	2.0	38.6	385.5	36.0	1017.7	1403.3	1	1403.3	0.56	0.56	216	570	786
19	2	Clay	2.015	2.0	38.6	424.1	36.0	1017.7	1441.8	1	1441.8	0.56	0.56	237	570	807
20	2	Clay	2.115	2.0	38.6	462.6	36.0	1017.7	1480.4	1	1480.4	0.56	0.56	259	570	829
21	2	Clay	2.215	2.0	38.6	501.2	36.0	1017.7	1518.9	1	1518.9	0.56	0.56	281	570	851
22	2	Clay	2.315	2.0	38.6	539.8	36.0	1017.7	1557.5	1	1557.5	0.56	0.56	302	570	872
23	2	Clay	2.415	2.0	38.6	578.3	36.0	1017.7	1596.0	1	1596.0	0.56	0.56	324	570	894
24	2	Clay	2.515	2.0	38.6	616.9	36.0	1017.7	1634.6	1	1634.6	0.56	0.56	345	570	915
25	2	Clay	2.615	2.0	38.6	655.4	36.0	1017.7	1673.1	1	1673.1	0.56	0.56	367	570	937
26	2	Clay	2.715	2.0	38.6	694.0	36.0	1017.7	1711.7	1	1711.7	0.56	0.56	389	570	959
27	2	Clay	2.815	2.0	38.6	732.5	36.0	1017.7	1750.2	1	1750.2	0.56	0.56	410	570	980
28	2	Clay	2.915	2.0	38.6	771.1	36.0	1017.7	1788.8	1	1788.8	0.56	0.56	432	570	1002
29	2	Clay	3.015	2.0	38.6	809.6	36.0	1017.7	1827.3	1	1827.3	0.56	0.56	453	570	1023
30	2	Clay	3.115	2.0	38.6	848.2	36.0	1017.7	1865.9	1	1865.9	0.56	0.56	475	570	1045
31	3	Rock	3.235	12.0	226.2	1074.4	60.0	1696.2	2770.6	1	2770.6	0.56	0.56	602	950	1552
32	3	Rock	3.375	12.0	226.2	1300.6	60.0	1696.2	2996.8	1	2996.8	0.56	0.56	728	950	1678
33	3	Rock	3.515	12.0	226.2	1526.8	60.0	1696.2	3223.0	1	3223.0	0.56	0.56	855	950	1805
34	4	Clay	3.640	2.0	38.6	1565.3	36.0	1017.7	2583.1	1	2583.1	0.56	0.56	877	570	1447
35	4	Clay	3.750	2.0	38.6	1603.9	36.0	1017.7	2621.6	1	2621.6	0.56	0.56	898	570	1468



LRFD Drilled Shaft Axial Analysis - Pier 4- 6'-dia updated loads 6-13-19.xlsx Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit	State		St	rength Limit St	ate	
Shaft Length	Soil Layer No.	Soil Type per Table 10.5.5.2.4-1	Total Vertical Effective Stress	Unit Side Resistance	Nominal Side Resistance per Unit Length	Cumulative Nominal Side Resistance	Unit Tip Resistance	Nominal Tip Resistance	Total Nominal Resistance	Resistance Factor for Shaft Side & Tip Resistance	Factored Resistance	Resistance Factor for Shaft Side Resistance	Resistance Factor for Shaft Tip Resistance	Cumulative Factored Side Resistance	Factored Tip Resistance	Factored Resistance
L			σ'ν	q _{si}	ηR _{si}	ηRs	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	φ _{qp}	$\eta R_{s} \phi_{qs}$	$\eta R_p \phi_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
36	4	Clay	3.860											#N/A	#N/A	#N/A
37	4	Clay	3.970											#N/A	#N/A	#N/A
38	5	Rock	4.095											#N/A	#N/A	#N/A
39	6	Clay	4.220											#N/A	#N/A	#N/A
40	6	Clay	4.330											#N/A	#N/A	#N/A
41	6	Clay	4.440											#N/A	#N/A	#N/A
42	7	Rock	4.565											#N/A	#N/A	#N/A

LRFD Drilled Shaft Axial Analysis - Pier 4- 6'-dia updated loads 6-13-19.xlsx

Drilled Shaft Factored Axial Resistance - Strength Limit State

LRFD Drilled Shaft Axial Analysis - Pier 5- 6'-dia updated loads 6-13-19.xlsx

Drilled Shaft Axial Resis	stance per	AASHTO LRFD Bridge Desi	gn Specifications Section	<u>10.8</u>	Pier 5 - 6 ft dia	meter				
Factored Vertical Loads	s provided	by the Structural Engineer			Drilled Shaft Pro	operties				
Q _{service} = 430 H	kips	= maximum factored servic	e limit vertical load		Shaft Diameter	6.00	ft	shaft diameter	72	inches
				Ground S	urface Elevation	2377.0	ft			
				Top of	Shaft Elevation	2377.0	ft			
Q _{strength} = 568	kips	= maximum factored streng	oth limit vertical load	Ground	water Elevation	2331.0	ft			
		✓ single shaft per pier	Load Test Performed	Top of I	Native Elevation	2377.0	ft			
input cells		_ 3 1 1			Ap	28.27	_ft ²	= area of shaft tip		
		Cap firmly on at least fil	rm/medium dense soil, no pot	ential scour	As	18.85	ft²/ft	= area of shaft side su	face pe	er unit length
Soil Model,	based on:	<u>B-7</u>			f'c	4.50	ksi	= concrete compressiv	e stren	gth
Notes: I	Moderate	Profile			Ec	3860.8	ksi	= concrete elastic mod	ulus (E	q. C5.4.2.4-1)
					D ₀	0.0	ft	= depth to top of shaft		
					γο	0.120	kcf	= unit weight of soil ab	ove top	of shaft
					C-T-C	0.0	x Diameter	= center to center space	ing	
					Configuration	Single Row	_			

Soil Layer No.	Depth* to Top of Layer	Depth to Bottom of Layer	Soil Type	Soil Type per Table 10.5.5.2.4-1	Unit Weight, γ_t (kcf)	Undrained Shear Strength for Clay, S _u (ksf)	SPT Blow Count Adjusted for Hammer Effeciency, N ₆₀ (blows/foot)		Estimated Young's Modulus from Table C10.4.6.3-1, E _s (ksi)	at Top of	Elevation at Bottom of Layer
1	0	21	Clay	Clay	0.0960	3	34	n/a	10	2377	2356
2	21	28	Clay	Clay	0.1110	3.25	40	n/a	10	2356	2349
3	28	31	Sand	Sand	0.1170	n/a	50	n/a	10	2349	2346
4	31	35	Caliche	Rock	0.1400	n/a	50	n/a	30	2346	2342
5	35	40	Clay	Clay	0.1150	4	32	n/a	10	2342	2337
6	40	52	Caliche	Rock	0.1140	n/a	50	n/a	30	2337	2325
7	52	81	Clay	Clay	0.0600	3	25	n/a	8	2325	2296
8	81	91	Clay	Clay	0.0600	3	25	n/a	8	2296	2286
9			None	None	n/a	n/a	n/a	n/a	n/a		
10			None	None	n/a	n/a	n/a	n/a	n/a		
11			None	None	n/a	n/a	n/a	n/a	n/a		
12			None	None	n/a	n/a	n/a	n/a	n/a		
13			None	None	n/a	n/a	n/a	n/a	n/a		
14			None	None	n/a	n/a	n/a	n/a	n/a		
15			None	None	n/a	n/a	n/a	n/a	n/a		
16			None	None	n/a	n/a	n/a	n/a	n/a		
17			None	None	n/a	n/a	n/a	n/a	n/a		
18			None	None	n/a	n/a	n/a	n/a	n/a		
19			None	None	n/a	n/a	n/a	n/a	n/a		
20			None	None	n/a	n/a	n/a	n/a	n/a		

*Zero is at the Top of the Drilled Shaft, which is no higher than the surrounding finished grade.

LRFD Drilled Shaft Axial Analysis - Pier 5- 6'-dia updated loads 6-13-19.xlsx

Equations and Constants

		Zor	e of Excluded Side Friction at top of Shaft: Depth to Construction Joint/bottom of CMP	0 ft
			Permanent Casing Length	0 ft
			Depth of Exclusion Zone	5 ft
			Maximum Side Resistance in Exclusion Zone	0 ksf
	Factored Resistance			Constants
$R_R = \eta \phi R_n = \eta \phi_{ap} R_p + \eta \phi_{as} R_s$		Eq. 10.8.3.5-1	p _a = atmospheric pressure =	2.12 ksf
$\eta R_p = \eta q_p A_p$		Eq. 10.8.3.5-2		
$\eta R_s = \eta q_s A_s$		Eq. 10.8.3.5-3		
	Unit Side Resistance		U	nit Tip Resistance*
Cohesive Soil (clay)			Cohesive Soil (clay)	
$q_s = \alpha S_u$		Eq. 10.8.3.5.1b-1	$q_p = N_c S_u \le 80 \text{ ksf}$	
α = 0.55	for $S_u/p_a \le 1.5$	Eq. 10.8.3.5.1b-2	$N_c = 6[1+0.2(Z/D)] \le 9$	
$\alpha = 0.55 - 0.1(S_u/p_a - 1.5)$	for $1.5 \le S_u/p_a \le 2.5$	Eq. 10.8.3.5.1b-3		
$\alpha = 0$ for top five feet from	m the ground surface			
Cohesionless Soil (sand and	gravel)		Cohesionless Soil (sand and grave	el)
$q_s = \beta \sigma'_v$		Eq. 10.8.3.5.2b-1	$q_p = 1.2N_{60} \le 60 \text{ ksf}$	for N ₆₀ ≤ 50
$\beta = (1-\sin\phi'_f)(\sigma'_p/\sigma'_v)^{\sin\phi'f}\tan\phi'_f$		Eq. 10.8.3.5.2b-2		
φ' _f = 27.5 + 9.2 log[(N ₁) ₆₀]		Eq. 10.8.3.5.2b-3		
$\sigma'_{p} = p_{a} 0.47 (N_{60})^{m}$	for sand	Eq. 10.8.3.5.2b-4		
$\sigma'_{p} = p_{a} 0.15 (N_{60})$	for gravel	Eq. 10.8.3.5.2b-5		
Rock			Rock	
$q_s = p_a C[min(q_u, f'_c)/p_a]^{0.5}$	C = 1.0	Eq. 10.8.3.5.4b-1 not used	$q_p = 2.5q_u$	
$q_s = p_a 0.65 \alpha_E (q_u/p_a)^{0.5}$ $\alpha_E = joint modification factor$		Eq. 10.8.3.5.4b-2 used in ca	lculations	

LRFD Drilled Shaft Axial Analysis - Pier 5- 6'-dia updated loads 6-13-19.xlsx Table 10.8.3.5.4b-1 Estimation of $\alpha_{\rm E}$

Table	10.0.3.3.40-1	ESUMATION	$01 \alpha_{\rm E}$
			α_E value

	$\alpha_{\rm E}$	value	
RQD (%)			E _m /E _i is the ratio of rock mass modulus to intact rock modulus
100	1.00	0.85	
70	0.85	0.55	
50	0.60	0.55	
30	0.50	0.50	
20	0.45	0.45	← With no specific da

*Unit tip resistance presented in the table below is the lesser of the unit tip resistance of the current layer or the average unit tip resistance for the layers in the range of 2 diameters below the tip of the shaft, to account for weaker layers within the zone of influence of the shaft tip.

