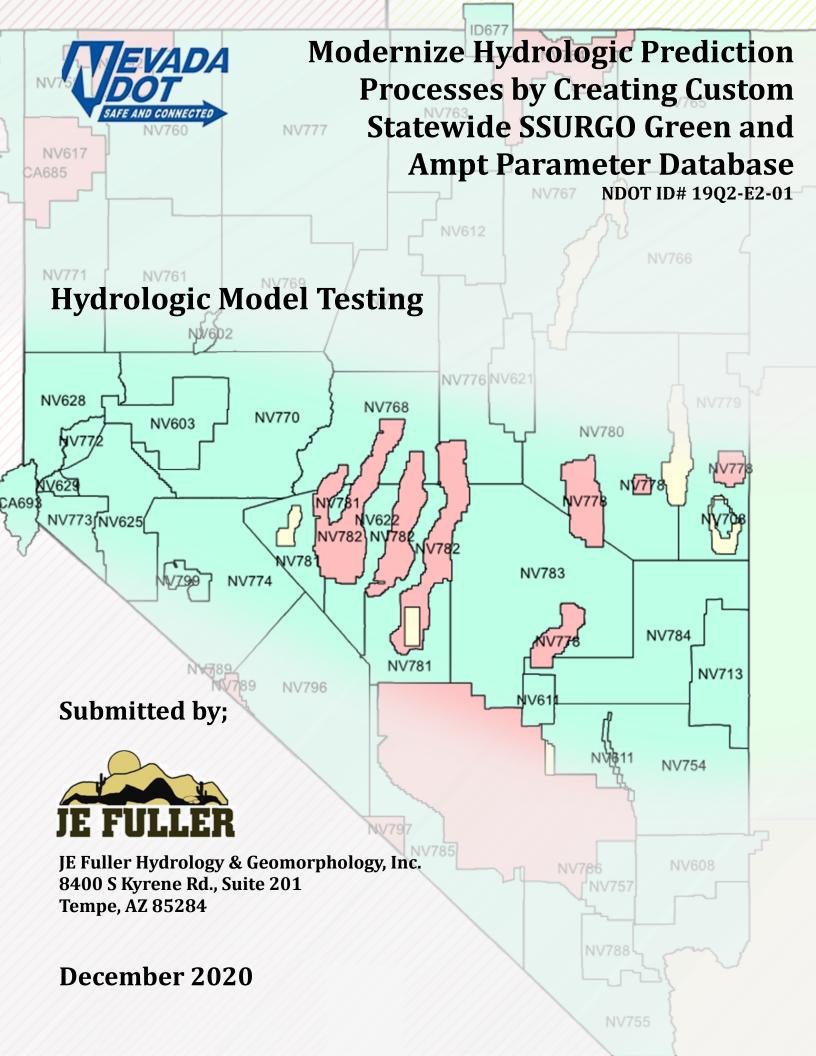
Task 5: Hydrologic Model Testing


December 2020

Nevada Department of Transportation 1263 South Stewart Street Carson City, NV 89712

Disclaimer

This work was sponsored by the Nevada Department of Transportation. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of Nevada at the time of publication. This report does not constitute a standard, specification, or regulation.

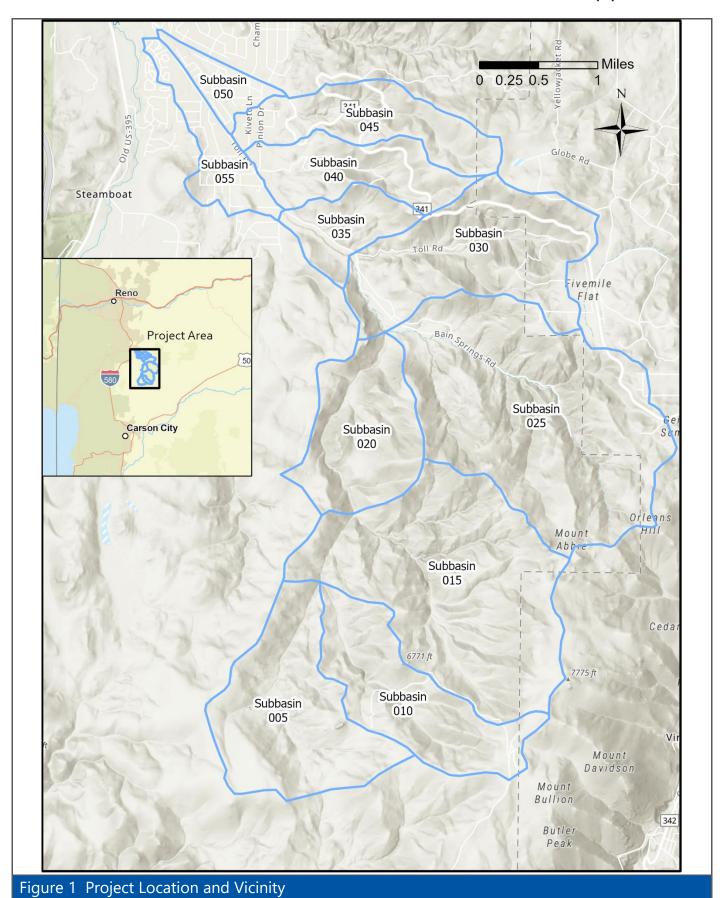
Table of Contents

Sect	<u>tion</u>	<u>Page</u>
1.	Introduction	1
2.	Original Hydrologic Study	1
3.	Green and Ampt Parameter Calculation	3
	USGS Regression Hydrology	
	Results Comparison	
	Additional Considerations	
7.	References	11
<u>List</u>	of Figures	
Figu	re 1 Project Location and Vicinity	2
Figu	ıre 2 Unit Discharge vs Subbasin	9
Figu	re 3 Unit Discharge vs Drainage Area	10
<u>List</u>	t of Tables	
Tab	le 1 Assigned Land Use with Initial Moisture and % Impervious Assumptions	3
Tab	le 2 Subbasin Effective Imperviousness	4
Tab	le 3 Average Initial Content Adjusted for Land Use	4
Tab	le 4 Green and Ampt Soil Parameter Summary for Top 3 inches	5
Tab	le 5 USGS Regression Inputs and Results	6
Tab	le 6 HMS-Results Comparison	6
Tab	le 7 USGS Baseline Comparison	8
Tab	le 8 100-year Discharges Per Unit Area	11

List of Appendices

Appendix A. Baseline Study Documentation Appendix B. HEC-HMS Model Support Data

1. Introduction


This document is intended to function as an example of the use of soils data and methods required to implement the Green and Ampt methodology within the state of Nevada. An example hydrologic watershed model was supplied by Nevada Department of Transportation (NDOT). The hydrologic model used the Natural Resources Conservation Service (NRCS) curve number methodology for estimation of rainfall losses and utilized the United States Army Corps of Engineers (USACE) HEC-1 computer program to conduct the assessment.

For the purposes of this assessment, the original HEC-1 model was migrated to the USACE Hydrologic Modeling System (HEC-HMS) (v4.6) software platform using the HEC-1 input text contained in the technical documentation for the original hydrologic study (Kimley Horn and Associates, Inc., 2011). Simple basin area averages were used to incorporate land use and percent effective imperviousness adjustments to Green and Ampt soils parameters. All results contained in this document are based upon HEC-HMS analysis to eliminate any potential influence due to different hydrologic calculation platforms.

2. Original Hydrologic Study

The reference Bailey Canyon Hydrologic Study was completed for the Washoe County Regional Transit Commission (RTC) in 2011. The project location and vicinity are shown in **Figure 1**. The hydrologic analysis consisted of a HEC-1 model with 11 subbasins, 6 routing reaches, 1 flow diversion, and 9 concentration points (Junctions). Rainfall losses were originally calculated using the NRCS curve number methodology and utilized soil, vegetation, and land use data. Flows were developed using the unit-hydrograph methodology. The precipitation depth was specified using NOAA Atlas 14 data with a fixed areal reduction of 0.98 of the point rainfall applied to all subbasins. The precipitation hyetograph was specified in the HEC-1 model using a JR record for a balanced storm distribution. Limited GIS data was available from the original hydrologic study documentation provided.

Transfer of the original HEC-1 attributes to HEC-HMS was generally accomplished by direct transfer of attributes. The point rainfall reduction was accomplished by multiplying the NOAA Atlas 14 point precipitation values by 0.98 and entering those values into HMS for the precipitation data.

The original GIS data was not available for the study; subbasin boundaries were digitized from exhibits within the original hydrologic study. Parameters for other elements, included routing reaches, were taken directly from the HEC-1 input text which is included in **Appendix A**.

3. Green and Ampt Parameter Calculation

Calculation of Green and Ampt parameters was accomplished using NDOT Geographic Information System (GIS) data derived from NRCS soils surveys. The project watersheds fall within survey areas Nevada (NV) 628 and NV772 and data was calculated for the most restrictive layer within the top three inches of the soil column.

Calculation of detailed parameters for each of the soil column depths follows an identical process with only the input soils dataset differing. Polygons of the subbasins were intersected with NDOT soils data to determine Green and Ampt parameter regions within each subbasin. For subbasins with multiple soil map units present, XKSAT, PSIF, saturated content (Sat), and Initial Content (Wpoint/FCapac) values were averaged based upon their relative coverage (%) in each of the subbasins. Mathematically, XKSAT and PSIF were calculated based upon a logarithmic area weighted average of the soil map units while the other components are calculated via simple area weighted averaging.

Within Green and Ampt methodology, the "Percent Impervious Area" attribute is calculated through a composite of soils (natural) imperviousness and land use imperviousness. Land use attribution from the original hydrologic study was used to determine the land use composition within each subbasin. Land use codes were then cross referenced with **Table 1** to determine the approximate percent impervious area for each area and then combined using area weighted averaging of the land use in each subbasin.

Table 1 Assigned Land Use with Initial Moisture and % Impervious Assumptions							
Land Use Code	Land Use Name	Initial Moisture Condition	Land use Imperviousness [% 0-100]				
OS	Open Space	dry	0				
GR	General Rural	dry	12				
LDS	Low Density Suburban	dry	14				
MDS	Medium Density Suburban	normal	22				
MDR	Medium Density Rural	normal	6				
PR	Parks and Recreation	dry	0				
PSP	Public and Semi-Public Facilities	dry	0				
GC	General Commercial	dry	85				
HDS	High Density Suburban	normal	54				

Once values for percent impervious area were determined based upon both soil and land use attributes, the two values are then added together for use within HEC-HMS; values for soil and land use based imperviousness are shown in **Table 2**.

Table 2 Subbasin Effective Imperviousness							
Subbasin	Weighted Soils (Natural) Imperviousness [% 0-100]	Weighted Land Use Imperviousness [% 0-100]	¹ Weighted Effective Imperviousness [% 0-100]				
005	0	0.00	0.00				
010	0	0.00	0.00				
015	0	0.00	0.00				
020	0	0.02	0.02				
025	0	1.39	1.39				
030	0	4.31	4.31				
035	0	6.01	6.01				
040	0	12.11	12.11				
045	0	10.66	10.66				
050	0	22.10	22.10				
055	3	19.73	22.73				

Note 1: Weighted Effective Imperviousness is the sum of Weighted Soils (Natural) Imperviousness and Weighted Land use Imperviousness for each subbasin.

Initial soil moisture content within each subbasin is assigned based upon the soil parameters present and land use. For agricultural land uses, saturated initial conditions are assumed. For irrigated landscapes such as lawns, a normal condition saturation content, specified as the soil field capacity is assumed, and for natural or non-irrigated landscapes, a dry condition, as represented by the wilting point, is utilized. Average initial soil moisture values for use within HEC-HMS were calculated based upon the percent of each watershed represented by each moisture condition (saturated, irrigated, or dry) and are calculated via simple area weighted average based upon the soil and land use composite data from the original hydrologic study. Land use initial moisture assumptions and average initial content for each subbasin are shown in **Table 3**.

Table 3 Average Initial Content Adjusted for Land Use							
Subbasin	% Normal Saturation''	% Dry Saturation''	Field Capacity	Wilting Point	Initial Content		
005	0.0	100.0	0.237	0.121	0.121		
010	0.0	100.0	0.231	0.114	0.114		
015	0.0	100.0	0.232	0.115	0.115		
020	0.0	100.0	0.231	0.114	0.114		
025	0.0	100.0	0.235	0.117	0.117		
030	0.0	100.0	0.235	0.116	0.116		
035	3.6	96.4	0.225	0.112	0.116		
040	17.5	82.5	0.226	0.112	0.132		
045	14.6	85.4	0.227	0.113	0.130		
050	69.2	30.8	0.153	0.075	0.129		
055	71.8	28.2	0.197	0.105	0.171		

Green and Ampt parameters adjusted for land use initial content and percent imperviousness are summarized (for the top 3" soil horizon dataset) in **Table 4**.

Results for the Green and Ampt infiltration method are presented in **Section 5** of this document.

Table 4 G	Table 4 Green and Ampt Soil Parameter Summary for Top 3 inches								
Subbasin	Initial Content WPOINT or FCAPAC [IN]	Saturation SAT [IN]	Suction PSIF [IN]	Conductivity XKSAT [IN/HR]	Effective Imperviousness [% 0-100]				
005	0.121	0.434	7.628	0.2516	0.00				
010	0.114	0.438	7.022	0.2763	0.00				
015	0.115	0.437	7.172	0.2717	0.00				
020	0.114	0.437	7.107	0.276	0.02				
025	0.117	0.437	7.644	0.2578	1.39				
030	0.116	0.437	7.622	0.2625	4.31				
035	0.116	0.437	5.599	0.2942	6.01				
040	0.132	0.437	5.315	0.2941	12.11				
045	0.130	0.437	5.833	0.2875	10.66				
050	0.129	0.426	0.842	0.7199	22.10				
055	0.171	0.429	2.963	0.3703	22.73				

4. USGS Regression Hydrology

The United State Geological Survey (USGS) has developed a series of regression equations for the state of Nevada to assist in calculating peak discharges for rural watersheds (United States Geological Survey, 1999). Within Nevada, the USGS has identified six hydrologic regions, five of which are defined by spatial extents and the sixth, defined as Region 1, which is defined by an elevation/latitude curve. All subbasins for the project area are located in spatial Region 5 and are located below the threshold for inclusion in Region 1.

Within Region 5, peak discharge estimates are calculated based upon three input variables – subbasin drainage area, mean basin elevation, and site latitude. For the project subbasins, mean basin elevation was determined by geographically intersecting subbasin boundaries with USGS 3dep digital elevation model (DEM) data to determine the average basin elevation. Site latitude was sampled at the subbasin centroids. Based upon the published range of explanatory variables in USGS Fact Sheet 13-98, the project subbasins are below the range of values used in developing the equations for drainage area and, for subbasins 025, 035, 040, 045, 050, and 055, mean basin elevation; however there is no explicit indication that the equations are ill-suited for use on watersheds like those considered in this document and the results appear to be reasonable. Calculation results are shown in **Table 5**.

Table 5 USGS Regression Inputs and Results								
Basin Name/ID	Assigned Geographic	Recommended Region	Area	ELEV	LAT	Peak Flow 100-year		
	Region		(sq. mi.)	ft, NAVD88	deg	(cfs)		
005	5	5	1.67	6237.04	39.31399	341.5		
010	5	5	1.31	6594.07	39.31616	250.1		
015	5	5	3.00	6530.34	39.32954	491.2		
020	5	5	1.19	6308.57	39.34852	258.3		
025	5	5	3.38	5675.18	39.35073	737.9		
030	5	5	1.74	5810.45	39.37014	420.8		
035	5	5	0.52	5140.70	39.37367	213.0		
040	5	5	0.82	5371.91	39.38046	278.2		
045	5	5	0.94	5514.25	39.38629	293.1		
050	5	5	0.29	4665.88	39.39113	168.0		
055	5	5	0.54	4730.49	39.38337	265.9		

5. Results Comparison

Individual HEC-HMS models were developed for each of the below cases

- 1. Curve Numbers (original hydrologic study)
- 2. Green and Ampt (Top 3" Horizons)

Additionally, subbasin-level hydrologic parameters were calculated based upon USGS regional regression equations. USGS regression-based data was not routed within HMS as regression methods are intended for a reasonableness comparison of the infiltration methods. Results for the 4 hydrologic methods are shown in **Table 6**. These results indicate that use of the top 6" Horizons data with the Green and Ampt methodology results in conditions which are universally more conservative than for the top 3" horizons usage. Additionally, results for the top 3" horizons with Green and Ampt infiltration result in discharges that are generally greater than the applied curve number hydrology, but of the same magnitude.