With no specific data on RQD, etc., assume worst case

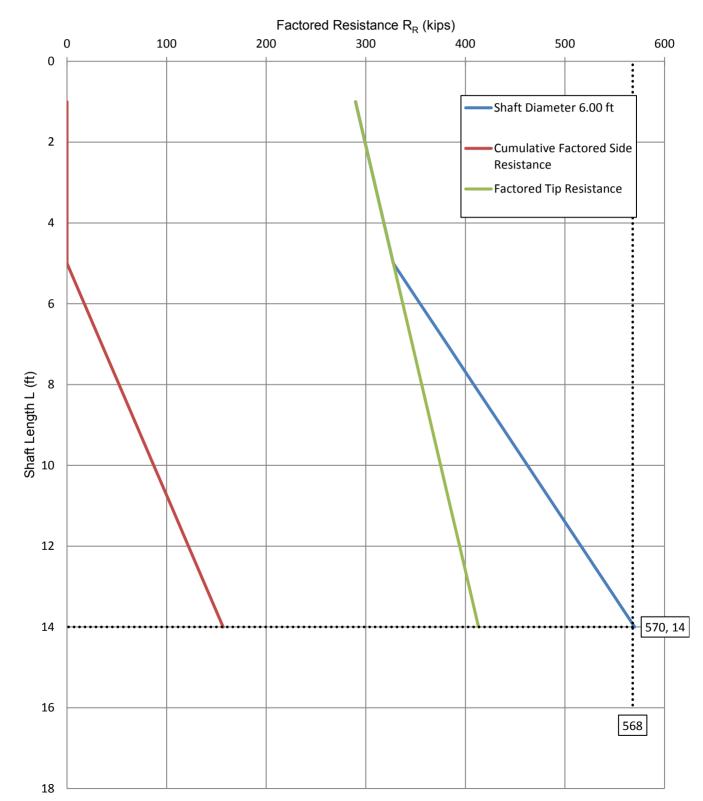
from Table 10.5.5.2.4-1 Resistance Factors for Geotechnical Resistance of Drilled Shafts (abbreviated for ease of display and reduced by 20% for lack of redundancy)

	Resistance Factors for	Resistance Factors for		Q _{strenath}	568	kips	= maximu	m factored strength limit vertical load
	Shaft Side Resistance	Shaft Tip Resistance*						
Soil Type	φ _{qs}	φ _{qp}		Lmin	14	ft	=minimum	n required shaft length
Clay	0.56	0.56		-		_		
IGM	0.56	0.56		R _R	570	kips	= factored	I resistance for the strength limit state at L _{min}
Rock	0.56	0.56						
Sand	0.56	0.56			157	kips	= factored	I side resistance for the strength limit state at L_{min}
*Resistan	ce Factors used for Shaf	t Tip Resistance do not						
consider lo	oad testing that was perfe	ormed.		R _n	1018	kips	= nominal	resistance at L _{min}
Group effi	ciency factor for firm, sof	<u>ft, and very soft clays</u>	<u>(</u>	Group effic	ciency factor fo	<u>r sands</u>	Linearly in	terpolated, based on Table 10.8.3.6.3-1 (AASHTO, 2014)
Linearly in	terpolated, based on Sec	ction 10.7.3.9 (AASHTO, 20 ⁻	4)			C-T-C	η	Single Row 1.00

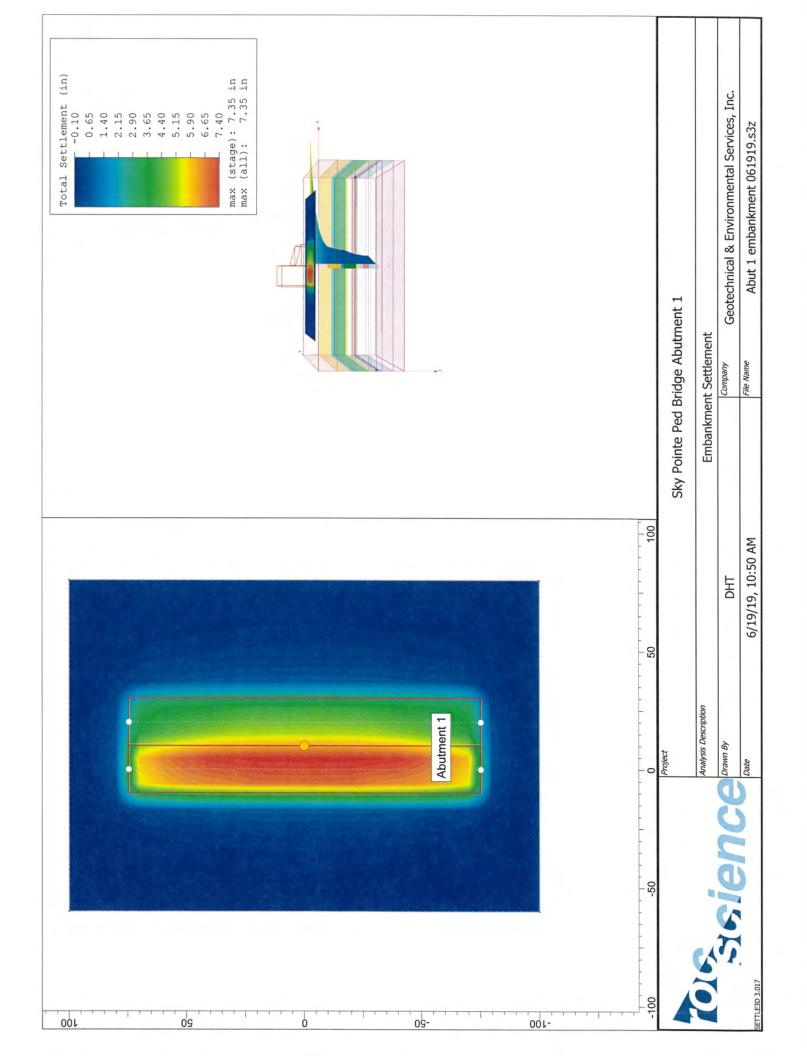
C-T-C	η						C-T-C	η	2.50	0.67						l
2.50	0.65	C-T-C	0.00	\rightarrow	η =	1.00	2.00	0.90	3.00	0.80	C-T-C	0.00	\rightarrow	η =	1.00	l
6.00	1.00						3.00	1.00	4.00	1.00	I					l

Calculations for Factored Geotechncial Resistance of Drilled Shafts

										Service Limit State Strength Limit State						
Shaft Length	Soil Layer No.	Soil Type per Table 10.5.5.2.4-1	Total Vertical Effective Stress	Unit Side Resistance	Nominal Side Resistance per Unit Length	Cumulative Nominal Side Resistance	Unit Tip Resistance	Nominal Tip Resistance	Total Nominal Resistance	Resistance Factor for Shaft Side & Tip Resistance	Factored Resistance	Resistance Factor for Shaft Side Resistance	Resistance Factor for Shaft Tip Resistance	Cumulative Factored Side Resistance	Factored Tip Resistance	Factored Resistance
L	,		σ'ν	q _{si}	ηR _{si}	ηR _s	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	φ _{qp}	$\eta R_s \phi_{qs}$	$η R_p φ_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
1	1	Clay	0.048	0.0	0.0	0.0	18.3	517.3	517.3	1	517.3	0.56	0.56	0	290	290
2	1	Clay	0.144	0.0	0.0	0.0	18.9	534.3	534.3	1	534.3	0.56	0.56	0	299	299
3	1	Clay	0.240	0.0	0.0	0.0	19.5	551.3	551.3	1	551.3	0.56	0.56	0	309	309
4	1	Clay	0.336	0.0	0.0	0.0	20.1	568.2	568.2	1	568.2	0.56	0.56	0	318	318
5	1	Clay	0.432	0.0	0.0	0.0	20.7	585.2	585.2	1	585.2	0.56	0.56	0	328	328
6	1	Clay	0.528	1.7	31.1	31.1	21.3	602.2	633.3	1	633.3	0.56	0.56	17	337	355
7	1	Clay	0.624	1.7	31.1	62.2	21.9	619.1	681.3	1	681.3	0.56	0.56	35	347	382



LRFD Drilled Shaft Axial Analysis - Pier 5- 6'-dia updated loads 6-13-19.xlsx Calculations for Factored Geotechncial Resistance of Drilled Shafts


										Service Limit	State		St	rength Limit St	ate	
					Nominal Side							Resistance	Resistance	Cumulative		
		Soil Type per			Resistance	Cumulative				Resistance Factor for		Factor for	Factor for	Factored		
		Table	Total Vertical	Unit Side	per Unit	Nominal Side	Unit Tip	Nominal Tip	Total Nominal	Shaft Side & Tip	Factored	Shaft Side	Shaft Tip	Side	Factored Tip	Factored
Shaft Length	Soil Layer No.	10.5.5.2.4-1	Effective Stress	Resistance	Length	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance	Resistance
L			σ' _v	q _{si}	ηR _{si}	ηR_s	q _{pi}	ηR _p	ηR _n	φ	ηR _R	ϕ_{qs}	ϕ_{qp}	$\eta R_{s} \phi_{qs}$	$\eta R_p \phi_{qp}$	R _R
(ft)			(ksf)	(ksf)	(kips/ft)	(kips)	(ksf)	(kips)	(kips)		(kips)			(kips)	(kips)	(kips)
8	1	Clay	0.720	1.7	31.1	93.3	22.5	636.1	729.4	1	729.4	0.56	0.56	52	356	408
9	1	Clay	0.816	1.7	31.1	124.4	23.1	653.0	777.4	1	777.4	0.56	0.56	70	366	435
10	1	Clay	0.912	1.7	31.1	155.5	23.7	670.0	825.5	1	825.5	0.56	0.56	87	375	462
11	1	Clay	1.008	1.7	31.1	186.6	24.3	687.0	873.6	1	873.6	0.56	0.56	105	385	489
12	1	Clay	1.104	1.7	31.1	217.7	24.9	703.9	921.6	1	921.6	0.56	0.56	122	394	516
13	1	Clay	1.200	1.7	31.1	248.8	25.5	720.9	969.7	1	969.7	0.56	0.56	139	404	543
14	1	Clay	1.296	1.7	31.1	279.9	26.1	737.8	1017.8	1	1017.8	0.56	0.56	157	413	570
15	1	Clay	1.392											#N/A	#N/A	#N/A
16	1	Clay	1.488											#N/A	#N/A	#N/A
17	1	Clay	1.584											#N/A	#N/A	#N/A
18	1	Clay	1.680											#N/A	#N/A	#N/A
19	1	Clay	1.776											#N/A	#N/A	#N/A
20	1	Clay	1.872											#N/A	#N/A	#N/A
21	1	Clay	1.968											#N/A	#N/A	#N/A
22	2	Clay	2.072											#N/A	#N/A	#N/A
23	2	Clay	2.183											#N/A	#N/A	#N/A
24	2	Clay	2.294											#N/A	#N/A	#N/A
25	2	Clay	2.405											#N/A	#N/A	#N/A
26	2	Clay	2.516											#N/A	#N/A	#N/A
27	2	Clay	2.627											#N/A	#N/A	#N/A
28	2	Clay	2.738											#N/A	#N/A	#N/A
29	3	Sand	2.852											#N/A	#N/A	#N/A
30	3	Sand	2.969											#N/A	#N/A	#N/A
31	3	Sand	3.086											#N/A	#N/A	#N/A
32	4	Rock	3.214											#N/A	#N/A	#N/A

LRFD Drilled Shaft Axial Analysis - Pier 5- 6'-dia updated loads 6-13-19.xlsx

Drilled Shaft Factored Axial Resistance - Strength Limit State

Settle3D Analysis Information Sky Pointe Ped Bridge Abutment 1

Project Settings

Document Name	Abut 1 embankment 061919.s3z	
Project Title	Sky Pointe Ped Bridge Abutment 1	
Analysis	Embankment Settlement	
Author	DHT	
Company	Geotechnical & Environmental Services, Inc.	
Date Created	6/19/19, 10:50 AM	
Stress Computation Method	Westergaard	
Time-dependent Consolidation Analysis		
Time Units	days	
Permeability Units	feet/year	
Use settlement cutoff		
Load/Insitu vertical stress ratio	0.1	
Use average properties to calculate layered stresses		

Stage Settings

Stage #	Name	Time [days]
1	Geostatic	0
2	Construct East and West Embankment	1
3	End of Emankment Construction	30
4	60 days after end of embankment construction	90
5	35 yrs after embankment construction	12805

Results

Time taken to compute: 2.43618 seconds

Stage: Geostatic = 0 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	0
Consolidation Settlement [in]	0	0
Immediate Settlement [in]	0	0
Secondary Settlement [in]	0	0
Loading Stress [ksf]	0	0
Effective Stress [ksf]	0	8.3622
Total Stress [ksf]	0	9.735
Total Strain	0	0
Pore Water Pressure [ksf]	0	1.3728
Excess Pore Water Pressure [ksf]	0	0
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [ksf]	0.0051	16.7105
Over-consolidation Ratio	1	2.5
Void Ratio	0	1.1
Permeability [ft/y]	0	19.2839
Coefficient of Consolidation [ft^2/y]	0	100
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	2.91189

Stage: Construct East and West Embankment = 1 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.83749
Consolidation Settlement [in]	0	6.68362
Immediate Settlement [in]	0	0.153868
Secondary Settlement [in]	0	0
Loading Stress [ksf]	0	4.40142
Effective Stress [ksf]	0	8.3622
Total Stress [ksf]	0	10.4026
Total Strain	0	0.217158
Pore Water Pressure [ksf]	0	2.0404
Excess Pore Water Pressure [ksf]	0	0.964206
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.0051	16.7105
Over-consolidation Ratio	1	2.47277
Void Ratio	0	1.1
Permeability [ft/y]	0	95.7545
Coefficient of Consolidation [ft^2/y]	0	100
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	2.91189

Stage: End of Emankment Construction = 30 d

and the second sec			_
Data Type	Minimum	Maximum	
Total Settlement [in]	-0.00021521	7.02953	
Consolidation Settlement [in]	-0.00021521	6.87566	
Immediate Settlement [in]	0	0.153868	
Secondary Settlement [in]	0	0	
Loading Stress [ksf]	0	4.40142	
Effective Stress [ksf]	0	8.37958	
Total Stress [ksf]	0	10.4026	
Total Strain	-2.10202e-005	0.217158	
Pore Water Pressure [ksf]	0	2.18331	
Excess Pore Water Pressure [ksf]	0	0.810508	
Degree of Consolidation [%]	0	100	
Pre-consolidation Stress [ksf]	0.0051	16.7105	
Over-consolidation Ratio	1	2.47277	
Void Ratio	0	1.10005	
Permeability [ft/y]	0	95.7545	
Coefficient of Consolidation [ft^2/y]	0	100	
Hydroconsolidation Settlement [in]	0	0	
Average Degree of Consolidation [%]	0	36.5212	
Undrained Shear Strength	0	2.9131	

Stage: 60 days after end of embankment construction = 90 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.0977
Consolidation Settlement [in]	0	6.94383
Immediate Settlement [in]	0	0.153868
Secondary Settlement [in]	0	0
Loading Stress [ksf]	0	4.40142
Effective Stress [ksf]	0	8.50935
Total Stress [ksf]	0	10.4026
Total Strain	0	0.217158
Pore Water Pressure [ksf]	0	2.07038
Excess Pore Water Pressure [ksf]	0	0.697577
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.0051	16.7105
Over-consolidation Ratio	1	2.47277
Void Ratio	0	1.1
Permeability [ft/y]	0	95.7545
Coefficient of Consolidation [ft^2/y]	0	100
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	70.7251
Undrained Shear Strength	0	2.92206

Stage: 35 yrs after embankment construction = 12805 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.35394
Consolidation Settlement [in]	0	7.20007
Immediate Settlement [in]	0	0.153868
Secondary Settlement [in]	0	0
Loading Stress [ksf]	0	4.40142
Effective Stress [ksf]	0	9.0298
Total Stress [ksf]	0	10.4026
Total Strain	0	0.217158
Pore Water Pressure [ksf]	0	1.37284
Excess Pore Water Pressure [ksf]	-2.29677e-005	4.08396e-005
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.0051	16.7105
Over-consolidation Ratio	1	2.47277
Void Ratio	0	1.1
Permeability [ft/y]	0	95.7545
Coefficient of Consolidation [ft^2/y]	0	100
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	2.95696

Embankments

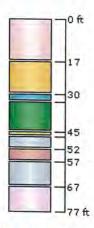
1. Embankment

Center Line	(0, -75.19) to (0, 74.567)					
Number of Layers	1					
Near End Angle	90 degrees					
Far End Angle	90 degrees					
Base Width	20					

Layer	Stage	Left Bench Width (ft)	Analo		Unit Weight (kips/ft ³)	Right Angle (deg)	Right Bench Width (ft)	
1	Construct East and West Embankment = 1 d	0	90	30	0.145	90	0	

2. Embankment

Center Line	(20, -75.19) to (20, 74.567)
Number of Layers	2
Near End Angle	90 degrees
Far End Angle	90 degrees
Base Width	20


Layer	Stage	Left Bench Width (ft)	Left Angle (deg)	Height (ft)	Unit Weight (kips/ft ³)	Right Angle (deg)	Right Bench Width (ft)	
1	Construct East and West Embankment = 1 d	0	90	12	0.145	90	0	
2	Construct East and West Embankment = 1 d	0	90	5	0.145	14.5	0	

Soil Layers

Ground Surface Drained: Yes

Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	Very stiff sandy lean clay -1	17	0	No
2	silty sand with gravel - 2	13	17	No
3	Caliche - 3	3	30	No
4	Sandy lean clay with gravel - 4	12	33	No
5	Caliche 5	2	45	No
6	very stiff sandy lean clay -6	5	47	No
7	Caliche 7	5	52	No
8	sandy lean clay -8	10	57	No
9	Caliche- 9	10	67	No

Soil Properties

Property	Sandy lean clay with gravel - 4	silty sand with gravel - 2	Very stiff sandy lean clay -1	Caliche - 3	Caliche 5	Caliche- 9	sandy lean clay -8	Caliche 7	very stiff sandy lean clay -6
Color			1						
Unit Weight [kips/ft ³]	0.12	0.13	0.12	0.132	0.132	0.132	0.12	0.132	0.125
Saturated Unit Weight [kips/ft ³]	0.13	0.135	0.13	0.132	0.132	0.132	0.13	0.132	0.13
Immediate Settlement	Disabled	Enabled	Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	Disabled
Es [ksf] Esur [ksf]		2000 2000							
Primary Consolidation	Enabled	Disabled	Enabled	Disabled	Disabled	Disabled	Enabled	Disabled	Enabled
Material Type	Non-Linear		Non-Linear				Non- Linear		Non-Linear
Cce Cre	0.072 0.0145		0.072 0.0145				0.09 0.0145		0.072 0.0145
OCR	2.5	2	2.5	1	2.5	2	0.0145	1	2.5
Cv [ft ² /y]	100		100	1			100		100
B-bar Undrained	1		1				1		1
Su A [kips/ ft2]	0	0	0	0	0	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Piezo Line ID	1	1	1	1	1	1	1	1	1

Groundwater

Groundwater method	Piezometric Lines
Water Unit Weight	0.0624 kips/ft3

Piezometric Line Entities

ID	Depth (ft)
1	55 ft

Query Points

Point #	(X,Y) Location	Number of Divisions
1	10, 0	Auto: 89

Field Point Grid

Number of points 294 Expansion Factor 2

Grid Coordinates

X [ft]	Y [ft]
104.879	149.446
104.879	-150.069
-84.8785	-150.069
-84.8785	149.446

APPENDIX D NDOT EXPLORATION LOGS

ſ						C/	17/13			EXPLORATION LOG		
		UHL	쌝				17/13 18/13				ux <i>4</i> 4 -	SHEET 1 OF 4
	DEPAR TRANSP	FMENT OF			ND DATE			 5 / CC_215 0	Sveton	-to-System Interchange OFESET	"X" 60+03	6
					DESCRI			t Las Vegas		Country OFFSET	429' Left Boomhow	/er
	-1				DCATION		-26	Lus voyas		ENGINEER EQUIPMENT	Diodrich [D-120 (Unit 1627)
		A			DRING		- <u>20</u> 518			GROUNDWATER LEVEL OPERATOR	Pypkows	
		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$			A.#		38.90 (ft)		DATE DEPTH ft ELEV. ft DRILLING	6" H.S.A.	
	GEOTECH	INICAL							<u> </u>	6/18/13 68.00 2370.9 METHOD		
	GEOTECH ENGINE	EERING V	<i></i>				51 EM			BACKFILLED)C	ATE
	ELEV. (ft)	DEPTH (ft)		MPLE TYPE	BLOW C 6 inch Increments	Last	Percent Recov'd	LAB TESTS	USCS Group	MATERIAL DESCRIPTIO	N	REMARKS
		_							L	SANDY GRAVEL Dry, tan		
		2.50		<u> </u>	<u>_</u>				<u>.</u>			
		F	А	SPT	5 8	22	85		ML	SANDY SILT Dry, medium dense brown (10 YR 6/3)	pale	
		4.00			14				-			
	2422.0	<u>ج</u> 5.00								<u>4.50</u>		1
	2433.9 -	5.60	В	SPT	35 20/0.1'	20/0.1'	100			CLAYEY SAND with GRAVEL Dr. dense, very pale brown (10 YR 7/3	/, very	(B) Last 10 blows; no
		F			20/0.1					dense, very pale brown (10 TR 7/3)	progress.
		7:5 8										Hard drilling @ 6.0'. Progress
		<u>7:70</u>	-c-	SPT	20/0.2'	20/0.2	0		1			0.11/5 minutes.
				1								Broke through @ 6.3'.
		-			ļ	1			sc			(C) Last 10
	2428.9 -	10.00			13				-	CLAYEY SAND Dry to moist, hard	l. light grav	blows; no progress. No sample recovered.
			D	SPT	32	58	65			(10 YR 7/2)	., ngin gray	
		11.50			26	<u> </u>			-			
		12.50			12				-	CLAVEN CAND Date and the	otiff	
		-	E	SPT	12	22	55			<u>CLAYEY SAND</u> Dry to moist, very pinkish gray (7.5 YR 7/2) to brown	sun, (7.5 YR 4/4)	
		14.00			11				-	14.50		
	2423.9 -	15.00							<u> </u>			-
			F	SPT	8 9	19	85		CL	SANDY SILTY CLAY Dry to mois dense, light yellowish brown (10 Y	, medium R 6/4)	ł
		16.50	Ľ		10				ML		/	
		17.50							<u> </u>	17.00		-
		-	_	01.00	12	~	05		sc	CLAYEY SAND with GRAVEL Dr		
		19.00	G	CMS	10 11	21	95			medium dense, light yellowish brov 18.80 6/4)	wn (10 YR	
			н	SPT	5	77	80			SANDY LEAN CLAY Dry to moist dense to hard, light gray (10 YR 7/	, medium	(H) Lightly
	2418.9 -	20 20.50		571	6 21	27	00			(10 YR 5/3)		cemented from 20.4' - 20.5'.
		-							CL			1
			1							23.00		
27/16		-								+ 23,00		-
)T 6/2		F							-			
JT.GC	2413,9 -	25.00							GC GM			
V DC	- / 10,0		1	CMS	14 22	52	95	ł		SILTY CLAYEY GRAVEL with SAI moist, dense, light yellowish brown		
ñ R		26.50	ļ		30		1	 		26.50 with multicolored gravel	· · ·	
ES.GI		-	J	SPT	9 7	18	75	}		<u>CLAYEY GRAVEL with SAND</u> Dr dense, light yellowish brown (10 Y	y to moist, R 6/4) with	
LFL		28.00	Ļ	ļ	11					multicolored gravel	,	
NV_DOT ALL FILES.GPJ NV_DOT.GDT 6/27/16					1				GC			
/ D0		F										
ź		<u> </u>	<u> </u>			<u> </u>		I		30.00		