Table 6 HMS-Results Comparison							
HEC-HMS		1	100-year Po	eak Flows			
ID	Basel	ine (Curve	G&A	(Top 3"			
	Nı	umber)	Hor	rizons)	USGS Regression		
	Value	% Baseline	Value	%	Value	%	
	(cfs)		(cfs)	Baseline	(cfs)	Baseline	
CP010	630	100.0%	694	110.1%	-	-	
CP015	1,181	100.0%	1,471	124.6%	-	-	
CP025	1,896	100.0%	2,506	132.2%	-	-	
CP030	2,221	100.0%	2,881	129.8%	-	-	
CP035	2,274	100.0%	2,913	128.1%	-	-	
CP040	2,042	100.0%	2,448	119.9%	-	-	
CP045	2,178	100.0%	2,557	117.4%	-	-	
CP050	2,201	100.0%	2,567	116.6%	-	-	

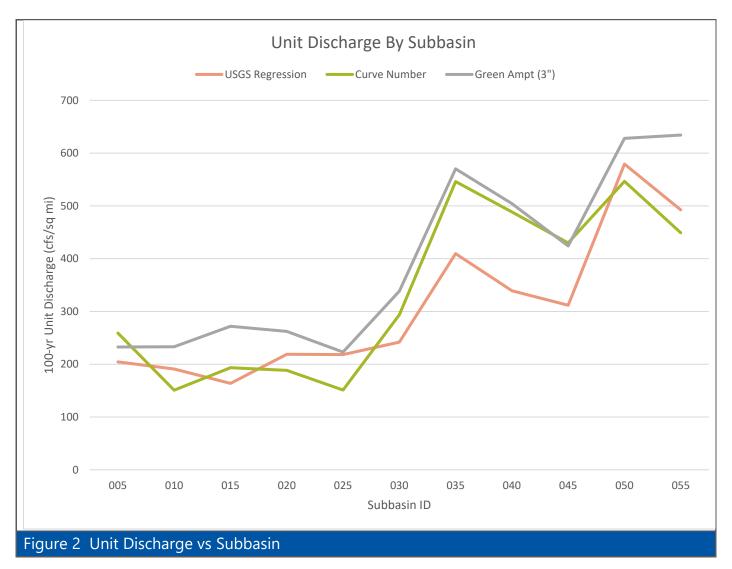
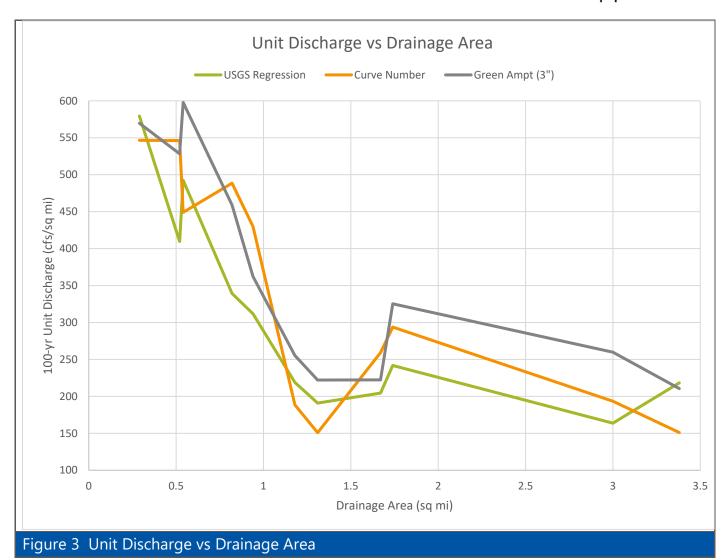

Table 6 HMS-Results Comparison								
HEC-HMS		100-year Peak Flows						
ID	Basel	ine (Curve	G&A	(Top 3"				
	Nı	umber)	Hor	rizons)	USGS	Regression		
	Value	% Baseline	Value	%	Value	%		
	(cfs)		(cfs)	Baseline	(cfs)	Baseline		
CP055	373	100.0%	568	152.1%	-	-		
CP055B	2,574	100.0%	3,132	121.7%	-	-		
D040	1,944	100.0%	2,375	122.2%	-	-		
D055	332	100.0%	538	162.0%	-	-		
R015	630	100.0%	694	110.2%	-	-		
R025	1,180	100.0%	1,469	124.6%	-	-		
R030	1,897	100.0%	2,504	132.0%	-	-		
R035	2,221	100.0%	2,880	129.7%	-	-		
R040	1,943	100.0%	2,374	122.2%	-	-		
R045	2,042	100.0%	2,451	120.0%	-	-		
R050	2,179	100.0%	2,557	117.3%	-	-		
005	433	100.0%	389	89.8%	341.5	78.9%		
010	198	100.0%	305	154.6%	250.1	126.6%		
015	580	100.0%	816	140.6%	491.2	84.7%		
020	222	100.0%	309	139.1%	258.3	116.1%		
025	511	100.0%	754	147.6%	737.9	144.5%		
030	511	100.0%	589	115.2%	420.8	82.3%		
035	284	100.0%	297	104.4%	213	75.0%		
040	401	100.0%	414	103.2%	278.2	69.4%		
045	404	100.0%	399	98.7%	293.1	72.5%		
050	159	100.0%	182	114.9%	168	106.0%		
055	243	100.0%	343	141.2%	265.9	109.6%		

Table 6 shows a comparison of discharges for the curve number and top 3" horizons approaches with USGS regression estimates as the comparative baseline. While flows are generally comparable between the USGS regression and Green and Ampt values, Subbasin 015 exhibits the highest relative discharge difference at 55.9% greater than the USGS regression estimate for the same watershed. The infiltration parameters for Subbasin 015 due not indicate any substantial difference in Green and Ampt attributes that would explain the larger value; however, Subbasin 015 possesses the lowest discharge per unit area of any of the USGS regression results, as shown in **Table 7** and **Figure 2**.


Table 7 USGS Baseline Comparison								
HEC-HMS		100-year Peak Flows						
ID	USGS Re	gression	Curve I	Number	G&A (Top	3" Horizon)		
	(Base	line)						
	Value	%	Value	%	Value	% Baseline		
	(cfs)	Baseline	(cfs)	Baseline	(cfs)			
005	341.5	100.0%	433	126.7%	389	113.8%		
010	250.1	100.0%	198	79.0%	305	122.1%		
015	491.2	100.0%	580	118.1%	816	166.1%		
020	258.3	100.0%	222	86.1%	309	119.8%		
025	737.9	100.0%	511	69.2%	754	102.2%		
030	420.8	100.0%	511	121.5%	589	140.0%		
035	213	100.0%	284	133.3%	297	139.2%		
040	278.2	100.0%	401	144.0%	414	148.6%		
045	293.1	100.0%	404	137.9%	399	136.0%		
050	168	100.0%	159	94.3%	182	108.4%		
055	265.9	100.0%	243	91.2%	343	128.8%		

Based upon these unit discharge values, the unit discharge for Subbasin 015 is within a normal range for the Green and Ampt calculations and the relative increase over the USGS regression discharge is due in part to the low USGS regression unit discharge for that subbasin.

Figure 3 illustrates the unit discharge relationships versus drainage area for all of the subbasins within the project area; USGS is generally exhibits the lowest unit discharge of the three methods evaluated.

Also, of note is that the original curve number analysis did not separately include subbasin imperviousness, which HEC-HMS supports for curve number infiltration, although land use was utilized in determination of the curve numbers. Imperviousness values shown in **Table 1** correlate well to high unit discharges shown in **Table 8** for the Green and Ampt methodology.

An additional difference between the original curve number methodology and the applied Green and Ampt methodology is the inclusion of a vegetation cover adjustment. Curve number methodology allows for adjustment of the applied curve number based upon both the "type" and "quality" of vegetation present. While some agencies incorporate a vegetative cover adjustment with Green and Ampt infiltration (Flood Control District of Maricopa County, 2018), which would act to decrease runoff, no vegetative cover adjustment has been incorporated in this analysis.

	Table 8 100-year Discharges Per Unit Area						
HEC-HMS	Subbasin	100-yr U	nit Discharges (cf	fs/sq mi)			
ID	Area (sq mi)	USGS Regression	Curve	G&A (Top 3"			
		(Baseline)	Number	Horizons)			
005	1.67	204	259	233			
010	1.31	191	151	233			
015	3	164	193	272			
020	1.18	219	188	262			
025	3.38	218	151	223			
030	1.74	242	294	339			
035	0.52	410	546	570			
040	0.82	339	489	504			
045	0.94	312	430	424			
050	0.29	579	547	628			
055	0.54	492	449	634			

6. Additional Considerations

Attempts have been made in this document to provide an "apples to apples" comparison of Green and Ampt methodology with NRCS Curve Number methodology. However, there are additional considerations for a detailed synthetic hydrologic analysis that should be noted.

As discussed previously, vegetative cover effects are embedded within the curve number analysis but are not considered in the included Green and Ampt analyses. Beyond vegetative cover, no consideration has been included in either Green and Ampt or Curve Number analyses to account for initial abstraction in the form of surface storage loss. Surface storage loss is typically implemented within HEC-HMS using the "Surface" component of a subbasin object and allows an initial and maximum surface storage depth to be included in the analysis. Additional information and guidance regarding "surface storage" and selection of appropriate initial abstraction values may be found in the ADOT Hydrology Manual (Arizona Department of Transportation, 2014).

7. References

Arizona Department of Transportation, 2014, Highway Drainage Design Manual Hydrology, prepared by JE Fuller Hydrology and Geomorphology, Inc.

Flood Control District of Maricopa County, 2018, Drainage Design Manual for Maricopa County, Hydrology. Kimley Horn and Associates, Inc., 2011. Geiger Grade Road Realignment Project. Washoe County Regional Transportation Commission.

Mohave County Flood Control District, May 2018. Drainage Design Manual for Mohave County, 3rd Edition.

United States Geological Survey, 1999. The National Flood-Frequency Program -- Methods for Estimating Flood Magnitude and Frequency in Rural Areas in Nevada. US Department of the Interior, US Geological Survey.

Appendix A. Baseline Study Documentation

FINAL TECHNICAL MEMORANDUM

GEIGER GRADE ROAD REALIGNMENT PROJECT

To: Julie Masterpool, RTC

JEFF LERUD, NDOT | JOSELIO RAMIREZ, NDOT

KIMBLE CORBRIDGE, WASHOE COUNTY | WALT WEST, WASHOE COUNTY

JOE COUDRIET, CITY OF RENO | BILL GALL, CITY OF RENO

From: Laurie Marin, KHA | Randy Carroll, KHA | Tony Doucette, KHA

DATE: NOVEMBER 29, 2011

RE: BAILEY CANYON CREEK HYDROLOGIC ANALYSIS

INTRODUCTION:

The Regional Transportation Commission of Washoe County contracted with Kimley-Horn and Associates, Inc. to provide engineering services for the design of the Geiger Grade Realignment Project. Geiger Grade Road is located in Washoe County, Nevada, near the southern limits of the City of Reno. Also known as State Route 341, Geiger Grade Road connects State Route 430 (US 395) and Virginia City. Location and Vicinity Maps are provided in Figure 1 and Figure 2. The Geiger Grade Realignment Project includes the final design and preparation of construction documents for the realignment of Geiger Grade Road in a westerly direction at its intersection with Toll Road/Equestrian Road to a new intersection with State Route 430 (US 395). The realignment will include a new bridge structure across Steamboat Creek, a roundabout at the intersection of the realigned Geiger Grade Road and State Route 430 (US 395), and modification of the signalized intersection of Geiger Grade Road with Toll Road/Equestrian Road to a two-lane roundabout. Improvements to the intersection of Geiger Grade Road with Toll Road/Equestrian Road include rainfall runoff conveyance facilities to accommodate Bailey Canyon Creek through the project, upstream of its confluence with Steamboat Creek.

PURPOSE:

The purpose of this technical memorandum is to document the methodology and results for the hydrologic analysis of Bailey Canyon Creek as part of the Geiger Grade Road Realignment Project. This technical memorandum will provide the hydrologic basis for the flow rate to be used for the design of rainfall runoff conveyance structures at the two proposed crossings of Geiger Grade Road over Bailey Canyon Creek near the Geiger Grade Road and Toll Road intersection.

BACKGROUND:

Bailey Canyon Creek is a tributary to Steamboat Creek with a contributing watershed of approximately 15 square miles. The watershed begins in the Virginia Range east of the Steamboat Valley and joins Steamboat Creek south of the existing intersection of Geiger Grade Road (SR 341), Mt. Rose Highway (SR 431) and Virginia Street (US 395/SR 430). Steamboat Creek joins the Truckee River at a confluence east of Reno and Sparks, Nevada.

The existing Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) for Bailey Canyon Creek is dated 2009 and provides a 100-year effective flow rate of 1,120 cubic feet per second (cfs). Several hydrologic

investigations have been completed for Bailey Canyon Creek over the past 15 years. The studies report 100-year flow rates for Bailey Canyon Creek ranging between 2,000 and 3,700 cfs. Previous hydrology models used various methodologies and assumptions. Given the wide range of flow rates and varying development assumptions, Washoe County and City of Reno recommended that Kimley-Horn conduct an independent hydrologic analysis based on existing conditions and current Washoe County methodology. The outcome of the hydrologic model will be a design flow rate for the two proposed crossings of Bailey Canyon Creek.

HYDROLOGIC PARAMETER DEVELOPMENT:

The procedures and methodology discussed in this technical memorandum primarily reference the *Truckee Meadows Regional Drainage Manual (TMRDM)*, dated April 30, 2009.

FIELD INVESTIGATIONS:

Kimley-Horn conducted a field investigation of the Bailey Canyon Creek Watershed on September 12-13, 2011. The purpose of the field investigation was to observe existing soil conditions, vegetation, land use, and creek roughness in the upper, undeveloped watershed. Observations were used to determine runoff parameters for contributing subbasins and routing reaches of Bailey Canyon Creek. Additionally, Kimley-Horn staff followed Bailey Canyon Creek through the developed portion of the downstream watershed and observed and measured existing drainage features and flow-split locations to aid in subbasin delineations. Photographs of selected locations are provided in Attachment 1.

DRAINAGE AREAS:

The Bailey Canyon Creek watershed was delineated using the "USA Topographic Maps" online GIS server available from ArcGIS at http://goto.arcgisonline.com/maps/USA_Topo_Maps and available 2-ft topographic contour data from Washoe County. The "USA Topographic Maps" server consists of land cover imagery and detailed topographic maps for the United States. The map includes seamless, scanned images of United States Geological Survey (USGS) paper topographic maps at 1:100,000 and 1:24,000 scales. The Bailey Canyon Creek watershed is contained within the following 7.5 minute USGS Quadrangle Sheets:

- Steamboat, NV (dated 1994)
- Virginia City, NV (dated 1994)

Supplemental 2-ft contour data from Washoe County was provided for the following sections (with dates in parenthesis):

- Township 17 North, Range 20 East Section 3 (2007)
- Township 18 North, Range 20 East Sections 27 (2006), 28, 33, and 34 (2007)

Subbasin boundaries, flowpaths and routing reaches are provided in Figure 3. A summary of the contributing subbasin areas is provided in Table 1.



Table 1. Subbasin Drainage Areas

Subbasin	Subbasin Area
	[mi ²]
005	1.67
010	1.31
015	3.00
020	1.18
025	3.38
030	1.74
035	0.52
040	0.82
045	0.94
050	0.29
055	0.54
Total	15 30

Total 15.39

PRECIPITATION:

National Oceanic and Atmospheric Administration Atlas 14 (NOAA Atlas 14) point precipitation frequency estimates for the centroid of the Bailey Canyon Creek watershed are provided in Attachment 2. The tabular report provides estimates with 90% confidence intervals for durations ranging from 5-minutes to 60-days across recurrence intervals from 1-year to 1,000 years. This technical memorandum evaluates the 100-year, 24-hour storm event.

UNIT HYDROGRAPH:

The Soil Conservation Service (SCS) Unit Hydrograph method was used for Bailey Canyon Creek. The SCS Unit Hydrograph methodology is dimensionless and computes rainfall excess hydrographs for a unit amount of rainfall applied uniformly over a subbasin for a unit duration. The rainfall excess hydrographs are transformed to a subbasin hydrograph by superimposing the excess hydrographs lagged by the unit duration. The shape of the SCS Unit Hydrograph is curvilinear and based on the time-to-peak (T_D) and the point of inflection of the falling leg of the unit hydrograph.