Γ						e!	17/10	· · · · · · · · · · · · · · · · · · ·		EXPLORATION LOG		
		JHL	74		fart date	• •	17/13 18/13					SHEET 2 OF 4
	DEPAR TRANSF	TMENT OF			ND DATE				Suctor		60+03	
					DB DESCRI)' Left	
			$\langle $		DCATION			Las Vegas	s - Ciai		omhower	20 (Unit 1627)
	A				ORING		-26			Eddi Melti	okowski	20 (01111 1027)
					A.#		518					
				G	ROUND EL	EV24	38.90 (1			6/18/13 68.00 2370.9 METHOD 6"1	H.S.A.	
	GEOTECI ENGINI	EERING		H	AMMER DF	OP SYS	STEM A	utomatic		BACKFILLED	DATE	
	ELEV. (ft)	DEPTH (ft)	f	MPLE TYPE	BLOW C 6 inch Increments	Last	Percent Recov'd	LAB TESTS	USCS Group	MATERIAL DESCRIPTION		REMARKS
	2403.9 - 2398.9 -	- - - - - - - - - - - - - - - - - - -	K	CMS SPT	11 12 11 3 5 7	23	45 40		SM	SANDY ELASTIC SILT with GRAVEL Dry moist, medium dense, pale brown (10 YR 36.50 SILTY SAND with GRAVEL. Dry to moist, medium dense, pale brown (10 YR 6/3)	6/3) (L sa	.) Rock in ampler shoe. nd day 1 rilling @ 38.0'.
	2393.9 -	- - - - - - - -	M	CMS	- 10/0.1'-	10/0:1'				43.00	4. 0. (1) b: s: re H fr	lard drilling @ 4.0'. Progress .1'/5 minutes. M) Last 10 lows; no rogress. No ample ecovered. lard drilling om 45.0' - 8.0'. Progress
	2388.9 -	50.00									3	.0'/30 minutes
	2000.9	50	1	CMS	7	25/0.2'	85			CLAYEY SAND Dry to moist, very stiff to		250 psi down ressure.
NV_DOT ALL FILES.GPJ NV_DOT.GDT 6/27/16	2383.9 -	- 55			- 25/0.2				sc	very hard, mottled brown (7.5 YR 5/3) to p (7.5 YR 7/3)	IЛК (1 bр H fr 55 @р F fr 54 @	N) Last 10 lows; no rogress. lard drilling om 50.0' - 5.0'. Progress .0'/45 minutes 2 250 psi down ressure. lard drilling om 55.0' - 9.0'. Progress .0'/15 minutes 2 250 psi down ressure.
V_DO		F		ļ						- CO 00		
ź			I	<u> </u>		<u> </u>	<u> </u>			60.00		

r														
		ה			: 6/	17/13			EXPLO	ORATIO	N LOG			
		7		ART DATE		18/13								SHEET 3 OF 4
DEPAR TRANSP	TMENT OF			ID DATE				Suntar	to Dunt	om Inter-	honac	STATION	"X" 60+03	
			JC	B DESCRI			/ CC-215 8				alange	OFFSET	429' Left	
			LC	OCATION			Las Vegas	s - Cla	к County	/		ENGINEER	Boomhow	
			BC	DRING	-	-26						EQUIPMENT)-120 (Unit 1627)
		7	Е.	A.#	73	518				NDWATEF		OPERATOR	Pypkowsk	t
			G	ROUND EL	EV. <u>2</u> 4	38.90 (f	't)	<u>.</u>	DATE 6/18/13		ELEV. ft	DRILLING METHOD	6" H.S.A.	
GEOTECH ENGINE	INICAL			AMMER DR		STEM A	utomatic		6/18/13	68.00	2370.9	BACKFILLED	D	ATE
ENGINE			MPLE	BLOW C		1 1			1					
ELEV. (ft)	DEPTH (ft)		TYPE	6 inch	Last	Percent Recov'd	LAB TESTS	USCS Group		MAT	ERIAL D	ESCRIPTION		REMARKS
	- - - 													Hard drilling from 60.0' - 62.0'. Progress 2.0'/20 minutes @ 250 psi down pressure.
2373.9 - <u>5</u>	- - - - -	0	CMS	25/0.4'	25/0.4'	100		CL		LEAN CL stiff, brow	<u>AY with SA</u> m (7.5 YR :	AND Moist, stiff 5/4)	to very	(O) Last 10 blows; no progress.
00000	70.00													
2368.9 -	- 70			7				1		LEAN CL	AY with SA	AND Moist to we	et, stiff,	(P) Free water
	71.50	P	CMS	9 10	19	95			71.50	pale brow	/n (10 YR 6	5/3)		on sampler @ 70.0'.
				2					71.00	FAT CLA	Y_ Moist to	wet, stiff, pale b	prown (10	,
	70.00	Q	SPT	2	9	125				YR 6/3)			·	
	73.00			(#48-1-1-1	4						
	Ļ							011						
	75.00	1						СН						
2363.9 -	75.00			9				-		FAT CLA	Y Moist to	o wet, very stiff, k	prown (7.5	
	-	R	смз	12	29	135				YR 5/4)		,,,		
	76.70			17					76.70				·	
	-	s	SPT	6 7	18	115		l		LEAN CL (7.5 YR 5	AY Moist	to wet, very stiff,	, brown	
	- 78.20	1	371	11	10	110				1.5 11.0	// * /			
2358.9 -	80			2										
	-	}						CL						1
-	Ļ	}	1											
	F													
5	Ļ			2										
	84.80								1					
2353.9 -	-85			12										
	Ļ	T	CMS	9 24	33	125			85.80		SAND M	pist to wet, very s	stiff	1
	86.50	-		14	1			SC	86.50	brown (7.	<u>5 YR 5</u> /4)	Jac to wet, very s	ouii, /	4
	-	υ	SPT		36	80				CLAYEY	GRAVEL V	with SAND Mois	st to wet,	
	88.00			22				-		nard, bro	wn (7.5 YF	(5/4)		
								GC	8 8					ļ
S	-		1	1										
									90.00					

ſ						CI.	17/10			EXPLO	ORATIO	N LOG			
	<u> </u>	UA	몃		ART DATE		17/13 18/13								SHEET 4 OF 4
	DEPAR TRANSP	TMENT OF	4		ID DATE				.			.	STATION	"X" 60+03	
					B DESCRI			5 / CC-215 S				nange	OFFSET	429' Left	
				LC	CATION			t Las Vegas	- Clai	k County	/		ENGINEER	Boomhow	
				BC	DRING		-26			r	_		EQUIPMENT	Pypkowsk	<u>-120 (Unit 1627</u>)
				E.,	A.#		518				NDWATER		OPERATOR		
		\leq			ROUND EL		38.90 (1			DATE 6/18/13	DEPTH ft 68.00	ELEV. ft 2370.9	DRILLING METHOD	6" H.S.A.	
	GEOTECH ENGINE	INICAL		HA	MMER DF	OP SYS	STEM A	utomatic			00.00	2010.0	BACKFILLED	D/	ATE
F	ELEV.	DEPTH	<u> </u>	IPLE	BLOW C 6 inch	OUNT	Dentif		USCS						
ļ	(ft)	(ft)	NO.	TYPE	Increments	Last 1 foot	Percent Recov'd	LAB TESTS	USCS Group		IVIATI	ERIAL DI	SCRIPTION		REMARKS
	2343.9 - 2338.9 -	- - - - - - - - - - - - - - - - - - -	- V-	CMS			0			95.10	END BI-2	'6 @ 95.1'			(V) Last 10 blows; no progress. No sample recovered.
	2333.9 -	- - 105 -													
	2328.9 -	- - - -													
NU_DOI ALL FILES.GPJ NV_DOI.GDI 6/2//16	2323.9 -	115											·		
□ ≥			ļ			1									

		n /			7/	22/13			EXPLO	DRATIO	N LOG			
				ART DATE	·	22/13								SHEET 1 OF 5
DEP TRAN	ARTMENT O	F N		ND DATE			 5 / CC-215 S	Suntar	n to Suct	om Intoro	hongo	STATION	"X" 59+50)
			JC	DB DESCRI							nange	OFFSET	219' Left	
		\mathbf{N}	LC	DCATION			Las Vegas	s - Cla	rk County	/		ENGINEER	Lawrence	
\square			B	ORING		-31						EQUIPMENT	Pypkowsł	<u>D-120 (Unit 1627)</u>
		/_	E.	A.#		8518		······································		NDWATER		OPERATOR DRILLING		
				ROUND ELI	- V ·	31.50 (1		·	DATE 7/23/13	65.00	ELEV. ft 2366.5	METHOD	6" H.S.A.	
GEOTI ENG	ECHNICAL INEERING	1		AMMER DR		STEM A	utomatic					BACKFILLED	C	DATE
ELEV (ft)	. DEPTH		MPLE TYPE	BLOW Co 6 inch Increments	Last	Percent Recov'd	LAB TESTS	USCS Group		MAT	ERIAL D	ESCRIPTION		REMARKS
	-		2					¢						
									2.00					
1	2.5	<u>-</u>		16				_					Moint	
	-	A	SPT		26	45		GC GM				WEL with SAND wn (10 YR 5/4) v		(A) Sampler shoe blocked
	4.0	<u>)</u>		14				GIVI		gravel		. ,		with rock.
	5.0	b							4.50					-
2426.5	5 + 5			6				1		SANDY L	EAN CLA	Y_ Moist, stiff, ve	ry pale	
	6.5	B	SPT	5	11	85				brown (10) YR 7/4)			
				0				CL						
	7.5	<u>)</u>		10										
	-	c	SPT	10 11	26	95				pale brow	<u>EAN CLA</u> n (10 YR 7	<u>Y_</u> Moist, very stit 7/4)	if, very	
	9.0	0		15						•	,	,		
	5								9.50					-
2421.	5 + 10			8				1		SANDY S	ILTY CLA	🖞 Moist, stiff, ligi	nt	
	11.5		CMS	10 14	24	85				yellowish 8/1)	brown (10	YR 6/4) to white	(10 YR	
				6) 	CL		SANDY L	EAN CLAY	∠ Moist, stiff, ligh	nt	
	12.0	E	SPT	7 8	15	85				yellowish 8/1)	brown (10	YR 6/4) to white	(10 YR	
}	13.0			0		1		1		0/1)				
1	L					1		L	14.00					-
	5													
2416.	5 + 15			8				GC		CLAYEY	GRAVEL v	vith SAND Moist	t, dense,	
	16.5	F	CMS	17 22	39	85			16 50	multicolor to browni	red, light ye sh vellow (ellowish brown (1 10 YR 6/8)	10 YR 6/4)	
	10.0			9								GRAVEL Moist	t, dense,	4
	[40.0	G	SPT	11	25	75				multicolor	red, light y	ellowish brown (1 10 YR 6/8)		
ļ	18.0		-	14				sc			sn yellow (10 1 1 0/0)		
	Ļ	1						L	19.00					
	5 20.0	0												
2411.	5 +20-0.0			5				1				<u>h SAND</u> Moist, r		
	21.5	Н	CMS	11 14	25	85						, light yellowish k yellow (10 YR 6		
	21.0			12				GM		SILTY GF	RAVEL wit	h SAND Moist, o	lense,	
			SPT		31	65				multicolo	red, light y	ellowish brown (* 10 YR 6/8)	10 YR 6/4)	
	23.0			14				-		to prown	sn yellow (
5	-		1					L	24.00					-
	5 25.0	0						1						
2406.	$5 + 25^{-0.0}$			11		1		1		<u>CLAYEY</u>	GRAVEL V	with SAND Mois	t, dense,	
:		J	CMS		57	55				multicolo	red, light y	ellowish brown (* 10 YR 6/8)	10 YR 6/4)	
5	26.5	-		46							-	Moist, dense,		
	Ē	ĸ	SPT	15	31	60		GC		multicolo	red, light y	ellowish brown ('	10 YR 6/4)	
	28.0	0		16			<u> </u>	-		io prowni	sn yellow (10 YR 6/8)		
5			1											
	30.0	0							30.00					1
<u>ــــــــــــــــــــــــــــــــــــ</u>	1 00.0	v 1		l	L	1	l		1 30.00					_}_