Input data for the SCS Unit Hydrograph consists of the single parameter TLAG, defined as the lag time in hours between the center of mass of rainfall excess and the peak of the unit hydrograph. Calculation of TLAG depends on the size of the drainage basin. For small drainage basins with a contributing area of less than one square mile, and basin slopes less than ten percent, the lag time is controlled by initial overland flow time and related to the time of concentration (t_c). For drainage basins greater than one square mile and with basin slopes equal to or greater than ten percent, the lag time and time of concentration is generally governed by the concentrated flow travel time rather than initial overland flow time. The lag time for larger, steeper basins can be computed as follows:

TLAG=22.1K_n
$$\left(\frac{LL_c}{S^{0.5}}\right)^{0.33}$$

Where K_n = Roughness factor for the basin channels (from Table 703 of the City of Sparks HCDDM)

L = Length of longest watercourse (miles)

L_c = Length along longest watercourse measured upstream to a point opposite the centroid of the basin (miles)

S = Representative (average) slope of the longest watercourse (feet per mile)

The representative slope of the longest watercourse was computed by the Mean Basin Slope (S) methodology from the City of Tucson *Standards Manual for Drainage Design and Floodplain Management* as follows:

$$S = \left(\frac{L_c}{G}\right)^2$$

Where S = mean basin slope (feet per foot)

L_c = Length of hydraulically longest watercourse (ft)

$$\mathbf{G} = \left(\frac{\Delta \mathbf{L}_{1}^{3}}{\Delta \mathbf{H}_{1}}\right)^{1/2} + \left(\frac{\Delta \mathbf{L}_{2}^{3}}{\Delta \mathbf{H}_{2}}\right)^{1/2} + \left(\frac{\Delta \mathbf{L}_{3}^{3}}{\Delta \mathbf{H}_{3}}\right)^{1/2} + \left(\frac{\Delta \mathbf{L}_{4}^{3}}{\Delta \mathbf{H}_{4}}\right)^{1/2}$$

ΔL = Change in length factor (ft)

ΔH = Change in elevation factor (ft)

The City of Tucson mean basin slope methodology is appropriate for mountainous watersheds because of the varying slopes within the watershed (steep and mountainous in the upper portions compared to the flatter valleys) and has been previously approved for hydrology studies in Nevada.

TLAG calculations for Bailey Canyon Creek are provided in Attachment 3, and a summary of the TLAG results is provided in Table 2.

	Table 2. TLAG Summary Table						
Subbasin	K _n	L	L _c	S	TLAG		
	[]	[mi]	[mi]	[ft/mi]	[hrs]		
005	0.12	2.64	1.22	329	1.50		
010	0.12	2.78	1.42	617	1.45		
015	0.12	2.64	0.98	693	1.24		
020	0.12	2.36	0.89	360	1.28		
025	0.12	2.99	1.66	615	1.56		
030	0.10	2.29	1.03	603	1.02		
035	0.08	1.41	0.50	395	0.59		
040	0.07	2.36	1.09	620	0.73		
045	0.07	2.71	1.44	510	0.87		
050	0.05	1.25	0.74	81	0.52		
055	0.05	1.89	1.02	133	0.61		

Table 2. TLAG Summary Table

RAINFALL LOSSES:

Rainfall losses were computed using the SCS Curve Number methodology. The curve number methodology relates soil cover, land use, vegetation and antecedent moisture conditions to a runoff curve number used to quantify excess runoff in response to precipitation.

Determinations of the hydrologic soil group and land use parameters for curve number calculations are discussed in the "Soils" and "Land Use" sections of this technical memorandum, and the antecedent moisture condition for the Washoe County area is AMC-II. With these parameters, curve numbers were assigned to the Bailey Canyon Creek subbasin areas from Table 702 of the *TMRDM*. Because of the large subbasin sizes, multiple hydrologic soil groups, land uses and vegetative cover conditions occur in some basins. As a result, a composite curve number was computed for each subbasin that provides an area weighted average. Composite curve number calculations are provided in Attachment 4, and a summary is provided in Table 3.

Table 3. Composite Curve Number Summary Table

Subbasin	Composite CN			
005	80			
010	69			
015	71			
020	71			
025	70			
030	76			
035	81			
040	82			
045	82			
050	79			
055	77			

SOILS:

The SCS (now the Natural Resources Conservation Service, or NRCS) established a soil classification system for soil survey maps across the United States that provides the hydrologic soil groups (A, B, C or D). The soil survey areas used for Bailey Canyon Creek include:

- NV 628 for Washoe County, Nevada, South Part, dated 11/2/2009
- NV 772 for Storey County Area, Nevada, dated 11/9/2009

A map of the soil groups within the Bailey Canyon Creek watershed is provided in Figure 4, and a summary table of soil group areas by subbasins is provided in Attachment 5.

LAND USE:

Washoe County provided land use shape files for the *South Valleys Area Plan* (September, 2010) and *Southeast Truckee Meadows Area Plan* (July, 2011) components of the Washoe County Master Plan. Land use data is typically based on zoning, general planning information and existing topography. Areas within the Bailey Canyon Creek watershed that did not have a land use assigned from the Master Plan were designated as open space and verified with recent aerial mapping. A land use map is provided in Figure 5, and a summary of land use codes and reference maps are provided in Attachment 6.

CHANNEL ROUTING:

The Muskingum-Cunge routing methodology was used to route subbasin hydrographs. The channel routing technique accounts for hydrograph diffusion based on the physical channel properties and the inflowing hydrograph. Muskingum-Cunge can be used for channels with standard prismatic shapes or with irregular cross sections. Data inputs consist of a representative channel cross section, routing reach length, Manning's roughness coefficients, and channel bed slope. Routing reaches are illustrated in Figure 3, and input parameters are provided in Attachment 7 and summarized in Table 4.

Table 4. Muskingum-Cunge Routing Input Data Summary Table

Routing Reach	Length [ft]	Upstream Elevation [ft]	Downstream Elevation [ft]	Slope [ft/ft]	Manning's n	Bottom Width [ft]	Side Slopes [XX:1]
R015	3,529	5720	5560	0.045	0.073	100	2
R025	9,817	5560	5120	0.045	0.078	50	2
R030	4,069	5120	4960	0.039	0.100	25	3
R035	3,714	4960	4834	0.034	0.108	70	4
R040	3,539	4834	4730	0.029	0.073	30	50
R045	1,734	4730	4690	0.023	0.086	30	50
R050	5,748	4690	4588	0.018	0.053	20	2
R055	9,490	4834	4588	0.026	0.045	8	10

FLOW SPLITS:

Bailey Canyon Creek Crosses Toll Road southwest of the intersection of Toll Road with Ravazza Road in two 8-ft by 5-ft concrete box culverts. During high flow events when flow depths exceed the existing roadway elevation, flow is divided at this crossing. A portion of the runoff crosses under Toll Road in the box culverts, and the remainder overtops the road. The majority of the flow that overtops the road continues in Bailey Canyon Creek, however, some does split from the channel and flow down Toll Road. The capacity of the box culverts was evaluated using the Federal Highway Administration (FHWA) HY-8 version 7.2 culvert modeling software and used to create a rating curve for the crossing. Supporting documentation for the flow split is provided in Attachment 8.

A second flow split location was evaluated at Geiger Grade Road between Western Skies Drive and High Chaparral Way where Bailey Canyon Creek flows adjacent to Geiger Grade Road. Normal depth analysis shows that a breakout does not occur unless the flow rate exceeds 3,288 cfs. The 100-year, 24-hour runoff calculated in that area is 2,179 cfs. Supporting Flowmaster cross sections and input data are included in Attachment 8.

HYDROLOGIC MODEL:

The United States Army Corps of Engineers (USACE) Hydrologic Engineering Center HEC-1 Flood Hydrograph Package was used to calculate runoff for the Bailey Canyon Creek Watershed using the parameters discussed in this technical memorandum. HEC-1 output results are included in Attachment 9.

RESULTS:

Bailey Canyon Creek crosses the proposed Geiger Grade Road Realignment in two locations: first under the Toll Road approach south of the proposed roundabout, and again under Geiger Grade Road west of the proposed roundabout. The two crossings are illustrated in Attachment 10. Due to the flow split upstream where Bailey Canyon Creek crosses Toll Road near the intersection of Toll Road and Ravazza road, the design flow rates for each crossing are different. The first crossing under Toll Road includes flow that continued in Bailey Canyon Creek from the flow split and is represented in the hydrologic model by CP050. The second crossing under Geiger Grade Road includes both the flow from Bailey Canyon Creek, and the flow that splits to Toll Road and continues along Toll Road to the intersection. The second crossing is represented in the hydrologic model by CP055. The split flow routed along Toll Road (represented by R055) flows along the road and in the ditches on both sides of the road. Since the ditch on the east side of Toll Road crosses under the first crossing, approximately half of the split flow routed along Toll Road is added to the first crossing. A summary of the design flow rates is provided in Table 5.

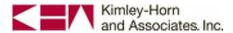


Table 5. Design Flow Rates Summary Table

HEC-1 ID	Crossing 1 Under Toll Road	Crossing 2 Under Geiger Grade Road		
CP050	2,179	-		
1/2 of R055	161	-		
CP055	-	2,541		
Design Flow Rate	2,340	2,541		

REFERENCES:

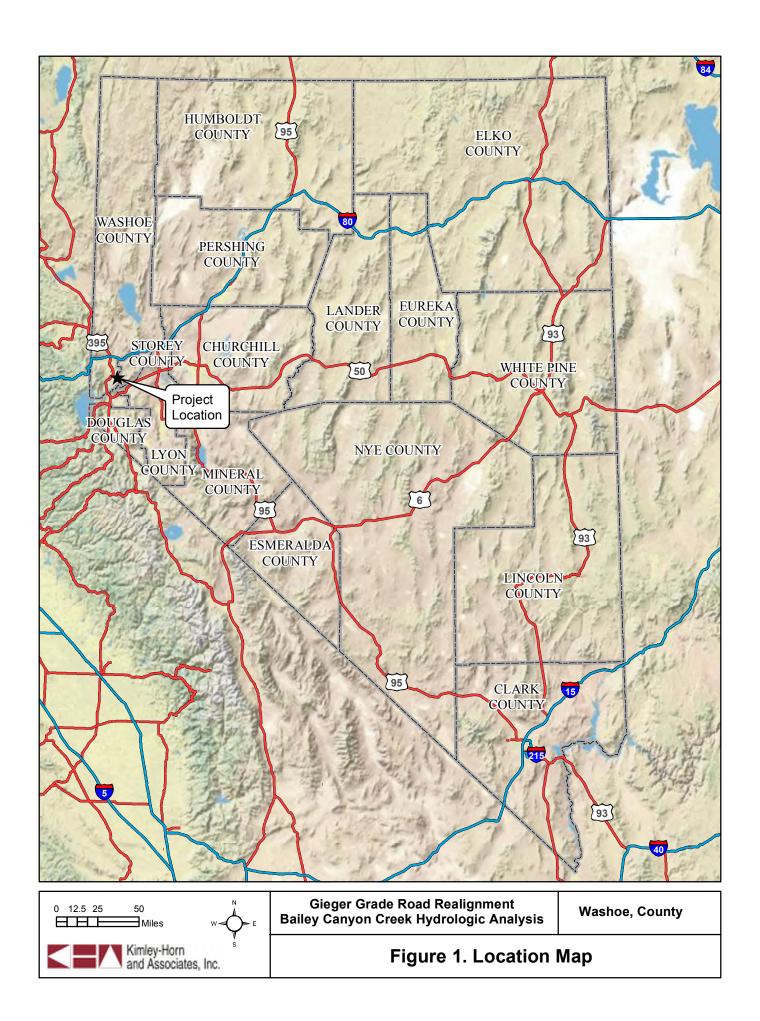
- ArcGIS Online servers. http://goto.arcgisonline.com/maps/USA_Topo_Maps. 2011.
- 2. City of Sparks. "Hydrologic Criteria and Drainage Design Manual". June 30, 1998.
- 3. City of Tucson. "Standards Manual for Drainage Design and Floodplain Management". July, 1998.
- 4. United States Army Corps of Engineers Hydrologic Engineering Center. "HEC-1 Flood Hydrograph Package User's Manual". June, 1998.
- 5. Washoe County Department of Community Development. "South Valleys Area Plan" September, 2010.
- 6. Washoe County Department of Community Development. "Southeast Truckee Meadows Area Plan". July, 2011
- 7. Washoe County Department of Community Development. "Washoe County Master Plan Land use and Transportation Element". September, 2010.
- 8. Washoe County Department of Public Works. "Truckee Meadows Regional Drainage Manual". April 30, 2009.

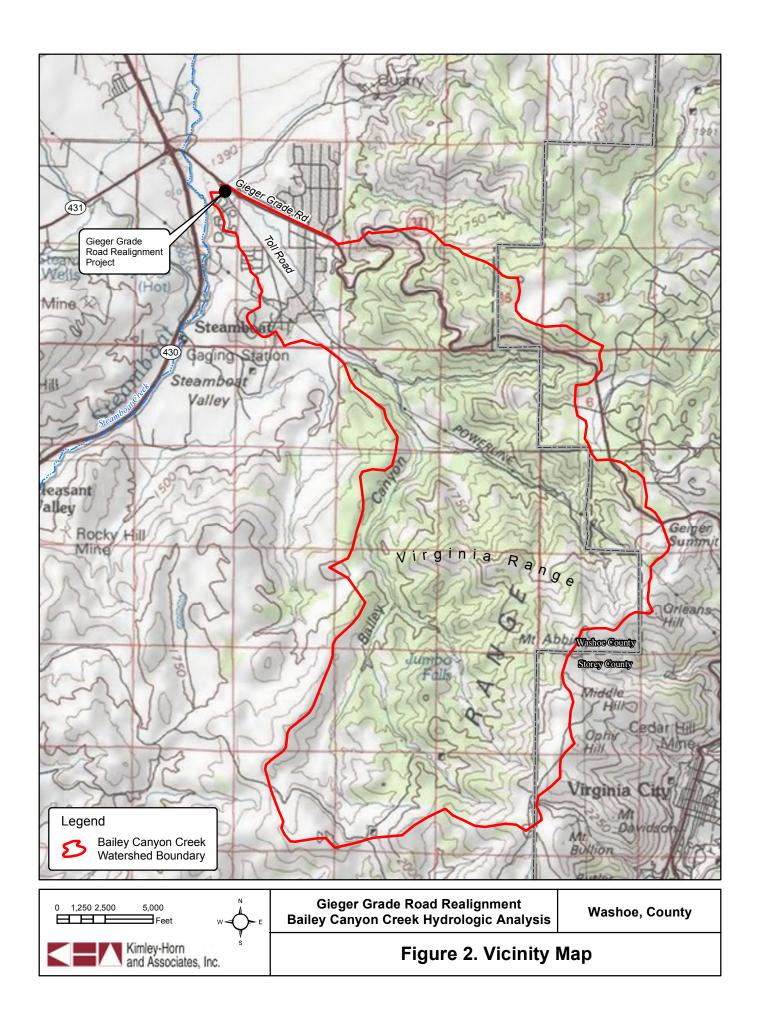
FIGURES:

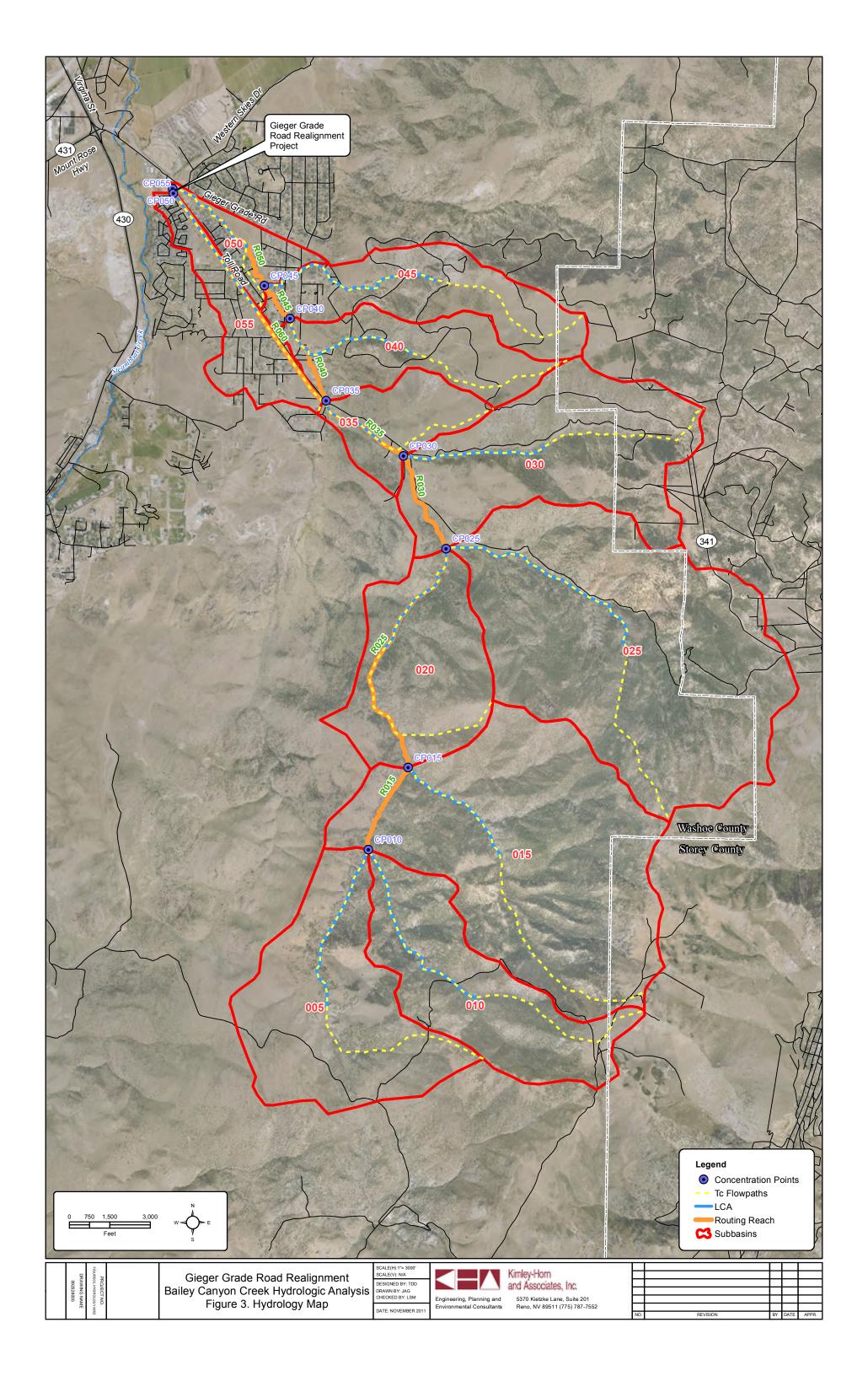
- 1. Location Map
- 2. Vicinity Map
- 3. Hydrology Map
- 4. Soils Map
- Land Use Map

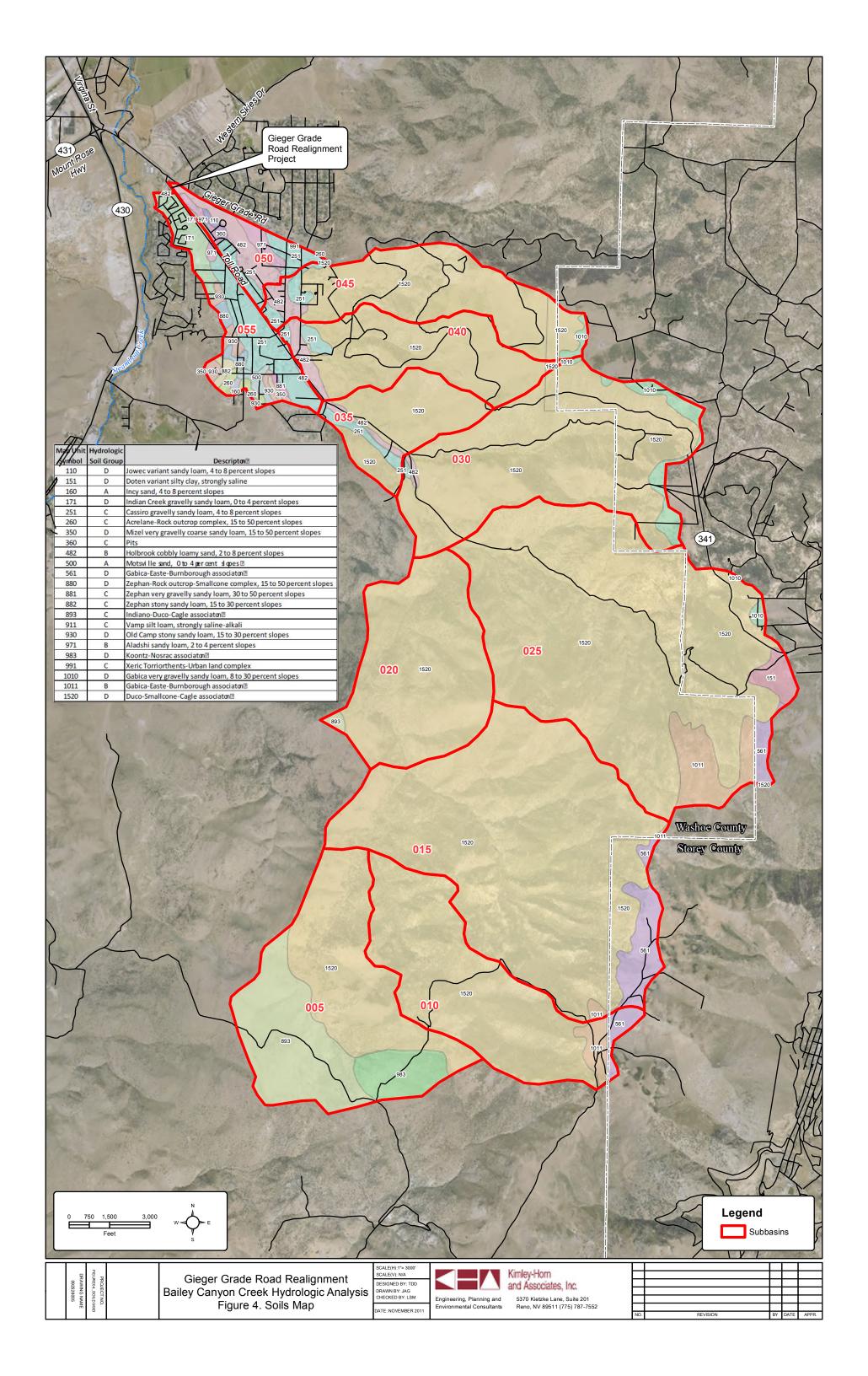
ATTACHMENTS:

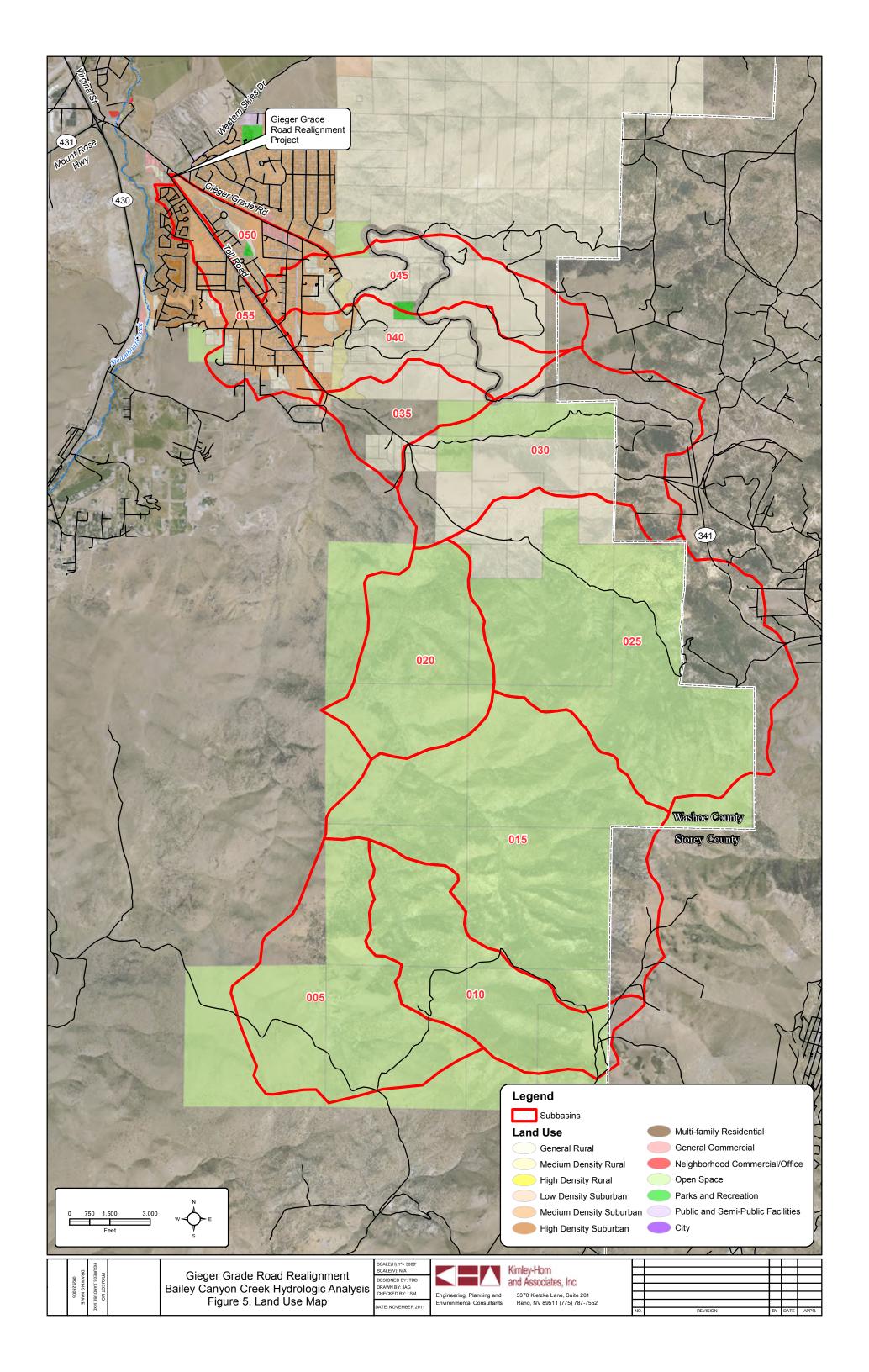
- 1. Field Photographs
- 2. NOAA Atlas 14 Rainfall
- 3. TLAG Calculations
- 4. Composite Curve Number Calculations
- 5. Soil Parameters
- 6. Land Use Parameters
- 7. Muskingum-Cunge Channel Routing
- 8. Flow Split Calculations
- 9. HEC-1 Model Output
- 10. Geiger Grade Road Realignment Exhibit

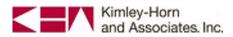





FIGURES:


- 1. Location Map
- 2. Vicinity Map
- 3. Hydrology Map
- 4. Soils Map
- 5. Land Use Map





ATTACHMENTS:

- 1. Field Photographs
- 2. NOAA Atlas 14 Rainfall
- 3. TLAG Calculations
- 4. Composite Curve Number Calculations
- 5. Soil Parameters
- 6. Land Use Parameters
- 7. Muskingum-Cunge Channel Routing8. Flow Split Calculations
- 9. HEC-1 Model Output
- 10. Geiger Grade Road Realignment Exhibit

ATTACHMENT 1: FIELD PHOTOGRAPHS

At the top of the Geiger Summit, the eastern boundary of the Bailey Canyon Creek Watershed.

<u>Typical vegetative cover high in the Bailey Canyon</u> <u>Creek Watershed</u>

Slopes and vegetative cover along Geiger Grade Road

Close up view of typical vegetative cover in the higher elevations

<u>Cover conditions of the mid-elevations of the Bailey</u> <u>Canyon Creek Watershed</u>

<u>Low elevation cover and slopes along Geiger Grade</u> <u>Road</u>

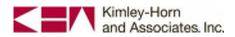
Photo Date: 9/16/2011

Low elevation cover and slopes

Typical vegetation in Bailey Canyon Creek adjacent to Bain Spring Road

Bailey Canyon Creek adjacent to Toll Road and downstream of Bain Spring Road

<u>Dual 8'x5' concrete box culverts at Bailey Canyon</u> <u>Creek crossing under Toll Road near Ravazza Road</u>



12'x5' concrete box culvert at Bailey Canyon Creek crossing under Kivett Lane

Roadside ditch along south side of Toll Road (looking west)

Photo Date: 9/16/2011

NOAA Atlas 14, Volume 1, Version 5 Location name: Reno, Nevada, US* Coordinates: 39.3550, -119.6890 Elevation: 5641ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

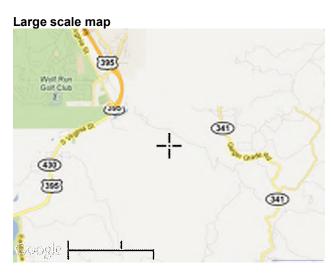
PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration	Average recurrence interval(years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.111 (0.095-0.131)	0.138 (0.119-0.164)	0.184 (0.157-0.218)	0.226 (0.191-0.267)	0.295 (0.242-0.350)	0.357 (0.284-0.429)	0.430 (0.332-0.524)	0.519 (0.384-0.645)	0.663 (0.461-0.847)	0.795 (0.525-1.04)
10-min	0.169 (0.145-0.199)	0.210 (0.181-0.249)	0.280 (0.239-0.332)	0.344 (0.291-0.407)	0.448 (0.368-0.533)	0.543 (0.432-0.652)	0.655 (0.505-0.797)	0.790 (0.584-0.981)	1.01 (0.701-1.29)	1.21 (0.799-1.58)
15-min	0.209 (0.180-0.247)	0.261 (0.224-0.309)	0.347 (0.296-0.411)	0.426 (0.360-0.504)	0.556 (0.456-0.661)	0.673 (0.536-0.809)	0.812 (0.626-0.987)	0.979 (0.724-1.22)	1.25 (0.869-1.60)	1.50 (0.991-1.96)
30-min	0.281 (0.243-0.332)	0.351 (0.302-0.416)	0.467 (0.398-0.553)	0.574 (0.485-0.679)	0.749 (0.615-0.890)	0.906 (0.722-1.09)	1.09 (0.842-1.33)	1.32 (0.975–1.64)	1.68 (1.17–2.15)	2.02 (1.33-2.64)
60-min	0.348 (0.300-0.411)	0.434 (0.374-0.515)	0.578 (0.492-0.685)	0.710 (0.601-0.840)	0.926 (0.761-1.10)	1.12 (0.893-1.35)	1.35 (1.04–1.65)	1.63 (1.21–2.03)	2.08 (1.45-2.66)	2.50 (1.65-3.27)
2-hr	0.462 (0.407-0.533)	0.575 (0.508-0.663)	0.731 (0.639-0.843)	0.865 (0.748-0.998)	1.07 (0.899-1.24)	1.25 (1.03–1.46)	1.45 (1.16–1.73)	1.71 (1.33–2.06)	2.15 (1.60-2.68)	2.57 (1.84-3.27)
3-hr	0.561 (0.498-0.636)	0.698 (0.626-0.796)	0.869 (0.770-0.989)	1.01 (0.886-1.15)	1.20 (1.04–1.38)	1.37 (1.17–1.58)	1.56 (1.30–1.83)	1.81 (1.48-2.15)	2.24 (1.78-2.72)	2.64 (2.05-3.29)
6-hr	0.808 (0.719-0.910)	1.01 (0.899–1.14)	1.24 (1.10–1.40)	1.42 (1.25–1.61)	1.66 (1.44–1.89)	1.85 (1.58–2.12)	2.03 (1.71–2.35)	2.25 (1.86-2.64)	2.58 (2.09-3.08)	2.90 (2.31-3.52)
12-hr	1.10 (0.976–1.24)	1.38 (1.23–1.56)	1.73 (1.53–1.96)	2.01 (1.76–2.28)	2.38 (2.06-2.71)	2.66 (2.28–3.06)	2.95 (2.48-3.43)	3.23 (2.68-3.81)	3.61 (2.91-4.34)	3.92 (3.09-4.78)
24-hr	1.39 (1.26-1.55)	1.75 (1.59–1.95)	2.22 (2.01–2.48)	2.61 (2.35–2.90)	3.14 (2.81-3.50)	3.57 (3.17–3.98)	4.02 (3.53-4.51)	4.48 (3.90-5.07)	5.12 (4.38-5.85)	5.64 (4.75-6.51)
2-day	1.71 (1.53–1.93)	2.16 (1.93–2.43)	2.77 (2.47-3.12)	3.27 (2.91–3.69)	3.98 (3.50-4.50)	4.55 (3.97–5.16)	5.15 (4.44–5.89)	5.79 (4.94–6.68)	6.68 (5.58-7.80)	7.40 (6.07-8.76)
3-day	1.90 (1.71–2.15)	2.41 (2.16-2.72)	3.13 (2.80-3.52)	3.71 (3.31–4.19)	4.55 (4.01–5.14)	5.22 (4.56–5.92)	5.95 (5.14–6.78)	6.72 (5.73–7.71)	7.81 (6.52-9.07)	8.71 (7.14–10.2)
4-day	2.10 (1.88–2.37)	2.67 (2.39–3.01)	3.48 (3.12–3.93)	4.16 (3.70-4.68)	5.12 (4.52–5.77)	5.90 (5.16-6.67)	6.75 (5.83–7.66)	7.65 (6.52-8.74)	8.94 (7.47–10.3)	10.0 (8.21–11.7)
7-day	2.49 (2.21-2.82)	3.17 (2.81-3.60)	4.18 (3.69–4.74)	4.99 (4.40-5.67)	6.14 (5.37-7.00)	7.07 (6.13–8.08)	8.07 (6.91–9.25)	9.12 (7.73–10.5)	10.6 (8.84–12.4)	11.8 (9.71–14.0)
10-day	2.80 (2.47-3.18)	3.58 (3.17-4.07)	4.72 (4.17-5.37)	5.62 (4.94–6.40)	6.88 (6.00-7.86)	7.88 (6.82-9.02)	8.94 (7.66–10.3)	10.0 (8.51–11.6)	11.6 (9.65–13.5)	12.8 (10.5–15.0)
20-day	3.57 (3.18-4.04)	4.56 (4.06-5.17)	5.98 (5.31–6.77)	7.08 (6.27–8.01)	8.57 (7.53-9.71)	9.72 (8.48–11.1)	10.9 (9.44–12.5)	12.1 (10.4–13.9)	13.8 (11.6–16.0)	15.1 (12.6-17.7)
30-day	4.22 (3.75-4.79)	5.41 (4.80-6.13)	7.07 (6.26-8.02)	8.36 (7.37-9.47)	10.1 (8.85–11.5)	11.4 (9.96–13.0)	12.8 (11.1–14.7)	14.2 (12.2-16.4)	16.1 (13.6–18.8)	17.6 (14.7-20.7)
45-day	5.05 (4.49–5.68)	6.48 (5.75-7.28)	8.46 (7.50-9.51)	9.95 (8.79–11.2)	11.9 (10.5–13.4)	13.4 (11.7-15.1)	14.9 (13.0–16.9)	16.4 (14.2-18.7)	18.4 (15.7-21.1)	19.9 (16.8–23.0)
60-day	5.89 (5.20-6.65)	7.59 (6.70-8.55)	9.91 (8.74–11.1)	11.6 (10.2–13.0)	13.7 (12.0-15.4)	15.3 (13.3–17.3)	16.8 (14.6–19.0)	18.3 (15.8–20.8)	20.2 (17.3–23.1)	21.6 (18.4–24.8)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