NV_DOT_ALL FILES.GPJ_NV_DOT.GDT_6/27/16

					7/'	22/13			EXPL	ORATIO	N LOG			
	UHI	갬				23/13								SHEET 2 OF 5
TRANS	TMENT OF	ı		ND DATE			 5 / CC-215 \$	Svetor	n-to-Svet	em Inter	hande	STATION	"X" 59+50 219' Left	
				DB DESCR			t Las Vegas				mange	OFFSET	Lawrence	
		$\mathbf{\mathbf{N}}$		DCATION		-31	Las veyda		ik obuni	4		ENGINEER		-120 (Unit 1627)
				ORING					000		<u> </u>	EQUIPMENT OPERATOR	Pypkowsk	
				A.#		518	<u> </u>		DATE		ELEVEL	DRILLING		,
				ROUND EL		31.50 (1			7/23/13		2366.5	METHOD	6" H.S.A.	
GEOTEC ENGIN	HNICAL EERING					STEM _A	utomatic				l	BACKFILLED	D/	ATE
ELEV. (ft)	DEPTH (ft)		MPLE TYPE	Incrementa	Last	Percent Recov'd	LAB TESTS	USCS Group				ESCRIPTION		REMARKS
		L	смѕ		39	95				GRAVEL very stiff,	<u>LY LEAN (</u> moist, rede	<mark>CLAY with SANE</mark> dish yellow (7.5)	<u>)</u> Moist, YR 6/6)	
	31.50			22 7				-			AV with C	ND Moint von	otiff	
	F	м	SPT	9	20	85		CL		reddish y	ellow (7.5	<u>AND_</u> Moist, very (R 6/6)	sun,	
	33.00			11				-						
									34.00					
	05.00													
2396.5	35.00 35.70	N	СМЗ	21	50/0.2'	100		-		CLAYEY	SAND with	GRAVEL Moist	t. verv	
	35.70	Ö	SPT	50/0.2	50/0.2	-0		sc		dense, ve	ery pale bro	wn (10 YR 8/2)	to light	(O) 50 blows; no
										yellowisn	brown (10	YR 6/4)		progress. No
	-								37.80					sample recovered.
	-								37.00				·	Moderately hard
		ļ												drilling, smooth penetration,
	40.90									WEAKLY MATERIA	TO MODE	RATELY CEMEN	NTED	weak to moderate
2391.5	4010:40	-P-	SPT		10/0.1	-0		-						cementation.
	-		3											(P) 10 blows; no
								}						progress. No sample
	-													recovered.
	-								43.50					
	45.00													
2386.5	45			5			,	GM		SILTY GI	RAVEL with	<u>n SAND</u> Moist, v	/ery	
	46.40	Q	SPT	13 50/0.4'	50/0.4'	70			46.40	dense, m mottled v	ulticolored	, light gray (5 YR ellow (2.5 YR 6/8	R 7/1)	
										moniou i	nur onvo ye		·/	
	1													
	F									WEAKLY		ED MATERIALS		
	_													
0004 5	59.90													
2381.5		R	SPT	 20/0.1'~	20/0.1	0		1						(R) 22 blows; no
	-	ļ												progress. No sample
	-													recovered.
01//2	F		1											
0	F				4 9					STRONG			e	ł -
3 2376,5	55				1					SIRONG		ITED MATERIAL	<u>_</u>	
23/0.5	- 00													Hard drilling -
	F				1									.08 ft/min @ 300 psi down.
10.01	Ļ													
								-						
3	F					1								
2	60.00		<u> </u>	}										

		2/1	1		7/	22/13			EXPLORATION LOG	
		4		FART DATE		23/13				SHEET 3 OF 5
DEPAR TRANSI	TMENT OF			ND DATE	<u></u>			Suntar	STATION <u>"X" 59+50</u>	
			JC	DB DESCRI					h-to-System Interchange OFFSET 219' Left	
		$\langle $	LC	DCATION			t Las Vegas	s - Cia	EntoniteEnt	-120 (Unit 1627)
	STA D		BC	ORING		-31			Pypkowski	
			E.,	A.#		3518				· · · · · · · · · · · · · · · · · · ·
				ROUND EL	L, V	31.50 (/		DATE DEPTH ft ELEV. ft DRILLING 6" H.S.A. 7/23/13 65.00 2366.5 METHOD 6" H.S.A.	
GEOTEC ENGIN	HNICAL EERING		HA	AMMER DR	OP SYS	STEM A	utomatic		BACKFILLED D/	ATE
ELEV. (ft)	DEPTH (ft)		MPLE TYPE	BLOW C 6 inch Increments	Last	Percent Recov'd	LAB TESTS	USCS Group	MATERIAL DESCRIPTION	REMARKS
			ODT	13					<u>SILTY CLAY with SAND</u> Moist, hard, pale brown (10 YR 6/3) to very pale brown (10 YR	
	61.50	S	SPT	20 40	60	115			8/2)	
	-					¢.		1	62.00	
									WEAKLY CEMENTED MATERIALS 63.00	
	F									
2366,5 -	<u>↓ 65</u> 65.00							CL		
2000.0	Ţ	Т	CMS	20 25	60	100			LEAN CLAY with GRAVEL Moist, hard, light brown (7.5 YR 6/4) to reddish yellow (7.5 YR	(T) Free water on sampler @
	66.50	1	01010	35	00	100	1		66.50 6/6)	65.0'.
	F	U	ODT	18	28	95			<u>SILTY CLAY</u> Moist, very stiff, light brown (7.5 YR 6/4) to reddish yellow (7.5 YR 6/6)	
	68.00		SPT	12 16	20	95		CL	TR 6/4) to reduish yellow (7.5 TR 6/6)	
								- ML		
	-	ļ					1		- <u>+ 69.00</u>	
2361.5	70.00							CL		
		v	смз	79	24	100			LEAN CLAY Moist, stiff, light brown (7.5 YR 70.80 6/4) to reddish yellow (7.5 YR 6/6)	
	71.50	-		15						
	-	w	SPT	6 7	17	115			FAT CLAY Moist, very stiff, light brown (7.5 YR 6/4) to reddish yellow (7.5 YR 6/6)	
	73.00			10	17	110		СН		
1									74.00	
	-									
2356.5	75.00			10				-	LEAN CLAY with SAND Maint ware stiff light	
		x	смѕ		26	95			LEAN CLAY with SAND Moist, very stiff, light brown (7.5 YR 6/4) to reddish yellow (7.5 YR	
	76.50			15					6/6)	
8	-	Y	SPT	4	20	125			<u>LEAN CLAY with SAND</u> Moist, very stiff, light brown (7.5 YR 6/4) to reddish yellow (7.5 YR	
	78.00			13				CL	6/6)	
- - -										
	F									
2351.5	80.00			12				-	GRAVELLY LEAN CLAY Moist, hard,	
		z	CMS		66	115			multicolored, light brown (7.5 YR 6/4) to reddish	
	81.50			41 34					81.30 yellow (7.5 YR 6/6) with very pale brown (10 YR 8/2)	
	-	AA	SPT		90	95			CLAYEY GRAVEL with SAND Moist, very	
<u>0</u>	83.00			42				GC	dense, multicolored, light brown (7.5 YR 6/4) to reddish yellow (7.5 YR 6/6) with very pale brown	
1710									84.00 (10 YR 8/2)	
2	F									
2346.5	-85-00	-		11				-	GRAVELLY LEAN CLAY Moist, hard,	
			CMS	18	55	115			multicolored, light brown (7.5 YR 6/4) to reddish	
2	86.50			37 9	<u> </u>			-	yellow (7.5 YR 6/6) with very pale brown (10 YR 8/2)	
ES.C	F	cc	SPT		62	120		CL	LEAN CLAY with SAND Moist, very hard,	
	88.00			51				-	multicolored, light brown (7.5 YR 6/4) to reddish yellow (7.5 YR 6/6) with very pale brown (10 YR	
A L		ļ							8/2)	
ž,	「	ļ								
ź	90.00		<u> </u>	1		1	ļ		90.00	L

		2			7/	22/13			EXPLORATION LOG			
		4		FART DATE	·							SHEET 4 OF 5
DEPA	RTMENT OF		E	ND DATE		23/13				STATION	"X" 59+50	
			JC	DB DESCRI					-to-System Interchange	OFFSET .	219' Left	
			LC	OCATION	_Nc	orthwest	Las Vegas	- Clar	k County	ENGINEER	Lawrence	
$ \forall $		\	B	ORING	Bl	-31				EQUIPMENT .	Diedrich D	-120 (Unit 1627)
				A. #	73	518			GROUNDWATER LEVEL	OPERATOR .	Pypkowski	
						31.50 (f	÷)		DATE DEPTH ft ELEV. ft	DRILLING	6" H.S.A.	
				ROUND ELI	_ • • <u> </u>				7/23/13 65.00 2366.5	METHOD	0 11.5.A.	
ENGIN	HNICAL		H٨	AMMER DR	OP SYS	STEM	utomatic			BACKFILLED .	DA	TE
ELEV. (ft)	DEPTH (ft)		MPLE TYPE	BLOW CO 6 inch Increments	OUNT Last 1 foot	Percent Recov'd	LAB TESTS	USCS Group	MATERIAL DE			REMARKS
			смз	12	07	05		ł	CLAYEY GRAVEL wi dense, multicolored,	th SAND Moist,	Very	
	91.50		CIVIS	36 51	87	95		GC	reddish vellow (7.5 Y	R 6/6) with verv	pale brown	
	92.00		SPT	25	20/0.0'	100			92.00 (10 YR 8/2)	, ,		
				20/0.0'								
	-										ł	
									WEAKLY TO MODE	RATELY CEMEN	ITED	
	ſ								MATERIALS			
2336.5	-95							<u> </u>	95.00			
	F	}										
	-											
	F		1									
	100.00											
2331.5	100.00			25				-	SILTY CLAY Moist,	hard light vellow	/ish	
		FF	смз		71	115			brown (10 YR 6/4)	iaia, iight yohon		
	101.50	ļ		38				_				
	-	GG	SPT	10 12	33	125			SILTY CLAY with SA yellowish brown (10	<u>ND_</u> Moist, hard. (R 6/4)	, light	
	103.00			21		123		[yonowish brown (10	11(0/4)		
								1				
	+											
								CL				
2326.5	105							ML				
	Ļ											
ļ												
1						t		1				
	L		l I									
1			1									
1	\vdash				ļ							
0004 5	110.00											
2321.5		1		20					SILTY CLAY Moist,	hard, light yellov	vish	
	111.50		CMS	35 46	81	85		1	brown (10 YR 6/4)			
	111.50			46				-	SILTY CLAY Moist,	verv stiff. light ve	ellowish	
	F		SPT	11	25	140			brown (10 YR 6/4)	, sun, ngric ye		
2	113.00			14				4				
017170					ļ				2			
	F							[
2316.5	-115				}				115.00			
1				s.]	
2	F		l	1								
(ch)												
E S.	F		ĺ					CL				
NV_DOL ALL FILES.GPJ	F	1										
H H								ļ				
3	F							1				
2	120.00								120.00			