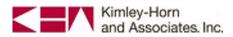
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.


Back to Top

PF graphical

Large scale terrain


Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
Office of Hydrologic Development
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

ATTACHMENT 3: TLAG CALCULATIONS

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek

Subject HEC-1 Input Parameters - LAG

Date 9/22/2011 Project No. 092528005 Designed by LSM

Checked by MAF Date 10/5/2011

Mean Basin Slope (Sc):

Mean slope equation from City of Tucson Standards Manual $S_c = \left(\frac{L_c}{G}\right)^2$

for Drainage Design and Floodplain Management (1998)

where $S_c =$ Mean Basin Slope (ft/ft)

> Length of Hydraulically Longest Watercourse (ft) $L_c =$

 $G = \left(\frac{\Delta L_1^3}{\Delta H_1}\right)^{1/2} + \left(\frac{\Delta L_2^3}{\Delta H_2}\right)^{1/2} + \left(\frac{\Delta L_3^3}{\Delta H_3}\right)^{1/2} + \left(\frac{\Delta L_4^3}{\Delta H_4}\right)^{1/2}$

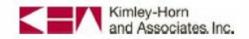
 $\Delta L =$ Change in Length Factor (ft)

 $\Delta H =$ Change in Elevation Factor (ft)

Subbasin	Segment	ΔL	USGE	DSGE	$(\Delta L^3/\Delta H)^{1/2}$	S _c
		[ft]	[ft]	[ft]	[ft]	[ft/mi]
	Upper	1,396	6,725	6,600	4,665	
	Upper-Mid	2,427	6,600	6,320	7,145	
	Lower-Mid	3,006	6,320	6,020	9,515	
	Lower	7,085	6,020	5,720	34,431	
005	Subbasin	13,914	6,725	5,720	55,757	329
	Upper	3,406	7,720	7,160	8,400	
	Upper-Mid	3,764	7,160	6,360	8,165	
	Lower-Mid	2,329	6,360	6,080	6,717	
	Lower	5,178	6,080	5,720	19,635	
010	Subbasin	14,677	7,720	5,720	42,918	617
	Upper	1,044	7,680	7,480	2,385	9
	Upper-Mid	2,154	7,480	6,800	3,834	
	Lower-Mid	5,773	6,800	6,000	15,508	
	Lower	4,992	6,000	5,560	16,815	
015	Subbasin	13,963	7,680	5,560	38,542	693
	Upper	846	6,520	6,200	1,375	0.
	Upper-Mid	3,095	6,200	5,520	6,603	
	Lower-Mid	4,356	5,520	5,280	18,558	
	Lower	4,157	5,280	5,120	21,192	
020	Subbasin	12,454	6,520	5,120	47,728	360
	Upper	2,198	7,420	6,850	4,316	
	Upper-Mid	6,506	6,850	5,640	15,087	
	Lower-Mid	3,416	5,640	5,320	11,160	
	Lower	3,665	5,320	5,120	15,690	
025	Subbasin	15,785	7,420	5,120	46,253	615

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek

Subject HEC-1 Input Parameters - LAG


Designed by LSM Date 9/22/2011 Project No. 092528005

Checked by MAF Date 10/5/2011

	Upper	996	6,490	6,360	2,757	
	Upper-Mid	5,400	6,360	5,440	13,081	
	Lower-Mid	3,031	5,440	5,160	9,972	
	Lower	2,659	5,160	4,970	9,947	
030	Subbasin	12,086	6,490	4,970	35,758	603
	Upper	759	5,960	5,600	1,103	
	Upper- M id	912	5,600	5,280	1,540	
	Lower-Mid	2,248	5,280	4,960	5,958	
	Lower	3,515	4,960	4,834	18,562	
035	Subbasin	7,434	5,960	4,834	27,163	395
	Upper	1,216	6,480	6,240	2,738	3
	Upper- M id	1,570	6,240	5,840	3,109	
	Lower-Mid	6,183	5,840	4,940	16,205	
	Lower	3,494	4,940	4,732	14,319	
040	Subbasin	12,462	6,480	4,732	36,371	620
	Upper	2,574	6,560	6,000	5,518	31.
	Upper- M id	4,585	6,000	5,200	10,975	
	Lower-Mid	3,818	5,200	4,806	11,886	
	Lower	3,307	4,806	4,689	17,583	
045	Subbasin	14,284	6,560	4,689	45,962	510
	Upper	6,616	4,689	4,588	53,547	
050	Subbasin	6,616	4,689	4,588	53,547	81
	Upper	9,986	4,840	4,588	62,860	
055	Subbasin	9,986	4,840	4,588	62,860	133

Notes:

Longest flowpath split up into segments of similar slope and slope calculated using City of Tucson methodology (1998)

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek

Subject HEC-1 Input Parameters - LAG

Designed by LSM Date 9/22/2011 Project No. 092528005

Checked by MAF Date 10/5/2011

For drainage basins greater than one square mile:

$$TLAG = 22.1K_n \left(\frac{L L_c}{S^{0.5}}\right)^{0.33}$$

Lag Equation (710) from

Truckee Meadows Regional Drainage Manual (2009)

where TLAG = Lag Time (hr)

K_n = Manning's Roughness Factor for the Basin Channels

L = Length of the Longest Watercourse (mi)

Length Along Longest Watercourse Meastured Upstream to a Point

Opposite the Centroid of the Basin (mi)

S = Representative (Average) Slope of the Longest Watercourse (ft/mi)

Subbasin	K _n	L	L _c	S	TLAG
	[]	[mi]	[mi]	[ft/mi]	[hrs]
005	0.12	2.64	1.22	329	1.50
010	0.12	2.78	1.42	617	1.45
015	0.12	2.64	0.98	693	1.24
020	0.12	2.36	0.89	360	1.28
025	0.12	2.99	1.66	615	1.56
030	0.10	2.29	1.03	603	1.02
035	0.08	1.41	0.50	395	0.59
040	0.07	2.36	1.09	620	0.73
045	0.07	2.71	1.44	510	0.87
050	0.05	1.25	0.74	81	0.52
055	0.05	1.89	1.02	133	0.61

Notes:

Roughness factor K_n interpolated from Table 703 in City of Sparks Hydrologic Criteria and Drainage Design Manual (1998)

ATTACHMENT 4: COMPOSITE CURVE NUMBER CALCULATIONS

Project Geiger Grade Reignment - Hydrology for Bailey Canyon Creek Subject HEC-1 Input Parameters - Curve Number by Subbasin

Designed by LSM Checked by MAF

Date 9/26/2011 Date 10/5/2011 Project No. 092528005

Subbasin ID	Soil Area ¹	HSG	Land Use	CN	Area*CN	Composite
	[mi ²]		1)	[mi²]	
	0.65	С	OS	80	51.8	
	1.02	D	OS	80	82.0	1
5	1.67				133.7	80
	0.12	В	OS	51	6.2	2
	1.19	D	OS	71	84.5	7
10	1.31			3:	90.8	69
-	0.02	В	OS	51	0.9	
	2.99	D	OS	71	212.0	7
15	3.00			y.	212.9	71
- 1	0.01	С	OS	80	1.1	
	1.17	D	OS	71	83.1	7
20	1.18			y.	84.2	71
	0.22	В	OS	51	11.1	
	3.07	D	OS	71	217.8	7
	0.09	D	GR	86	7.9	1
25	3.38			3:	236.9	70
12	0.01	В	GR	74	0.6	-
	0.01	С	GR	82	0.5	7
	0.07	D	GR	86	6.3	7
	0.09	D	OS	85	7.4	7
	0.17	D	OS	89	15.4	7
	0.37	D	OS	80	29.8	1
	1.02	D	OS	71	72.4	
	0.00	D	Paved	98	0.2	
30	1.74				132.7	76
	0.00	В	GR	74	0.3	
	0.03	В	OS	35	1.2	
	0.00	В	OS	41	0.0	
	0.02	С	GR	82	1.2	
	0.00	С	LDS	79	0.2	
	0.05	С	OS	47	2.3	
	0.04	D	GR	83	3.0	

Notes/Assumptions²

Sagebrush with Grass Understory (Poor) Pinyon-Juniper (Fair)

Sagebrush with Grass Understory (Fair) Pinyon-Juniper (Good)

Sagebrush with Grass Understory (Fair) Pinyon-Juniper (Good)

Sagebrush with Grass Understory (Poor) Pinyon-Juniper (Good)

Sagebrush with Grass Understory (Fair)
Pinyon-Juniper (Good)
Farmsteads - buildings, lanes, driveways, etc.

Farmsteads - buildings, lanes, driveways, etc. Farmsteads - buildings, lanes, driveways, etc. Farmsteads - buildings, lanes, driveways, etc. Sagebrush with Grass Understory (Poor) Pinyon-Juniper (Poor)

Pinyon-Juniper (Poor) Pinyon-Juniper (Fair) Pinyon-Juniper (Good)

Farmsteads - buildings, lanes, driveways, etc. Sagebrush with Grass Understory (Good) Pinyon-Juniper (Good) Farmsteads - buildings, lanes, driveways, etc.

Sagebrush with Grass Understory (Good)
Farmsteads - buildings, lanes, driveways, etc.
Sagebrush with Grass Understory (Poor)
Pinyon-Juniper (Poor)
Pinyon-Juniper (Good)

0.02

0.36

0.00

0.52

35

D

D

D

OS

OS

OS

85

89

71

1.6

31.8

0.0

41.7

81

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek Subject HEC-1 Input Perameters - Curve Number by Subbasin

Designed by LSM Date 9/26/2011 Project No. 092528005

Checked by MAF Date 10/5/2011

Subbasin	Soil	1000			City and	Composite
ID	Area ¹	HSG	Land Use	CN	Area CN	CN
	[mi²]				[mi²]	
	0.02	В	GR	67	1.0	
	0.00	В	MDR	65	0.0]
	0.04	В	MDS	70	2.7	
	0.00	В	PSP	98	0.3	1
	0.00	С	GR	77	0.0	
	0.00	С	MDR	77	0.0	1
	0.04	С	MDS	80	2.8	
	0.00	С	PSP	98	0.0	
	0.60	D	GR	83	49.6	
	0.04	D	MDR	82	3.0	
	0.03	D	MDS	82	2.8	
	0.01	D	PR	88	8.0	
	0.05	D	OS	89	4.6	
40	0.82				67.6	82
	0.00	В	GR	67	0.1	
	0.04	В	MDS	70	3.0	
	0.00	В	PSP	98	0.1	
	0.00	С	GR	77	0.2	
	0.04	С	MDS	80	3.4	
	0.00	C	PSP	98	0.2	
	0.60	D	GR	83	50.1	
	0.02	D	MDR	82	1.5	
	0.04	D	MDS	82	2.9	
	0.10	D	OS	70	6.7	
	0.09	D	PSP	98	8.8	
	0.01	D	PR	88	8.0	
45	0.94	Î			77.7	82
	0.00	В	GC	92	0.4	
	0.02	В	GR	67	1.4	
	0.12	В	MDS	70	8.4	
	0.00	В	PR	77	0.4	
	0.00	В	PSP	98	0.3	
	0.02	С	GC	94	1.6	
	0.00	C	GR	77	0.1	
	0.07	С	MDS	80	5.5	
	0.00	С	PSP	98	0.3	
	0.01	D	MDS	82	1.1	
	0.04	D	Paved	98	3.6	
50	0.29				22.9	79

Notes/Assumptions²

Pinyon-Juniper (Poor)

Sagebrush with Grass Understory (Fair)

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek

Subject HEC-1 Input Parameters - Curve Number by Subbasin

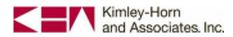
Designed by LSM Checked by MAF Date 9/26/2011 Date 10/5/2011 Project No. 092528005

Subbasin ID	Soil Area ¹	HSG	Land Use	CN	Area*CN	Composite
	[mi ²]				[mi²]	
	0.00	А	GR	48	0.0	
	0.02	Α	MDS	54	1.0	
	0.02	Α	OS	35	0.7]
	0.00	В	GR	67	0.1	
	0.00	В	HDS	72	0.0	
	0.01	В	MDS	70	0.7	
	0.00	В	PSP	98	0.0	
	0.02	С	GR	77	1.3	
	0.00	С	LDS	79	0.2	ļ
	0.20	С	MDS	80	16.3	Į,
	0.04	С	OS	47	1.8	
	0.00	С	PSP	98	0.3	
	0.02	D	GR	83	1.7	
	0.05	D	HDS	86	4.5	ľ
	0.11	D	MDS	85	9.0	
	0.02	D	OS	55	1.2	
	0.00	D	PSP	98	0.0	l.
	0.03	D	Paved	98	2.9	
55	0.54				41.5	77

15.41 Total Contributing Area

Fair: 30 to 70% ground cover Good: >70% ground cover

Notes/Assumptions²


Sagebrush with Grass Understory (Good)

Sagebrush with Grass Understory (Good)

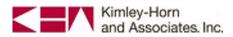
Sagebrush with Grass Understory (Good)

 $^{^{\}rm 1}\,{\rm Soil}\,{\rm areas}$ within each subbasin from ArcGIS analysis

²Poor: <30% ground cover (litter, grass and brush overstory)