			1			22/13			EXPLORATION LOG			
		객		TART DATE		23/13						SHEET 5 OF 5
DEPA TRANS	RTMENT OF			ND DATE				Sunton	n-to-System Interchange	STATION	"X" 59+50	
				B DESCRI						OFFSET	219' Left	
		$\langle $		OCATION			Las Vegas			ENGINEER	Lawrence	-120 (Unit 1627)
	A).		ORING	-	-31				EQUIPMENT OPERATOR	Pypkowski	······································
		<u> </u>		A. #		518	<u>(1)</u>		GROUNDWATER LEVEL			
			G	ROUND EL	EV. <u>24</u>	31.50 (1	l)		7/23/13 65.00 2366.5	DRILLING METHOD	6" H.S.A.	
GEOTEC	THNICAL		H	AMMER DR		STEM A	utomatic			BACKFILLED	DA	TE
ELEV. (ft)	DEPTH (ft)		MPLE TYPE	morements	OUNT Last 1 foot	Percent Recov'd	LAB TESTS	USCS Group				REMARKS
	121.50		CMS	10 18 28	46	100			LEAN CLAY with SA yellowish brown (10	<u>ND_</u> Moist, very YR 6/4)	stiff, light	
	-	кк	SPT	7 5	18	125		CL	LEAN CLAY Moist, brown (10 YR 6/4)	very stiff, light ye	ellowish	
	123.00			13					123.00 END BI-31 @ 123.0'			
	F											
2306.5	+ 125											
	-											
						1						
1	-											
	-											
2301.5				{								
	Ē.										t	
	_						}					
	-											
	-							8				
2296.5	+135											
	-											
	-	1										
								1				
	ſ				ļ						ł	
	-				<u> </u>							
2291.5	+140				ĺ							
								ł				
	- 	·					1					
91/	F											
91/17/9	-			l								
	1.15											
2286.5								1				
Ž	F											
0.01	ŀ								}			
ALL FILES.GPJ												
ALL					ļ							
	-	1										
≥'				}								

Γ				l		7/	21/12			EXPLO	RATIO	N LOG		**************************************	
	<u>,</u> −	UHI	4		ART DATE	·	24/13 25/13							m <i>w</i> = -	SHEET 1 OF 2
	DEPART	MENT OF			ND DATE				Suct-	to 0	ana lut	borne	STATION	"X" 59+01	
				_ JC	B DESCRI			5 / CC-215 8	-			nange	OFFSET	334' Left	·····
			$\langle $	LC	DCATION			t Las Vegas	s - Clar	к County			ENGINEER	Lawrence	120 (11-4 4007)
)	BC	ORING		-32						EQUIPMENT	Pypkowsk	0-120 (Unit 1627) i
			/	Ε.	A.#		8518				NDWATER		OPERATOR		.1
		\leq		G	ROUND EL	EV24	39.40 (1	ft)		DATE	DEPTH ft	ELEV. ft	DRILLING METHOD	6" H.S.A.	
	GEOTECH ENGINE				AMMER DR		STEM A	utomatic					BACKFILLED	D	ATE
	ELEV. (ft)	DEPTH (ft)		MPLE TYPE	BLOW CO 6 inch Increments	Last	Percent Recov'd	LAB TESTS	USCS Group		MATI	ERIAL D	ESCRIPTION		REMARKS
		-				e									
		-								2.00					
		2.50			19			}	-				DAVEL Maint d	0000	
		-	А	SPT	22	43	80		SM				RAVEL_Moist, d s (10 YR 7/3) wi		
		4.00			21				-	1	gravel				
1		_ 5.00								4.50					
ł	2434.4 -	-5	В	SPT	21	50	90				CLAYEY	SAND with	GRAVEL Moist	, very	
		6.00	U		50		00		SC		dense, ve dark grav		wn fines (10 YR	7/3) with	
										7.00	dan grav				
		7:58	С	SPT	20/0.2	20/0.2	<u> </u>								
		-			Loron	LUIUL									(C) Last 10 blows; no
		-													progress. No
				e.	1	ł			GP GC						sample recovered.
	2429.4 -	-1010.00		-	46	2					POORLY	GRADED	GRAVEL with SI	<u>LTY</u>	
		- 11 - 0	D	SPT	24	36	65				CLAY and	<u>d SAND</u> N	loist, dense, very o white fines (10	v pale	
		11.50			12					12.00		J TR 7/3) (o white lines (10	1 (0/ 1)	
		12.50								+ 12100	SILTY SA	ND Moist	, dense, very pal	e brown	
		F	E	SPT	7 10	39	85	1			(10 YR 7/	(4)			
		14.00		351	29	39	00								
									SM	2					
	2424.4 -	15.00			11				-		SILTY SA	ND Moist	, dense, very pal	e hrown	
			F	CMS	1	52	100	}			(10 YR 7/	(4) fines wi	th dark gravel	o brown	
		16.50			31			ļ	4	47.00					
		-	G	SPT	9 10	18	85			17.00	SANDY S	SILTY CLA	Y_Moist, mediun	1 dense.	
		18.00			8				CL		light yello	wish brow	n (10 YR 6/4) ma	ottled light	
									ML	10.00	gray (10 (10 YR 3/	тк //2) an /2)	d very dark gray	ISN Drown	
		ŀ		ļ		ł		l -		1 13.00	_``				1
	2419.4 -	20.00							-					Jamar	
			н	СМЗ	21 26	48	95		SM		light vello	wish brow	<u>BRAVEL</u> Moist, o n (10 YR 6/4) mo		
		21.50	1		22					21.50	gray (10	YR 7/2) wi	th dark gravel		
		Ļ	1	SPT	9	27	80						<u>with SAND_</u> Mois n (10 YR 6/4) mo		
_		23.00		SF1	18	21	00		GC				th dark gravel	stiled light	4
2774									1						
19		-								24.00					-
9	2414.4 -	25.00								l					
8	Z414.4 -	-25		0.40	17		100						AVEL with SAN		
≧İ		26.50	J	CMS	22 22	44	100		GC		mottled li	ight grav (*	sh brown (10 YR 10 YR 7/2) with d	ort) ark gravel	
GP					12			1	GM		SILTY CI	AYEY GR	AVEL with SAN	D_ Moist,	
ES		00.00	K	SPT		31	85						sh brown (10 YR 10 YR 7/2) with d		
NV_DOT_ALL FILES.GPJ		28.00	-	+	19	<u> </u>	-	-	-		oueu li	Sur Bray (······································	9000	
ъ		Ļ					ł		L	29.00					1
≏ ≥		30.00							GC	30.00					
2		1. 00.00			<u> </u>					1 00.00					

Γ										EXPLOR					
	ŇΕ	UAI	JA	ST	TART DATE		24/13								SHEET 2 OF 2
	DEPAR	TMENT OF		E	ND DATE	7/	25/13						STATION	"X" 59+01	
	TRANSP	ORTATION		JC	B DESCR	IPTION	_US95	/ CC-215 S	Systen	n-to-System	n Interc	hange	OFFSET	334' Left	
		\sim		LC	OCATION	_No	orthwest	Las Vegas	s - Clai	k County			ENGINEER	Lawrence	
	$ \forall $		\setminus		DRING	BI	-32						EQUIPMENT	Diedrich D	-120 (Unit 1627)
					A. #	73	3518			GROUND	WATER		OPERATOR	Pypkowski	i
		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$					39.40 (1		·	1		ELEV. ft	DRILLING	6" H.S.A.	_
	GEOTTECH	INICAL						utomatic					METHOD		
	GEOTECH ENGINE	EERING N			AMMER DF			utomatio					BACKFILLED	D/	ATE
	ELEV. (ft)	DEPTH (ft)		MPLE TYPE	BLOW C 6 inch Increments	Last	Percent Recov'd	LAB TESTS	USCS Group		MAT	ERIAL DI	ESCRIPTION		REMARKS
				смз	12 23	46	95		000	<u>CI</u>	LAYEY (GRAVEL W	ith SAND Moist) to very pale bro	, dense,	
		31.50	-	CIVIS	23	40	85		GC	31.50 7/	3) to wh	ite (10 YR	8/1) mottled with	ı light	
		_			11					\re	ddish br	own (5 YR	6/4) and light br	rownish /	
		33.00	M	SPT	13 40	53	85		GM		ay (10 Y		SAND Moist, v	/	
		33.00	-		40				GIVI	de	nse lid	ht aray (10	YR 7/1) to verv	pale brown	
		L							L	34.00 (1	0 YR 7/	3) to white	(10 YR 8/1)		
		25.00													
	2404.4 -	35.00			16				GC	CI		GRAVEL w	ith SAND Moist	. medium	
		L	Ν	CMS	16	39	65			de	ense, lig	ht gray (10	YR 7/1) to very	pale brown	
		36.50			<u>23</u> 17								(10 YR 8/1) AVEL with SANE	Malat	
		-	0	SPT	25	53	60			de	ense, lig	ht gray (10	YR 7/1) to very		
		38.00			28				GW	(1	0 YR 7/	3) to white	(10 YR 8/1)		
										39.00					
		-					¢							1	
	2399.4 -	40.00							_						
			Р	SPT	10 8	17	40				LAYEY (GRAVEL w	vith SAND Moist YR 7/1) to very	, medium	
		41.50		011	9		40		GC				(10 YR 8/1)	pale blown	
		_													
			ł												
		-								43.50					
		-]	43.5' - 45.0'
		45:90												l	progress 0.08'/min.
	2394.4 -	4515:10	Q	SPT	-10/0.1'-	10/0.1	0	·	1						(Q) 10 blows; no
		_									TRONO				progress. No
										5	RONG	LY CEIVIEN	TED MATERIAL	-	sample recovered.
		-			1										45.0' - 48.5'
		-			3					49 50					progress 0.16'/min.
						1			⊢	48.50					51107/IIII),
		F													48.5' - 53.0'
	2389.4 -	50.00	R	SPT	50/0.3'	50/0.3	0								progress 1.5'/min.
			``						1			~~··	-	-	(R) No sample
		F										CEMENTE	D MATERIAL O	K	recovered.
		-								×					
<u> </u>										53.00					
27/16		-	-							+					
T 6/:		-													
L.GDT															53.0' - 59.0' progress 0.04' -
õ	2384.4 -	-55													0.08' ft/min.
≧		F									TRONG				
GP						1				<u> </u>			ITED MATERIAL	-	
ES.		Γ		1											
ALL FILES.		F													
		L								59.00					No groundwater
_D01		ſ	ļ								ND BI-3	2 @ 59.0'			encountered.
≩l		L			1			l							

						0/0				EXPLO	ORATION	LOG			
I NE		A D	A	STA	RT DATE		5/13							11/11 00 10 1	SHEET 1 OF 3
DEPAR	RTMEN	TOF		END	DATE	8/7	/13					h a 10	STATION	"X" 90+94	
TRANS	PORT/	NON		JOB	DESCRIF	PTION		/ CC-215 S				nange	OFFSET	243' Left	
				LOC	ATION	_No	rthwest	Las Vegas	- Clar	k Count	/		ENGINEER	Boomhowe	er -120 (Unit 1627)
$ \langle \langle $				BOF	RING	_B1-	-33						EQUIPMENT	Pypkowski	
		N		E.A.		73	518			GROU	NDWATER	LEVEL	OPERATOR		
					TUND ELE	- 23	84.10 (f	it)		DATE	DEPTH ft	ELEV. ft	DRILLING METHOD	6" H.S.A.	
CEOTE	THNIC	5				- * •	-				· · · · ·		BACKFILLED	DA	ATE
GEOTEC ENGIN	VEERIN						I EW	utomatic			·······				
ELEV. (ft)			<u>SAM</u> 10.		BLOW CO 6 inch ncrements	Last	Percent Recov'd	LAB TESTS	USCS Group		MATI	ERIAL D	ESCRIPTION		REMARKS
									L	1.00	GRAVELL	_Y SAND	Dry, tan		
2379.1		5.00 6.50	A	SPT	16 28 38	66	95		CL	8.20		<u>ΑΥ</u> Dry, 1	very hard, light g	ray (10 YR	
2374.1		0 10.00 11.50	В	SPT	17 24 31	55	85		SC SM		hard, ligh	nt gray (10	<u>ND with GRAVE</u> YR 7/2)	L Dry,	
2369.4	1 -	15.00 15 16.50	С	SPT	8 7 9	16	80		Cł	I 18.2	mottled 6/2)	AY with S/ white (5 Y	AND <u>> Dry. \ 8/1) to light olive</u>	<u>very stiff.</u> <u>a gray (5 Y</u>	
			l												
		20.00							CI	-				n i aliff	
2364.	1 +	20		0140	11 13	26	95				LEAN C mottled	LAY with white (5 Y	SAND Dry, ve (8/1) to light olive	ry sun, e gray (5 Y	
	-	21.50	D	CMS	13	20	30			21.5	0 6/2)				_
/16		23.00	E	SPT	5	11	85		C		gray (5	<u>FAT CLA</u> Y 7/2)	Y Dry to moist,	stiff, light	
6/27	L								Ļ	<u>24.0</u>	0			·	
NV_DOT ALL FILES.GPJ_NV_DOT.GDT 6/2/146 55 65	.1 + +	25.00 25	F	СМЗ	3 5 13	18	95						<u>SAND</u> Dry to r 2)		
GPJ	-	26.5			7	1			c	L		CLAY Mo	ist, medium stiff,	white (5 Y	(G) Last blow - sampler driven
ALL FILES.		28.1	G	SPT	4	5	55			-	8/1)				0.6'.
DOT	F														
≩		30.0	0								00				