ATTACHMENT 5: SOIL PARAMETERS

NRCS Soils Data - Map Unit Areas by Subbasin


				NRO	CS Soils Data -	Map Unit Areas by Subbasin
	Map Unit		Area	Area		
Basin ID	Symbol	Hydr_Soil	(acres)	(mi ²)	Soil Survey	Soil Description
5	1520	D	545	0.85	NV628	Duco-Smallcone-Cagle association
5	893	C	404	0.63	NV628	Indiano-Duco-Cagle association
5	983	D	121	0.19	NV628	Koontz-Nosrac association
10	1520	D	760	1.19	NV628	Duco-Smallcone-Cagle association
10	1011	В	42	0.07	NV628	Gabica-Easte-Burnborough association
10	561	D	36	0.06	NV772	Gabica-Easte-Burnborough association
15	1520	D	1662	2.60	NV628	Duco-Smallcone-Cagle association
15	1011	В	3	0.00	NV628	Gabica-Easte-Burnborough association
15	1011	В	9	0.00	NV628	Gabica-Easte-Burnborough association
15	561	D	124	0.01	NV772	Gabica-Easte-Burnborough association
15	1520		123	0.19	NV772	Duco-Smallcone-Cagle association
20	1520	D D	749	1.17	NV628	Duco-Smallcone-Cagle association
			9			
20	893	С		0.01	NV628	Indiano-Duco-Cagle association
25	1520	D	1578	2.47	NV628	Duco-Smallcone-Cagle association
25	1011	В	142	0.22	NV628	Gabica-Easte-Burnborough association
25	561	D	33	0.05	NV772	Gabica-Easte-Burnborough association
25	1010	D	11	0.02	NV772	Gabica very gravelly sandy loam, 8 to 30 percent slopes
25	151	D	47	0.07	NV772	Doten variant silty clay, strongly saline
25	1520	D	0	0.00	NV772	Duco-Smallcone-Cagle association
25	1520	D	351	0.55	NV772	Duco-Smallcone-Cagle association
30	1520	D	681	1.06	NV628	Duco-Smallcone-Cagle association
30	251	С	4	0.01	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
30	482	В	7	0.01	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
30	1010	D	84	0.13	NV772	Gabica very gravelly sandy loam, 8 to 30 percent slopes
30	1520	D	340	0.53	NV772	Duco-Smallcone-Cagle association
35	1520	D	286	0.45	NV628	Duco-Smallcone-Cagle association
35	251	С	28	0.04	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
35	482	В	17	0.03	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
40	1520	D	462	0.72	NV628	Duco-Smallcone-Cagle association
40	251	С	17	0.03	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
40	251	С	6	0.01	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
40	482	В	36	0.06	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
40	1010	D	1	0.00	NV772	Gabica very gravelly sandy loam, 8 to 30 percent slopes
40	1520	D	4	0.01	NV772	Duco-Smallcone-Cagle association
45	1520	D	480	0.75	NV628	Duco-Smallcone-Cagle association
45	251	С	11	0.02	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
45	251	С	19	0.03	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
45	482	В	30	0.05	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
45	1010	D	14	0.02	NV772	Gabica very gravelly sandy loam, 8 to 30 percent slopes
45	1520	D	49	0.08	NV772	Duco-Smallcone-Cagle association
50	110	D	4	0.01	NV628	Jowec variant sandy loam, 4 to 8 percent slopes
50	1520	D	1	0.00	NV628	Duco-Smallcone-Cagle association
50	171	D	4	0.01	NV628	Indian Creek gravelly sandy loam, 0 to 4 percent slopes
50	251	С	28	0.04	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
50	251	С	33	0.05	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
50	260	С	0	0.00	NV628	Acrelane-Rock outcrop complex, 15 to 50 percent slopes
50	360	-	4	0.01	NV628	Pits
50	482	В	71	0.11	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
50	971	В	27	0.04	NV628	Aladshi sandy loam, 2 to 4 percent slopes
50	971	В	12	0.02	NV628	Aladshi sandy loam, 2 to 4 percent slopes
50	991		1	0.00	NV628	Xeric Torriorthents-Urban land complex
55	160	А	4	0.01	NV628	Incy sand, 4 to 8 percent slopes
55	171	D	77	0.12	NV628	Indian Creek gravelly sandy loam, 0 to 4 percent slopes
55	251	С	148	0.12	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
55	260	C	9	0.01	NV628	Acrelane-Rock outcrop complex, 15 to 50 percent slopes
55	260	С	9	0.01	NV628	Acrelane-Rock outcrop complex, 15 to 50 percent slopes
55	200	U	,	0.01	14 4 0 2 0	normanic hook outbrop complex, to to 30 percent slopes

	Map Unit		Area	Area		
Basin ID	Symbol	Hydr_Soil	(acres)	(mi ²)	Soil Survey	Soil Description
55	350	D	4	0.01	NV628	Mizel very gravelly coarse sandy loam, 15 to 50 percent slopes
55	350	D	0	0.00	NV628	Mizel very gravelly coarse sandy loam, 15 to 50 percent slopes
55	482	В	4	0.01	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
55	500	Α	17	0.03	NV628	Mottsville sand, 0 to 4 percent slopes
55	880	D	10	0.01	NV628	Zephan-Rock outcrop-Smallcone complex, 15 to 50 percent slopes
55	880	D	9	0.01	NV628	Zephan-Rock outcrop-Smallcone complex, 15 to 50 percent slopes
55	881	С	5	0.01	NV628	Zephan very gravelly sandy loam, 30 to 50 percent slopes
55	882	С	10	0.02	NV628	Zephan stony sandy loam, 15 to 30 percent slopes
55	930	D	1	0.00	NV628	Old Camp stony sandy loam, 15 to 30 percent slopes
55	930	D	8	0.01	NV628	Old Camp stony sandy loam, 15 to 30 percent slopes
55	930	D	8	0.01	NV628	Old Camp stony sandy loam, 15 to 30 percent slopes
55	930	D	13	0.02	NV628	Old Camp stony sandy loam, 15 to 30 percent slopes
55	930	D	7	0.01	NV628	Old Camp stony sandy loam, 15 to 30 percent slopes
55	971	В	6	0.01	NV628	Aladshi sandy loam, 2 to 4 percent slopes

ATTACHMENT 6: LAND USE CALCULATIONS

Table 3: Land Use Compatibility Matrix

LDR MDR	HDR		MDS/ MDS 4	HDS	LDU	MDU	HDU	PR	PSP	GC	NC	тс	I	GR/ GRR	os
LDR H	Н	М	М	М	L	L	L	Н	М	L	L	L	L	Н	Н
MDR	Н	Н	М	М	М	L	L	Н	М	L	L	L	L	М	Н
	HDR	Н	Н	М	М	М	L	Н	М	L	L	L	L	М	Н
		LDS/ LDS 2	Н	Н	М	М	М	Н	М	L	L	L	L	М	Н
			MDS/ MDS 4	Н	Н	M	М	Н	M	L	L	L	L	М	Н
				HDS	Н	Н	М	Н	М	L	М	М	L	М	Н
					LDU	Н	Н	Н	Н	М	М	L	L	М	Н
						MDU	Н	Н	Н	М	М	L	М	L	Н
							HDU	Н	Н	М	М	М	М	L	Н
								PR	Н	Н	Н	Н	М	Н	Н
									PSP	Н	Н	Н	Н	М	Н
										GC	Н	Н	М	L	Н
											NC	Н	М	L	Н
												тс	М	L	Н
H - High Co	mpatibil	lity: Lit	tle or n	o scre	ening	or buff	ering r	necess	sary.				I	L	М
M - Medium	Compa	atibility:	Some	scree	ening a	ind but	fering	neces	sary.					GR/ GRR	Н
L - Low Co	mpatibil	ity: Sig	gnificar	nt scre	ening a	and bu	ffering	nece	ssary.					os	Н

Regulatory Zones

<u>Residential</u>

LDR - Low Density Rural MDR - Medium Density Rural

HDR - High Density Rural

LDS/LDS 2 - Low Density Suburban

MDS/MDS 4 - Medium Density Suburban

HDS - High Density Suburban

LDU - Low Density Urban

MDU - Medium Density Urban

HDU - High Density Urban

Non-Residential

PR - Parks and Recreation

PSP - Public and Semi-Public Facilities

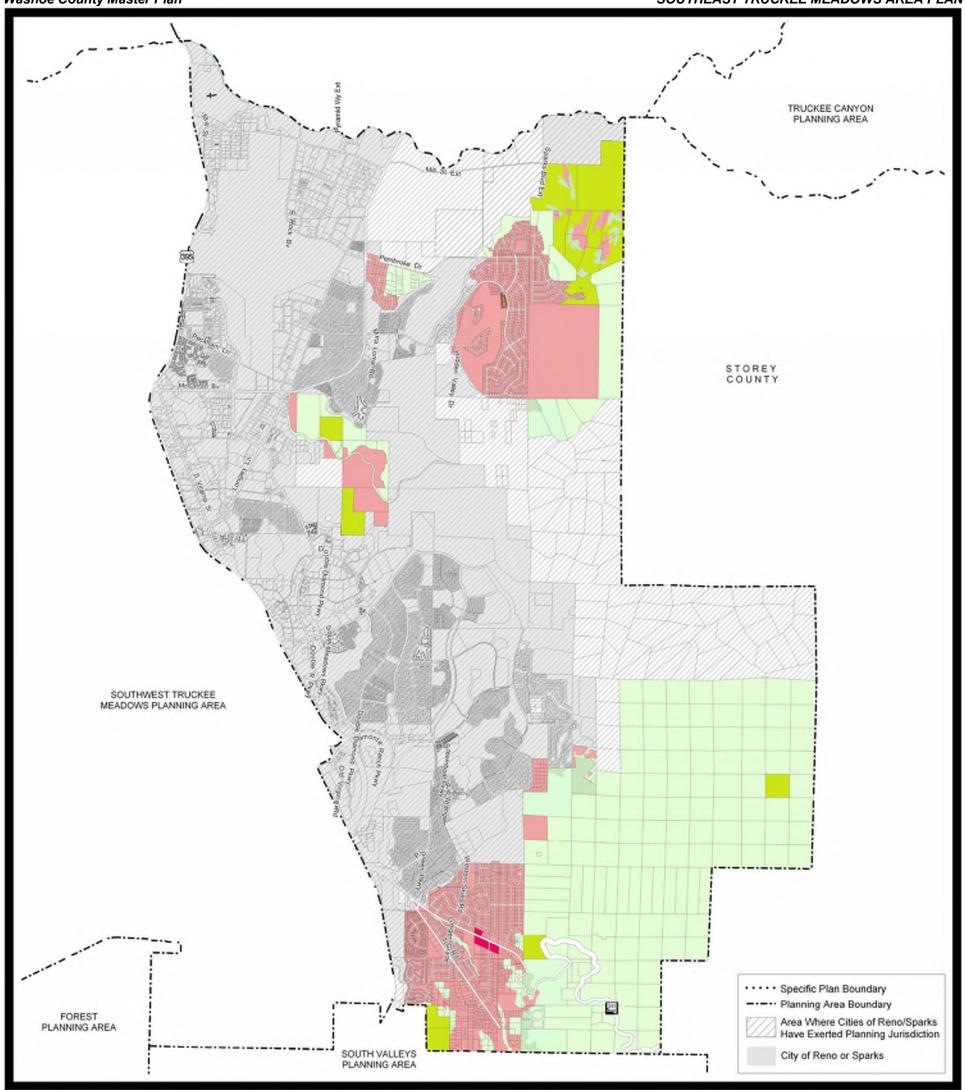
GC - General Commercial

NC - Neighborhood Commercial/Office

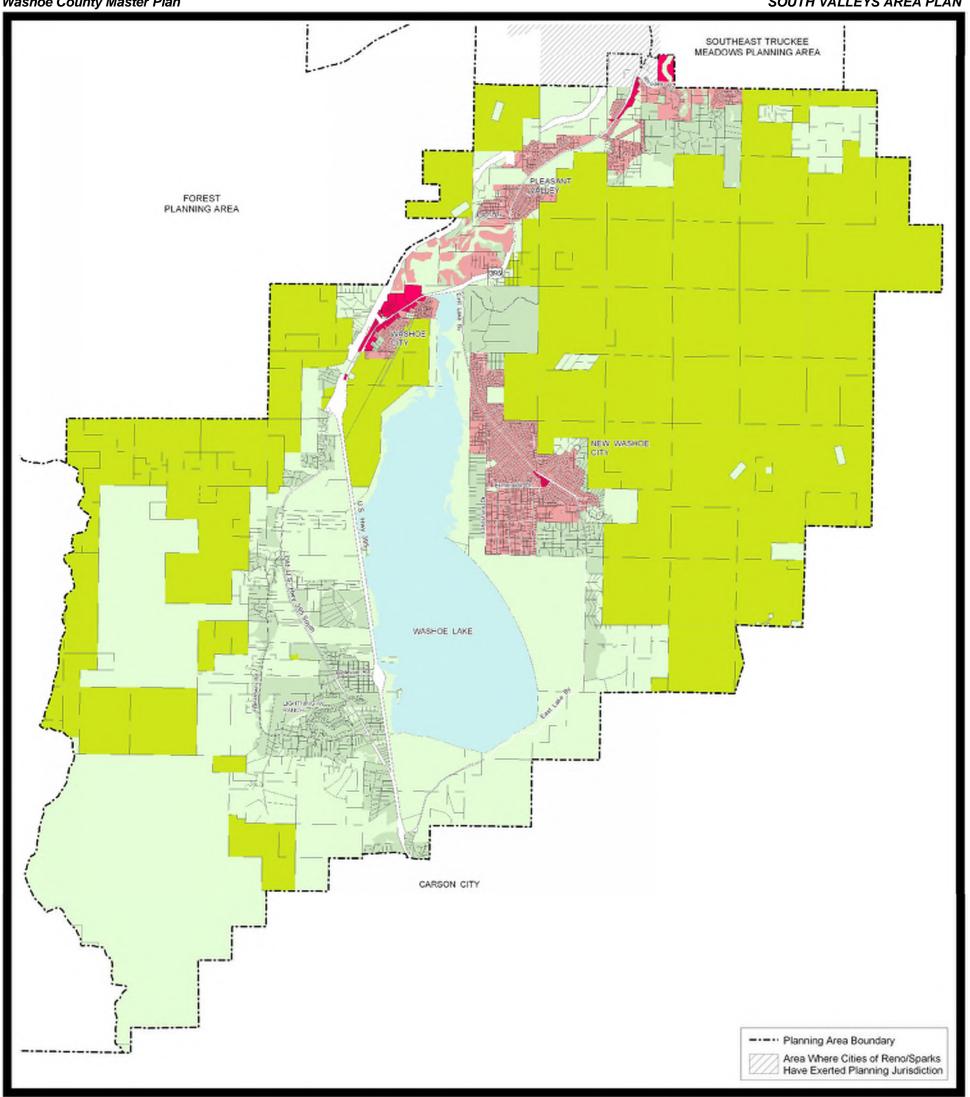
TC - Tourist Commercial

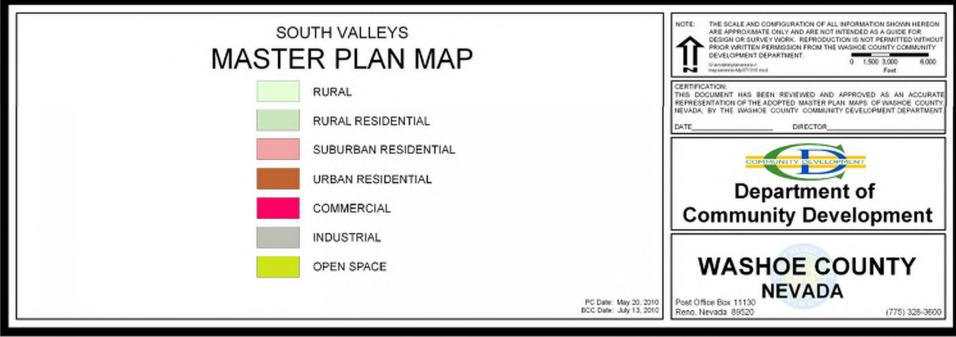
I - Industrial

GR - General Rural

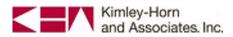

GRR - General Rural Residential


OS - Open Space


Note: Plans for the amount of screening and buffering shall be made to the satisfaction of Washoe County Department of Community Development staff before completion of project review.