ſ		IIAT				1/	8/14			EXPL	ORATIO	N LOG		· · · · · · · · · · · · · · · · · · ·	······································
		UAL	4				8/14 8/14								SHEET 2 OF 2
	TRANSP	TMENT OF			ND DATE			 5 / CC-215 \$	System	-to-Svet	em Interr	hande	STATION	"XP" 203+	
								t Las Vegas				nange	OFFSET	304' Right Lawrence	
	2		\mathbf{N}		OCATION		-43	Lus Vogac	- Olun	Coount	y	w	ENGINEER EQUIPMENT		0-120(#1627)
		A			ORING	-	518			GROU	NDWATEF		OPERATOR	Pypkowsk	······································
					.A. #		25.00 (ft)		DATE	DEPTH ft		DRILLING	6" H.S.A.	
	GEOTECH	INICAL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					utomatic(E					METHOD		
	GEOTECH ENGINE	EERING N			AMMER DR		STEM		<u></u> 4	• •			BACKFILLED	D	ATE
	ELEV. (ft)	DEPTH (ft)		MPLE TYPE	BLOW C 6 inch Increments	CUNT Last 1 foot	Percent Recov'd	LAB TESTS	USCS Group		MAT	ERIAL D	ESCRIPTION		REMARKS
					11						CLAYEY	GRAVEL	with SAND Mois	t to dry,	
		31.50	Н	SPT	10 15	25	75				hard, very	y pale brow	m (10 YR 7/3)		
		-							GC						
										33.20					
		_							[
	2390.0 -	35.00		ļ	47				-						
			1	SPT	17 16	38	85		sc		<u>CLAYEY</u> hard. verv	SAND with pale brow	n GRAVEL Mois n (10 YR 7/3 to	t to dry, 10 YR 8/2)	
		36,50		-	22						,,	, 1000 0.00			
		-							ĺ						
		-		Ì						38.20					
		-						, ,							
	2385.0 -	40.00		· · · ·	20						CLAYEY	GRAVEL	with SAND_Mois	t to dry	(J) Weakly
			J	SPT		81	95				hard, very	y pale brow	n (10 YR 7/3 to	10 YR 8/2)	cemented
		41.50			45				-						nodules in sample.
									GC						
		-							GC						
		-													
	2380.0 -	45.00													-
	2360.0 -	-40	ĸ	ODT	7 11	20	75				CLAYEY	GRAVEL	with SAND Mois	t to dry,	(K) Strongly
		46,50	K	SPT	19	30	75				naro, very	y pale brow	n (10 YR 7/3 to	10 YR 8/2)	cemented nodules in
		-					5			47.30					sample.
													YCEMENTED		.1 ft/min 47.5' - 48.5' 300 psi
									·	48.50		ALS, HARD	DRILLING		down.
	2375.0 -	_50 ^{58.98}	<u> </u>	SPT	50/0.1'	50/0.1	_0				Monar				
							-						STRONGLY CEN DRILLING	NENTED	(L) No sample recovered.
										51.80			. –		.05 ft/min 50.0' -
1		-								1.00	END BI-4	43 @ 51.8'			51.5' 300 psi down.
16		-													.01 ft/min 51.5' -
6/27							}								51.8' 300 psi down.
GDT		[No groundwater
NV DOT ALL FILES.GPJ NV DOT.GDT 6/27/16	2370.0 -	-55													encountered.
N					5					•					
GPJ															
ILES									1						
ALL F		-								}					
Ę		-		\$											
Z Z Z															

ſ						1/	8/14			EXPLORATION LOG			
	$\langle =$				TART DATI		9/14						SHEET 1 OF 3
	DEPAR TRANSF	TMENT OF	ı		ND DATE				Suntom	to Sustem Interation as	STATION _	"XP" 202+	
					OB DESCR					to-System Interchange	OFFSET -	337' Right	
			$\langle \cdot \rangle$		OCATION			t Las Vegas	s - Clar	County	ENGINEER -	Lawrence	120 (1 1011 1 2027)
					ORING		-44		[EQUIPMENT _	Pypkowsk	<mark>)-120 (Unit 1627</mark>) i
					.A.#		3518	<u></u>		GROUNDWATER LEVEL	OPERATOR _ DRILLING		······································
İ					ROUND EL		121.00 (!	1/9/14 60.50 2360.5	METHOD _	6" H.S.A.	
	GEOTECI ENGINI	EERING		Н	AMMER DF	ROP SYS	STEM	utomatic			BACKFILLED _	D.	ATE
	ELEV. (ft)	DEPTH (ft)		MPLE TYPE	BLOW C 6 inch Increments	Last	Percent Recov'd	LAB TESTS	USCS Group	MATERIAL DE	SCRIPTION		REMARKS
		[
		3:58											
		-	-A-	SPT	50/0.2	50/0.2	0						(A) No sample
													recovered.
		F											
	2416.0 -	<u>5</u> 5:98	B	SPT	50/0.1	50/0.1	0						
1													(B) No sample recovered.
		-											
		- 7:5 8	[
		<i>1.10</i>	C	SPT	50/0:2	50/0.2	0						(C) No sample
				ļ									recovered.
	2411.0 -		Ð	SPT	50/0.1'	50/0.1	0-						
1													(D) No sample recovered.
		-											100010100.
		-								12.50			
		-											
	2406.0 -	15.00											
			Ε	SPT	15 20	51	55			CLAYEY GRAVEL w very dense, very pale	ith SAND Dry to brown (10 YR 7	moist, /3)	
					31					tory dense, very pare	Siowi (10 III)	10)	
		-											
		_											
		-											
	2401.0 -	20.00											
	2401.0	20		CDT	24	45	00			CLAYEY GRAVEL w	ith SAND Dry to	moist,	
		21.50	ㅋ	SPT	24 21	45	80		GC	dense, very pale brov	vn (10 YR 7/3)		
		_											
7/16		-											
L 6/2		-											
GD		25.00			*								
DO	2396.0 -	-25			17					CLAYEY GRAVEL w	ith SAND Dry to	moist,	(G) Weakly
≥		26.50	G	SPT		67	80			very dense, very pale	brown (10 YR 7	/3)	cemented
NV_DOT ALL FILES.GPJ NV_DOT.GDT 6/27/16		26.50			30				1				nodules in sample.
LES.		Ē				1	ł						,
LL FI		-											
JT A		_											
V_DC		00.00											
ź		30.00		1		I	I	l	<u> </u>	30.00			

					- 1/	8/14			EXPLORATION LOG	
DEDAE		4		TART DATE		9/14				SHEET 2 OF 3
TRANS	PORTATION	4		DE DESCRI			 5 / CC-215 \$	Svster	STATION <u>"XP" 202</u> -to-System Interchange OFFSET <u>337' Righ</u>	
							Las Vegas			
		\setminus		DCATION		- 44	Luc rogu			D-120 (Unit 1627)
				ORING		3518			GROUNDWATER LEVEL OPERATOR Pypkows	
	\sim			A. #		21.00 (1	 ft)			
GEOTEC	HDUCAL	ا السلام		ROUND EL			utomatic		1/9/14 60.50 2360.5 METHOD	
GEOTEC ENGIN	EERING V		H,	AMMER DF	ROP SYS	STEM	atomatic		BACKFILLED [
ELEV. (ft)	DEPTH (ft)		MPLE TYPE	Inciententa	Last	Percent Recov'd	LAB TESTS	USCS Group	MATERIAL DESCRIPTION	REMARKS
	30.80	Н	SPT	47 	50/0.3'	100			<u>CLAYEY GRAVEL with SAND</u> Dry to moist, very dense, very pale brown (10 YR 7/3)	(H) Weakly cemented
	-							GC		nodules in
	-							90		sample.
	¢								33.00	
										1
	-							1		
2386.0	35.00	ļ						1		
2000.0		1	SPT	13 12	33	95		СН	SANDY FAT CLAY with GRAVEL Dry to moist, hard, very pale brown (10 YR 7/3) to	
	36.50	1		21	55	30			white (10 YR 8/1)	
	-									2
									29.20	
	-								38.20	-
	\vdash									
2381.0	40.00							_		
		J	SPT	23 45	110	85			<u>CLAYEY SAND with GRAVEL</u> Dry to moist, very dense, very pale brown (10 YR 7/2) and	(J) Weakly cemented
	41.50	1 .		65				sc	white (10 YR 8/1)	nodules in
	F							30		sample.
	_	1								
			ļ							End day 1 drilling @ 43'.
	~		}							anning @ 40.
2376.0	4545.90	-ĸ	SPT	50/0.1	50/0.1	0			45.00	
										(K) No sample recovered.
									WEAKLY TO STRONGLY CEMENTED MATERIALS	
	-								WATERIALS	
	-		3	*						
				-						1.25 ft/min 400 psi down, 45' -
										50'.
2371.0	<u>50</u> 50.90	E-L-	SPT	50/0.1	50/0.1	0			WEAKLY TO MODERATELY CEMENTED	(L) No sample
									MATERIALS	recovered.
	F									1.25 ft/min 400
2	_									psi down, 50' -
]					ł			55'.
5				1						
2366.0		M-	SPT	50/0.1'	50/0.1	0		4	WEAKLY TO MODERATELY CEMENTED	(M) No sample
	-								MATERIALS	recovered.
				+						
	F			3	}					1.6 ft/min 400
1	-									psi down , 55' - 60'.
	00.00			1					60.00	
: L	60.00	1	1	{	1	1	L	1	60.00	

Γ				- -		_ 1/8	3/14			EXPLORATION LOG				
DEPARTMENT OF END DATE 1/9/14												SHEET 3 OF 3 "XP" 202+61		
	TRANSPORTATION JOB DESCRIPTION US95 / CC-215 System-t									to System Interchange	STATION .	337' Right		
										k Country	OFFSET . ENGINEER .	Lawrence		
										·	EQUIPMENT .		-120 (Unit 1627)	
	BORING <u>BI-44</u> E.A. # 73518									OPERATOR .	Pypkowsk	······································		
		$\mathbf{}$			A. # ROUND EL		21.00 (1	ft)		DATE DEPTH ft ELEV. ft	DRILLING METHOD	6" H.S.A.		
	GEOTECH ENGINI	INICAL			AMMER DF			utomatic		1/9/14 00.50 2300.5	BACKFILLED			
	ENGINI	EERING N		MPLE	BLOW C		, i i i i i i i i i i i i i i i i i i i			······································	U/			
	ELEV. (ft)	DEPTH (ft)	NO.	TYPE	6 inch Increments	Last	Percent Recov'd	LAB TESTS	USCS Group	MATERIAL DES			REMARKS	
	7	7 60.50	N	SPT	50/0.5'	50/0.5'	100		-	SANDY SILTY CLAY very pale brown (10 YF	Moist to wet, v R 7/3) to white	ery hard, (10 YR		
		-							CL	8/1)		(10 11((N) Free water	
									ML				on sampler.	
									L	63.00				
		-												
	2356.0 -	65.00			51				-	LEAN OLAV Motot	wat you hand	1071		
		66,00	0	CMS	78	78	90			LEAN CLAY Moist to pale brown (10 YR 7/3	to 10 YR 8/2)	, very		
		F							CL					
		-							ļ					
												1		
		70.00												
	2351.0 -	70 ^{70.00}	}		27				-	LEAN CLAY with SAN	ID Moist to we	t, hard,	(P) Pocket	
		71 50	P	CMS	44 46	90	55			very pale brown (10 YF	R 7/3 to 10 YR	8/2)	penetrometer reading - 2.5,	
		71.50			40	<u> </u>			+	END BI-44 @ 71.5'			3.5, 4.5 tsf.	
												Ì		
		ŀ												
		-												
	2346.0 -	75								1				
	∠340.U -	-75												
		-			5 									
		-												
		L												
		Γ	1						1					
		F												
	2341.0 -	-80												
		F												
		-												
9			ł	-				•						
6/27/														
EDT.		F				*								
ALL FILES.GPJ NV DOT.GDT 6/27/16	2336.0 -	- 85												
N N														
- LdS														
ES.C		-												
		-			1									
JT A														
NV_DOT														
2		1	1	1		1	1		1				L	

ſ		IIAI				- 1/9	9/14			EXPLORATION LOG		
	DEDAD	TMENT OF			TART DAT ND DATE		9/14 9/14					SHEET 1 OF 2
	TRANSP	ORTATION						 5 / CC-215 !	System	-to-System Interchange	STATION <u>"XP" 204</u>	
					DB DESCR			t Las Vegas			OFFSET <u>307' Righ</u> ENGINEER Lawrence	
	6				DCATION		-45	Lus Voga		County	Diadriah	,
					ORING		518		[GROUNDWATER LEVEL	OPERATORPypkows	ki
					A.#					DATE DEPTH ft ELEV. ft		
	CEOTECI	DURGAL			ROUND EI		23.00 (METHOD6" H.S.A	
	GEOTECH ENGINE	EERING V		H	AMMER DI	ROP SYS	STEM	utomatic(E	<u>IR 7</u> 4	o)	BACKFILLED [DATE
	ELEV. (ft)	DEPTH (ft)		MPLE TYPE	BLOW C 6 inch Increments		Percent Recov'd	LAB TESTS	USCS Group	MATERIAL DE	SCRIPTION	REMARKS
		_										
		2.50										-
					23	-			sc	SILTY, CLAYEY SAM	ND with GRAVEL Dry to	
		4.00	А	SPT	21 21	42	95		SM	moist, dense, light ye	llowish brown (10 YR 6/4)	
		4.00			21					4.50		
	2418.0 -	-5 5:28	B	SPT	50/0.2	50/0 2'	0					
			-		0 01 01 L	001012	•					(B) No sample recovered.
		7.50										
		7.50 7.80	С	SPT	50/0.3	50/0.3	0		1			(C) No sample
										9.00		recovered.
		-										
ľ	2413.0 -	-10 ^{10.00}			46						ith CAND Durite maint	
ŀ			D	SPT		116	100		2	very dense, very pale	r <u>ith SAND</u> Dry to moist, brown (10 YR 7/3)	(D) 0.4' @ 50 blows, 20 blows
		11.50			71				-			for final 0.1'.
		-										
		-										
1									1			
1		1							•			
	2408.0 -	<u>15.00</u>			23					CLAYEY GRAVEL W	ith SAND Dry to moist	
			Е	SPT	20	44	80			dense, very pale brow	r <u>ith SAND</u> Dry to moist, wn (10 YR 7/3)	
		16.50			24			·····				
		-										
				{								
		Ļ		ļ		2			GC			
		20.00										2
	2403.0 -	20-0.00			30	-					rith SAND Dry to moist,	
1		21.50	F	SPT	28 43	71	85			very dense,very pale		
		21.00			43	+						
7/16				-								
T 6/2		-										
L GD	0000.0	25.00										
Ю,	2398.0 -		~	0	12		<u> </u>		1	CLAYEY GRAVEL w	vith SAND Dry to moist,	
NN L		26.50	G	SPT	13 17	30	65			dense, very pale brow	wn (10 YR 7/3)	
S.GP		-							1			
ElLE Fille												
NV_DOT_ALL FILES.GPJ_NV_DOT.GDT_6/27/16									<u> </u>	_ <u>28.20</u>		-
POT									sc			-
≩		30.00			l					30.00		

		_							EXPLORATION LOG	· · · · · · · · · · · · · · · · · · ·	
			S	TART DATE	1/	9/14					SHEET 2 OF 2
DEPAI	RTMENT OF		L EI	ND DATE	1/	9/14				STATION	+54
TRANS	PORTATION	1		OB DESCRI		US95	5 / CC-215 :	System	-to-System Interchange	OFFSET 307' Righ	
							t Las Vegas				
		\setminus		OCATION		-45	Luo vogu	5 Olan		Dia dalata	
			B	ORING				r		Duplous	ki
		/	E.	.A. #		3518			GROUNDWATER LEVEL		
	\leq		G	ROUND EL	.EV24	23.00 (ft)		DATE DEPTH ft ELEV. ft	DRILLING 6" H.S.A	
GEOTEC	CHNICAL		H.	AMMER DF	ROP SYS	STEM_A	utomatic(E	<u>TR 7</u> 49	(0)	BACKFILLED	DATE
ELEV.	DEPTH	SA	MPLE					11808			
(ft)	(ft)	NO.	TYPE	incrementa	Last 1 foot	Percent Recov'd	LAB TESTS	USCS Group	MATERIAL DE		REMARKS
		н	SPT	11	27	100			CLAYEY SAND with	GRAVEL Dry to moist, wn (10 YR 7/3 to 10 YR	
	31.50		JULI	14	21	100			8/2)		
								1	,		
				ĺ							
	-				8						
					•						
1	-							SC			
0000.0	35.00										
2388.0				13				1	CLAYEY SAND with	GRAVEL Dry to moist,	
	+	1	SPT		27	95				wn (10 YR 7/3 to 10 YR	
	36.50			11				4	8/2)		
	-			\$							
									38.20		
	Γ										
	-				1						
	40.00				1						
2383.0	+40+0.00			23				-	SILTY GRAVEL with	SAND Dry to moist	
		J	CMS	25	63	85		GM	dense, very pale brow	<u>1 SAND</u> Dry to moist, wn (10 YR 7/3 to 10 YR	
	41.50			38					8/2)		
	L										
	ŀ							 	43.20		
								1			
	45.00								Gravelly or weakly c	emented materials	
2378.0	45:90	⊨ĸ-	SPT	50/0.1	50/0.1			+	45.00 STRONGLY CEMEN		
1									45.80 HARD DRILLING		(K) No sample recovered.
	F				1		}		END BI-45 @ 45.8'	·····	0.1 ft/min 300
	Ļ								-		psi down.
									2		No groundwater
	+										encountered.
			1					1			
	Ē							1			
2373.0	-50										
	F			1							
	Γ				ł						
16	F										
1271			[1							
E E	F			1			ł				
5	55		1								
2368.0	55							1			
≥	F										
rd.											
S.C.	F										
ELE											
ALL	T I										
NV_DOT ALL FILES.GPJ NV_DOT.GDT 6/27/16 539990	ŀ										
2		ļ					1				
ż		l	1	<u> </u>	1	L	1				

						_ 10)/25/16			EXPL	ORATIO	N LOG			
			4		TART DATE										SHEET 1 OF 2
	DEPAR	TMENT OF			ND DATE		/25/16		_ .				STATION	"X" 57+95	
				JC	DB DESCR			5 / CC-215				change	OFFSET	183' Left	
				LC	DCATION	No	orthwest	t Las Vegas	s - Clai	k Count	/		ENGINEER	Boomhow	
	\forall		$\left \right $	В	ORING	Bl	-82						EQUIPMENT		0-120 (Unit 1627)
			/	E.	A. #	73	518			GROU	NDWATER	LEVEL	OPERATOR	Altamiran	D
		\smile			ROUND EL	EV 24	42.70 (1	ft)		DATE	DEPTH ft	ELEV. ft	DRILLING METHOD	6" H.S.A.	
	GEOTECH	INICAL			AMMER DF			utomatic							
	ENGINE	EERING N					5 1 ⊑ IVI			L			BACKFILLED		AIE
	ELEV.	DEPTH		MPLE TYPE	6 inch	Last	Percent	LAB TESTS	USCS Group		MATE	ERIAL DI	ESCRIPTION		REMARKS
ŀ	(ft)	(ft)	110.		Increments	1 foot	Recov'd		Group	_					
		_									SANDEG	RAVEL, D	ry, tan		
										1.50	- — — —				
		-													
		_													
		-													
	2437.7 -	-5													
	2407.17	Ŭ													
		-													
		8.00													
		8.20	_A_	SPT	20/0.2'	20/0.2	0		-						(A) Last 10
		-													blows, no
															progress. No sample
	2432.7 -	-10		1			•								recovered.
		_													
		-													
		13:28	-B	SPT	20/0.2	20/0 21	0		_						
				-95-1-		20/0.2	- V			14.00					(B) Last 10 blows, no
		-								14.00					progress. No
	2427.7 -	15					1								sample
															recovered.
		-							1						
		_													
		18.00							SC SM						
		10.00			13				511		SILTY CL	AYEY SAN	D with GRAVEL	Dry,	
			С	SPT	31	56	85				very dens	e, very pal	e brown (10 YR 3	7/3)	
		19.50			25				-						
	2422.7 -	-20													
		L								21.20					
										T					
11		23.00					ļ		4						
3/23/			D	смз	19 29	77	100				CLAYEY S	SAND with	<u>GRAVEL</u> Dry, c wn (10 YR 6/3)	lense to	
Ы		24.50			48		100		sc		÷		. ,		
<u>01.G</u>	2417.7 -			007	21	~					CLAYEY	SAND with	GRAVEL Dry, c	lense to	
ă >		26.00	E	SPT	23 38	61	75				very dens	e, pale bro	wn (10 YR 6/3)		
N N									1						
S.GF		-							L	27.00					
FILE		28.00													
NV_DOT_ALL FILES.GPJ_NV_DOT.GDT_3/23/17		23,00			18				sc		SILTY CL	AYEY SAN	D with GRAVEL	_ Dry,	
Ģ			F	SPT	25	54	75		SM		dense to v	very dense	, pale brown (10	YR 6/3)	
≥		29.50		<u> </u>	29				-	30.00					
z			L		1		I		L	1 30.00					1

			.			10	/25/16			EXPLO	ORATION	N LOG			
			7		FART DATE		/25/16								SHEET 2 OF 2
	DEPAR TRANSP	TMENT OF			ND DATE				.			,	STATION	"X" 57+95	
				JC	DB DESCRI			5 / CC-215				change	OFFSET	<u>183' Left</u>	
				LC	DCATION			Las Vegas	- Clar	k County	/		ENGINEER	Boomhower Diedrich D-120 (Unit 1627) Altamirano	
				BC	ORING	*****	-82						EQUIPMENT		
				E.	A. #		518				NDWATER		OPERATOR		<u> </u>
					ROUND ELI	_ • •	42.70 (1			DATE	DEPTH ft	ELEV. ft	DRILLING METHOD	6" H.S.A.	
	GEOTECH ENGINI							utomatic				D.	DATE		
	ELEV. (ft)	DEPTH (ft)		<u>APLE</u> TYPE	BLOW CO 6 inch Increments	Last	Percent Recov'd	LAB TESTS	USCS Group		MATE	ERIAL D	ESCRIPTION		REMARKS
NV DOI.GDI 3/23/1/		(ft) - 33.00 - 34.50 - 35 - 38.00 - 39.50 - 440 - 44.50 - 445 - 45 - 50 	G	SPT SPT CMS	6 inch Increments 38 45 49 8 14 24 24	Last			SC SM CH GM	<u>36.20</u> <u>41.20</u> 46.50	CLAYEY S very dens	SAND with e, pale bro AT CLAY brown (10 	GRAVEL Dry, c wm (10 YR 6/3) Dry to moist, har YR 6/4)	dense to d, light	REMARKS Hard drilling from 44.5' to 46.0'. Progress 1.5'/25 minutes @ 400 psi down pressure.
NV_DOI ALL FILES.GPJ NV_DOI.GDI	2387.7 -	- 55													