Source: Washoe County Department of Community Development

September 9, 2010 Page 55



Washoe County Land Use Data - Land Use Areas by Subbasin

			,
005	OS	129	0.20
005	OS	941	1.47
010	OS	34	0.05
010	OS	804	1.26
015	OS	246	0.38
015	OS	1675	2.62
020	OS	0	0.00
020	GR	1	0.00
020	OS	756	1.18
025	OS	453	0.71
025	GR	251	0.39
025	OS	1459	2.28
030	OS	503	0.79
030	GR	400	0.62
030	OS	211	0.33
030	RDS	1	0.00
035	OS	133	0.21
035	GR	152	0.24
035	LDS	4	0.01
035	MDR	10	0.02
035	MDS	2	0.00
035	OS	29	0.05
035	RDS	0	0.00
040	OS	33	0.05
040	GR	392	0.61
040	MDR	23	0.04
040	MDS	69	0.11
040	PR	6	0.01
040	PSP	2	0.00

	Land Use	Area	Area
Subbasin ID	Code ¹	(acres)	(mi ²)
045	PSP	114	0.18
045	GR	388	0.61
045	MDR	11	0.02
045	MDS	77	0.12
045	OS	4	0.01
045	PR	6	0.01
045	PSP	2	0.00
050	OS	24	0.04
050	GC	13	0.02
050	GR	14	0.02
050	MDS	128	0.20
050	PR	3	0.00
050	PSP	3	0.01
055	OS	63	0.10
055	GR	25	0.04
055	HDS	33	0.05
055	LDS	1	0.00
055	MDS	216	0.34
055	OS	7	0.01
055	PSP	2	0.00

¹ Land use codes in italics represent areas outside of the master planned area limits. Land use codes were assigned for the purpose of this study based on topography, existing land use and adjacent land use.

ATTACHMENT 7: MUSKINGUM-CUNGE CHANNEL ROUTING

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek

Subject Manning's N Calculation

Designed by Project No.

Checked by Date

where

n = Manning's n

n₀ = base value of n for a straight, uniform channel

 n_1 = value for surface irregularities

n₂ = value for variations in channel cross section

 n_3 = value for obstruction

 n_4 = value for vegetation

m = adjustments for meanders

R015				0.073
R025				0.078
R030				0.100
R035				0.108
R040				0.073
R045				0.086
R050				0.053
R055				0.045

References:

Ven Te Chow, Open Channel Hydraulics, 1959.

Table 802, TMRDM

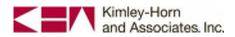
Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek

Subject **HEC-1 Input Parameters - Routing Reaches**

Designed by MAF Date 9/27/2011 Project No. 092528005

Checked by LSM Date 10/5/2011

Muskingum-Cunge Routing Data (RD Record in HEC-1)

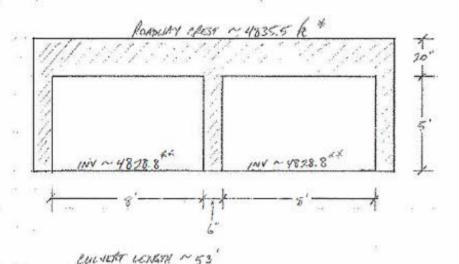

Routing						Bottom	Side
Reach	Length	USGE	DSGE	Slope	Manning's n	Width	Slopes
	[ft]	[ft]	[ft]	[ft/ft]		[ft]	[XX:1]
R015	3,529	5720	5560	0.045	0.073	100	2
R025	9,817	5560	5120	0.045	0.078	50	2
R030	4,069	5120	4960	0.039	0.100	25	3
R035	3,714	4960	4834	0.034	0.108	70	4
R040	3,539	4834	4730	0.029	0.073	30	50
R045	1,734	4730	4690	0.023	0.086	30	50
R050	5,748	4690	4588	0.018	0.053	20	2
R055	9,490	4834	4588	0.026	0.045	8	10

Notes:

Elevations from USGS Quadrangle Maps

Bottom width and side slopes estimated from typical cross sections cut in ArcGIS

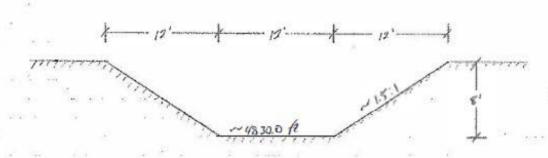
ATTACHMENT 8: FLOW SPLIT CALCULATIONS



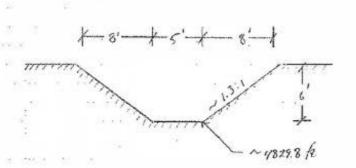
			Sheet No	o
JOD GOGGE GRADE	RETURNACHT SUBJECT BANKS)	MANTON MYDEOLOGY	Job No.	09256005
Designed by 70D	Date 10/3/11	Checked by	Date	

Shit from Noves At TOLL RAD U/S OF INTERSCENON BETWEEN TOLL ROAD + PANARRA PLAND

CHINER CROSSING MOVES FROM 9/16/11 SIR, WIST (SEE ATTRIBUTE REPUBLIC + PRINTSARPHYS)


2. 864 × 564 CHILRETE BOX CHINERES: (NOT TO SURE!)

* NOTE: EXEMPTIONS FROM COUNTY
TOPOSMIPHT - 1 FE
CONTOUR DIFFE, DATED
TOTT


AT W/S EMPLANCE FOR MY. E W/S INV = 4879 0 10/S INV = 4878.6

/

CHAMMER SLOPE ~ 0.0250 ff/k

APPROXIMENT DIS CHAMICA GEOMETRY:

CHANNEL SLOPE ~ 0,0130 18/K

Aerial Source: Google Maps (accessed 10/3/2011)

Photo: Bailey Canyon Creek Culvert Crossing at Toll Road. Looking downstream (northwest) at 2-8'x5' Concrete Box Culverts. (Photo Date: 9/16/2011)

Photo: Bailey Canyon Creek Culvert Crossing at Toll Road. Looking upstream (southeast) at upstream channel. (Photo Date: 9/16/2011)

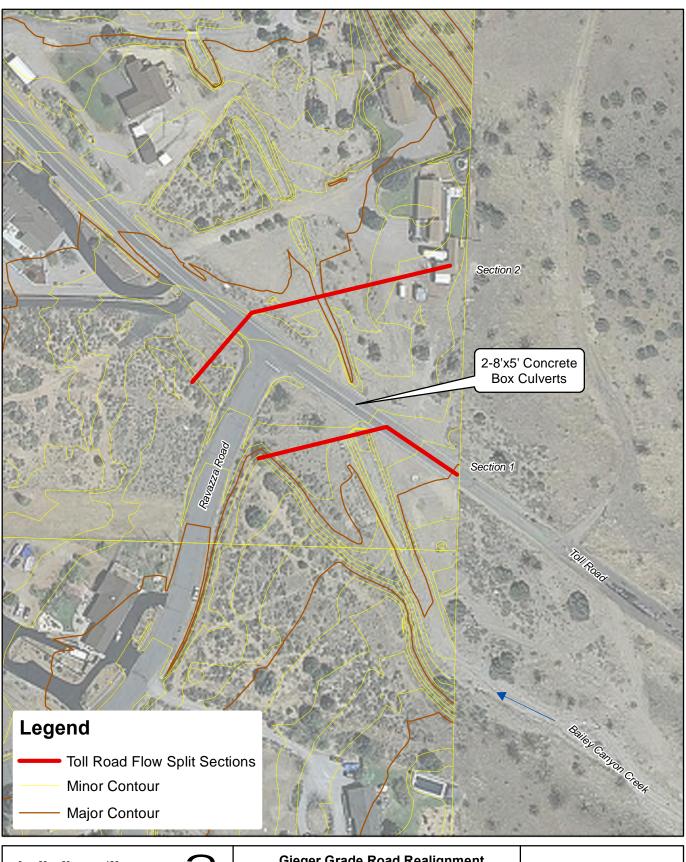
Photo: Bailey Canyon Creek Culvert Crossing at Toll Road. Looking downstream (northwest) at downstream channel. (Photo Date: 9/16/2011)

			Shee! No	v
JOB GOGER GRADE RER	LANGOTT Subject Est	LEX CAMON HYNDLOS)	JOO NO QL	
Designed by - '>D	Date 19/5/4	Checked by	Date	

SPLIT FLOW NOTES AT TALL FO W/S OF INTERSCENTION BETWEEN YOUR ES + PAVARZA PO

DETERMINE DIVERSION FATING CURVE AT YOU POAD

FROM HY-8 MAIR, CHLUCKE CAMERY AT ONERFORMS IS 510 cls (OVERTHAM AT ELEVATION 4835.5)


SEE AWACHED EXHIST FOR NORMAL DOTAL CLOSS SECTION AS TOU PORT TO DETERMINE OVERSAMING DESTRUCTIONS AND DIS OF THE ROAD TO DETERMINE FOOL SPECTS.

- 1) SELFION I REMETES THE UPSTREAMS CHAMBER WHITE FOUL CXITS THE CHAMBER, AND CONTINUES BOWN DICK TOLL ROOP IN BAYET CANNON CHICK AND KRONG THE PARTY.
 - The first the commune AT ~ 1835.5. CHAMER CAPACITY = \$306 cfs

 CHEVETY CAPACITY 570 cfs

 D = 796 cfs
 - -> for how 2,000 ds, acranon = 4837.60 Quanta 1,490 ds
 - -> for how 2,500 ds, exercised 4837.98 Quence = 1,990 ch
 - * ONCE how oxing the BANCY CANTON CARLY CHANNET, IT ONCE OF THE FORD. FROM SPURS MOST CONTINUES IN BANKEY CANTON CLOSE, THE PER FROMS ADMY TOU PORD (ON BOTH SIDES)
- 2) SELFION I REPLECTS EARLY CARRON CLEEK DOWNSTROAM OF YOU ROAD, AND INCLUDES FROM ALONG THE ROAD
 - CLOSS SECTION FOR FIRE SECTION 2" SHOWS APPLICATION TO TWOSE OF FREE SPUT.

 "CLOSS SECTION FOR SECTION 2 AT BAYLEY CANTON CAECH" SHOWS SECTION THAT SHITS IN
 BAYLEY CANTON CLEEK. "CHOSS SECTION FOR SECTION 2 ALONG TOLL LOAD" SHOWS
 SECTION THAT DIVERS TO TOLL ROAD.
 - SEE ATTACHED TABLE FOR DIVERSION RATING CURVE

Gieger Grade Road Realignment Bailey Canyon Creek Hydrologic Analysis

Washoe, County

Toll Road Split Flow Exhibit

Cross Section for Section 1

Project Description

Friction Method

Manning Formula

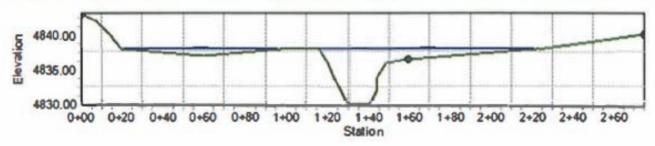
Solve For

Normal Depth

Input Data

Channel Slope

0.02000 ft/ft


Normal Depth

7.98 ft

Discharge

2500.00 ft1/s

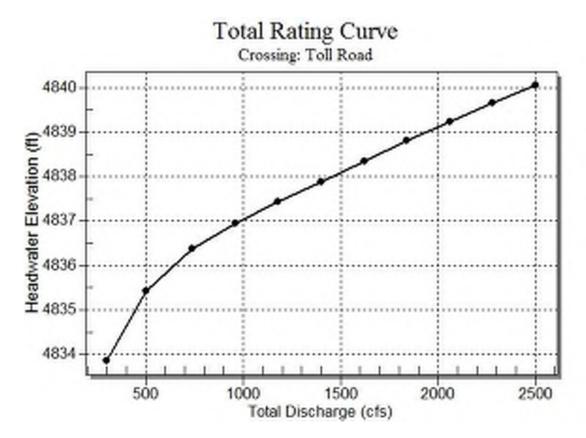
Cross Section Image

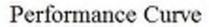
BANKEY CANYON CREEK U/S OF TOLL ROAD. (U/S OF BOX CHINERTS)

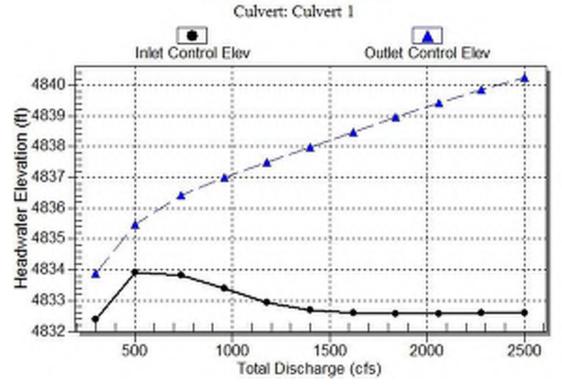
HY-8 Culvert Analysis Report

Table 1 - Summary of Culvert Flows at Crossing: Toll Road

Rating Curve Plot for Crossing: Toll Road



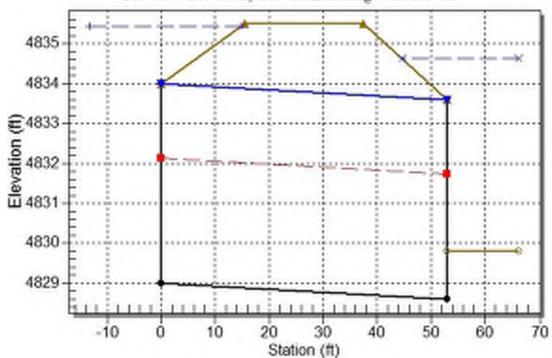

Table 2 - Culvert Summary Table: Culvert 1



Inlet Elevation (invert): 4829.00 ft, Outlet Elevation (invert): 4828.60 ft

Culvert Length: 53.00 ft, Culvert Slope: 0.0075

Culvert Performance Curve Plot: Culvert 1



Water Surface Profile Plot for Culvert: Culvert 1

Crossing - Toll Road, Design Discharge - 500.0 cfs

Culvert - Culvert 1, Culvert Discharge - 500.0 cfs

Site Data - Culvert 1

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 4829.00 ft
Outlet Station: 53.00 ft
Outlet Elevation: 4828.60 ft

Number of Barrels: 2

Culvert Data Summary - Culvert 1

Barrel Shape: Concrete Box

Barrel Span: 8.00 ft Barrel Rise: 5.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120
Inlet Type: Conventional

Inlet Edge Condition: 1:1 Bevel (45° flare) Wingwall

Inlet Depression: NONE

Table 3 - Downstream Channel Rating Curve (Crossing: Toll Road)

Tailwater Channel Data - Toll Road

Tailwater Channel Option: Trapezoidal Channel

Bottom Width: 5.00 ft

Side Slope (H:V): 1.30 (_:1)

Channel Slope: 0.0130

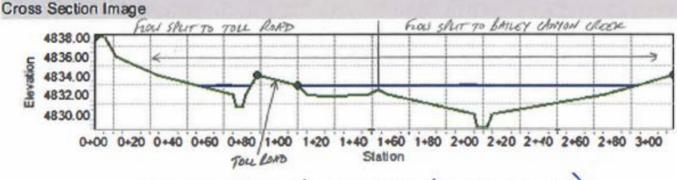
Channel Manning's n: 0.0350

Channel Invert Elevation: 4829.80 ft

Roadway Data for Crossing: Toll Road

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 100.00 ft
Crest Elevation: 4835.50 ft
Roadway Surface: Paved
Roadway Top Width: 22.00 ft


Cross Section for Full Section 2

Project Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Channel Slope 0.02000 ft/ft
Normal Depth 4.21 ft
Discharge 2500.00 ft/fs

Cross Section for Section 2 at Bailey Canyon Creek

Project Description

Friction Method

Manning Formula

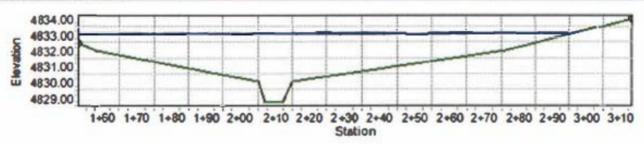
Solve For

Normal Depth

Input Data

Channel Slope

0.02000 ft/ft


Normal Depth

4.32 ft

Discharge

2500.00 ft/s

Cross Section Image

FIGU SPUT SECTION TO BAILEY CANYON CREEK

Rating Table for Section 2 at Bailey Canyon Creek

Project Description

Manning Formula Friction Method Discharge Solve For

Input Data

0.02000 fult Channel Slope 4.32 ft Normal Depth

Section Definitions

Station (ft)	Elevation (ft)		
1+53	4832.50		
1+58	4832.00		
2+05	4830.00		
2+07	4828.70		
2+12	4828.70		
2+15	4830.00		
2+76	4832.00		
3+13	4834.00		

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(1+53, 4832.50)	(3+13, 4834.00)	0.035

Water Surface Elevation (ft)	Discharge (ft ^a /s)	Velocity (ft/s)	Flow Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)
4828.00					
4828.50					
4829.00	4.15	2.48	1,6	7 6.30	6.15
4829.50	22.76	4.35	5.2	8.48	8.08
4830.00	55.18	5.66	9.7	5 10.65	10.00
4830.50	88.81	4.13	21.5	0 37.67	37.00

Rating Table for Section 2 at Bailey Canyon Creek

Input Data

Water Surface Elevation (ft)	Discharge (ft³/s)	Velocity (ft/s)	Flow Area (ff²)	Wetted Perimeter (ft)	Top Width (ft)
4831.00	226.03	4.83	46.75	64.69	64.00
4831.50	489.90	5.73	85.50	91.71	91.00
4832.00	913,17	6.63	137.75	118.73	118.00
4832.50	1580.08	7.89	200.31	133.02	132.25
4833.00	2459.84	9.15	268.75	142.78	141.50
4833.50	3514.16	10.28	341.81	152.55	150.75
4834.00	4743.51	11.31	419.50	162.31	160.00

Cross Section for Section 2 along Toll Road

Project Description

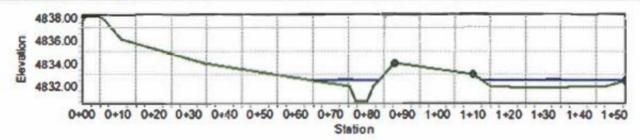
Friction Method

Manning Formula

Solve For

Discharge

Input Data


Channel Slope Normal Depth 0.02000 run

1.80 N

Discharge

143.71 ft³/s

Cross Section Image

Rating Table for Section 2 along Toll Road

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 Channel Slope
 0.02000 ft/ft

 Normal Depth
 1.80 ft

Section Definitions

Station (ft)	Elevation (ft)
0+00	4838.00
0+05	4838.00
0+11	4836,00
0+34	4834.00
0+75	4832.00
0+77	4830.70
0+80	4830.70
0+82	4832.00
0+88	4834.00
1+10	4833.00
1+15	4832.00
1+26	4831.80
1+48	4832.00
1+53	4832.50

Roughness Segment Definitions

Ending Station	Roughness Coefficient
(0+88, 4834.00)	0.035
(1+10, 4833.00)	0.015
(1+53, 4832.50)	0.035
	(0+88, 4834.00) (1+10, 4833.00)

Water Surface

Manhauma (#3/a).

Malpathy/Alah

Rating Table for Section 2 along Toll Road

Input Data

•					
cievation (it)	บารตาลเยูย (แกร)	VHICERY (IVS)	Flow WLAS (IIL)	wetten reimeter (n)	(u) another do.)
4830.00					
4830,50					
4831.00	2.50	2.40	1.04	4.10	3.92
4831.50	13.97	4.13	3.38	5.94	5.46
4832.00	22.75	2.32	9.80	40.77	40.00
4832.50	143.71	4.15	34.61	60.19	59.25
4833.00	380.30	5.61	67.80	75.08	73.50
4833.50	748.76	6.79	110.24	98.44	96.25
4834.00	1301.17	7.93	164.05	121.79	119.00

Diversion Rating Table for Flow Split at Toll Road Near Intersection of Toll Road and Ravazza Road*

	Split to Bailey Canyon Creek ^{1,2}	Split to Toll Road ^{1,3}	Total Flow
Elevation	(cfs)	(cfs)	(cfs)
4828.0	0	0	0
4828.5	0	0	0
4829.0	4	0	4
4829.5	23	0	23
4830.0	55	0	55
4830.5	89	0	89
4831.0	225	0	225
4831.5	490	0	490
4832.0	913	23	936
4832.5	1580	144	1724
4833.0	2460	380	2840
4833.5	3514	749	4263
4834.0	4744	1301	6045

¹No flow travels along Toll Road until flow overtops the culvert capacity of 510 cfs.

²From Rating Table for "Cross Section for Section 2 at Bailey Canyon Creek"

³From Rating Table for "Cross Section for Section 2 along Toll Road".

^{*}Note that this rating table was developed referencing Sections 1 and 2 shown in the split flow exhibit attached. Section 1 reflects the upstream channel to establish the culvert capacity ONLY. Once the culvert capacity is reached, flow overtops section 1 and overtops Toll Road. Section 2 represents the actual split where flow divides between Toll Road and Bailey Canyon Creek.

Potential Flow Split at Geiger Grade Road

Project Description

Friction Method

Manning Formula

Solve For

Discharge

Input Data

Channel Slope Normal Depth 0.01390 ft/ft

7.40 ft

Section Definitions

Station (1	it
------------	----

Elevation (ft)

0+00	4605.00
0+19	4604.00
0+26	4602.00
0+54	4602.00
1+10	4602.00
1+16	4602.00
1+48	4602.00
1+70	4600.00
2+16	4598.00
2+26	4596.00
2+31	4594.50
2+38	4594.50
2+39	4596.00
2+41	4598.00
2+42	4600.00
2+47	46€2.0€
2+63	4603.50
2+99	4603.30
3+08	4602.00
3+48	4602.00
4+58	4602.70

Roughness Segment Definitions

Start Station

Ending Station

Roughness Coefficient

Bentley Systems, Inc. Haestad Methods SoBdittle@EtharMaster V8i (SELECTseries 1) [68.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1668 Page 1 of 3

Potential Flow Split at Geiger Grade Road

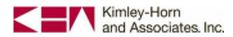
Input Data

Start Station	Ending Station	Roughness Coefficient
(0+00, 4605.00)	(1+48, 4602.00)	0.045
(1+48, 4602 00)	(2+63, 4603.50)	0.035
(2+63, 4603.50)	(2+99, 4603.30)	0.015
(2+99, 4603.30)	(3+08, 4602.00)	0.015
(3+08, 4602.00)	(4+58, 4602.70)	0.035

Options

Method	Pavlovskii's Method
Open Channel Weighting Method	Paviovskii's Method
Closed Channel Weighting Method	Pavlovskiis Method

Docute


Results			
Discharge		3288.35	Nº/s
Elevation Range	4594.50 to 4605.00 ft		
Flow Area		311.17	ft2
Wetted Perimeter		101.43	R
Hydraulic Radius		3.07	R
Top Width		97.65	ft
Normal Depth		7.40	ft
Critical Depth		8.06	R
Critical Slope		0.01630	ft/ft
Velocity		10.57	Ns
Velocity Head		1.74	ft
Specific Energy		9.14	R
Froude Number		1.04	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	

Potential Flow Split at Geiger Grade Road

3.	2.5		2 2 2	
			0.00	ft
			0.00	ft
			Infinity	ft/s
			Infinity	ft/s
			7.40	ft
			8.96	ft
			0.01390	f Ví t
			0.01630	flift
	ager en	To the second		0.00 Infinity Infinity 7.40 8.06 0.01390

Cross Section for Irregular Section - 1 Project Description Marning Formula **Eriction Method** Solve For Discharge Input Data 0.01390 funt Channel Slope GOLEL GLAVE ROAD 7.40 (1 Normal Depth 3288.35 (17/s Discharge Cross Section Image 4604.00 6 4602.00 8 4600.00 4598.00 4596,00 0+00 0+50 1+00 1+50 2+00 3+00 3+50 4+00 4+50 Station BANCY CANYON CLOCK

DISCHARGE MUST EXCEED 3,288 of TO FISHET IN SPLIT FLOW

ATTACHMENT 9: HEC-1 MODEL OUTPUT

```
..........
 2
         FLOOD HYDROGRAPH PACKAGE (HEC-1)
                                                                                                            U.S. ARMY CORPS OF ENGINEERS
                                                                                                            HYDROLOGIC ENGINEERING CENTER
                     JUN
                           1998
                  VERSION 4.1
                                                                                                                  609 SECOND STREET
                                                                                                               DAVIS, CALIFORNIA 95616
       RUN DATE 060CT11 TIME 17:48:01
                                                                                                                  (916) 756-1104
           ******
                                                                                                      *********
10
11
12
13
14
15
                                                              Х
                                                                 xxxxxx
                                                                           XXXXX
16
17
                                                              Х
                                                                                            XX
                                                              Х
                                                                 Х
                                                                           Х
                                                                                             Х
18
                                                                                    XXXXX
19
20
                                                        Х
                                                              x
                                                                 x
                                                                                             x
                                                        Х
                                                              Х
                                                                            XXXXX
                                                                 XXXXXXX
22
23
24
25
26
                THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.
27
28
                THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.
                THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION
30
                NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION
31
                KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM
33
34
35 1
                                                               HEC-1 INPUT
                                                                                                                          PAGE 1
36
               LINE
                               {\tt ID}.\dots.1\dots.2\dots.3\dots.4\dots.5\dots.6\dots.7\dots.8\dots.9\dots.10
38
39
                               ID
                                       GEIGER GRADE ROAD REALIGNMENT
                                        Model for Bailey Canyon Creek Watershed
41
42
                  3
                               ID
                                        Existing Conditions
                               ID
                                        Prepared for the Regional Transportation Commission
44
45
46
47
48
49
                  6
                               ID
                                        of Washoe County
                               ID
                               ID
                                        Prepared by Kimley-Horn and Associates, Inc.
                  9
                               ID
                                        KHA Project Number 092528005
                                       September 2011
                 10
                               ID
                 11
                               ID
50
51
                                        MODELING PARAMETERS
                 12
                               ID
                 13
                               ID
                                        - 100 Year 24 Hour Storm Event
52
53
54
                 14
15
                               ID
                                        - NOAA Atlas 14 Rainfall Data
                               ID
                                        - SCS Unit Hydrograph
                               ID
                                        - SCS Curve Number Method
55
56
57
58
59
                 17
                               ID
                                        - Muskingum-Cunge Routing Method
                 18
                               ID
                               ID
                                       Topographic and land use data received from Washoe County September 2011
                 20
                               ID
                 21
                               ID
                                       Diversion data obtained from capacity analysis of split flow using normal
60
61
62
                 22
                               ID
                                        depth
                 23
                               ID
                 24
                               ID
                                        MODELING NOMENCLATURE
63
64
65
                 25
                               ID
                                        SUBBASIN HYDROGRAPH:
                 26
                               ID
                                          Example: 005
                                                            - the most upstream subbasin
                 27
                               ID
66
67
68
69
70
                 2.8
                               ID
ID
                                        SUBBASIN DIVERSION:
Example: D040 - flow is diverted northeast towards combination point CP
                 29
                 30
                               ID
                                           Example: DO55 - flow is diverted northwest towards combination point CP
                 31
                               ID
                 32
                               ID
                                        ROUTE HYDROGRAPH:
71
72
73
74
75
76
77
                 33
                               ID
                                           Example: RCP030 - flow is routed towards CP030
                 34
                               ID
                 35
                               ID
                                       COMBINE HYDROGRAPH:
                 36
37
                               ID
                                           Example: CP035 - combine flow at concentration point 035
                               ID
                 38
                               ID
                 39
                               ID
                                        PREFIXES FOR MODELING OPERATIONS
                 40
                               ID
                                          D
                                                  Divert flow
79
                 41
                               ID
                                           R
                                                  Routing flow
80
                 42
                               ID
                                           CP
                                                  Combination point
                                     ******
                                                                ****************
81
                 43
                               ID
82
                 44
                               IT
                                        5
                                                 0
                                                         0
                                                                400
83
                 45
                               ΙO
                                        5
84
                 46
                               JR
                                     PREC
                                              0.98
85
                               *DIAGRAM
86
87
88
                 47
                               KK
                                      005
                               KM
89
                 48
                                    Runoff hydrograph for subbasin 005
90
                 49
                               ва
                                     1.67
91
92
                 50
                               PH
                                                     0.430
                                                             0.812
                                                                       1.35
                                                                                1.45
                                                                                        1.56
                                                                                                 2.03
                                                                                                         2.95
                                                                                                                  4.02
                 51
                               LS
93
94
                 52
                               UD
                                     1.50
                                                               HEC-1 INPUT
                                                                                                                          PAGE 2
96
97
               LINE
                               TD.....1....2....3.....4.....5.....6.....7....8.....9....10
99
                               KK
                                      010
100
                 53
101
                 54
                               KM
                                    Runoff hydrograph for subbasin 010
102
                 55
                               BA
                                     1.31
103
                               LS
```

Printed at 08:00 on 07 Oct 2011

```
106
107
108
                  59
                               KM
                                    Combine runoff hydrographs from subbasins 005 and 010 \,
109
                 60
                               HC
110
111
                  61
                                     R015
112
                               KK
113
                                    Route combined hydrograph at CP010 to CP015
114
                 63
                               RD
                                     3529 0.045 0.073
                                                                      TRAP
                                                                                100
115
116
117
                  64
                               KK
                                      015
118
                               KM
                                    Runoff hydrograph for subbasin 015
119
                                     3.00
                                                71
120
                  67
                               LS
                                     1.24
122
123
                  69
125
                  70
                               КM
                                    Combine routed hydrograph from CP010 with runoff hydrograph
126
                  71
                               KM
                                    from subbasin 015
127
                  72
                               HC
128
129
130
                  73
                               KK
                                     R025
                                    Route combined hydrograph at CP015 to CP025 9817 0.045 0.078 TPAD
                  74
131
                               KM
133
134
                                    Runoff hydrograph for subbasin 020
136
                  77
                               KM
                  78
137
                                     1.18
                               BA
138
                  79
                                                71
                                     1.28
139
                 80
                               UD
141
142
                 81
                               KK
                                      025
                                    Runoff hydrograph for subbasin 025
144
145
                  83
                               ва
                                     3.38
                                                70
                               LS
                  84
147
148 1
                                                                                                                          PAGE 3
                                                              HEC-1 INPUT
                               ID.....1....2....3....4....5....6.....7....8....9....10
               LINE
150
151
152
153
                 86
                               KK
                                    CP025
154
                                    Combine routed hydrograph from CP015 with runoff hydrographs from
155
                  88
                               KM
                                    subbasins 020 and 025
156
                 89
                               HC
157
158
                  90
                               KK
                                     R030
159
160
                                    Route combined hydrograph at CP025 to CP030 \,
161
                 92
                               RD
                                     4069 0.039 0.100
                                                                       TRAP
162
163
164
                  93
                               KK
                                      030
                                    Runoff hydrograph for subbasin 030
166
167
                  95
                               ва
                                     1.74
                                                76
                  96
                               LS
168
                               UD
                                     1.02
169
170
171
                 98
                               KK
                                    CP030
                                    Combine routed hydrograph from CP025 with runoff hydrograph
172
                 99
                               KM
173
                100
                               KM
                                    from subbasin 030
174
                101
                               HC
*
175
176
177
                102
                               KK
                                     R035
                                    Route combined hydrograph at CP030 to CP035
178
                103
                               KM
179
                                     3714 0.034 0.108
180
181
182
                105
                               KK
                                      035
183
                106
                               KM
                                    Runoff hydrograph for subbasin 035
184
                107
                                    0.517
                               BA
185
                108
                               LS
UD
                                     0.59
186
                109
187
188
189
                110
                               KK
                                    CP035
190
                111
                               KM
                                     Combine routed hydrograph from CP030 with runoff hydrograph
191
                112
                               ΚM
                                    from subbasin 035
192
                113
                               HC
193
194
195
                               KK
196
                115
                                    Flow diversion at the intersection of Toll Road and Ravazza Road.
                116
                                    Bailey Canyon Creek runoff crosses Toll Road in 2-8x5 concrete box
197
                               KM
                                    culverts. When the road overtops, the majority continues down Bailey
                117
                               KM
                               KM
KM
199
                118
                                    Canyon Creek. The remainder flows northeast along Toll Road.
200
                119
                                    The split was determined by modeling the culvert in HY-8 to get the
                                    capacity. Normal depth cross sections were used to determine the amount
202
                121
                               KM
                                    of flow along Toll Road. All measurements were taken on site
                               KM
203
                                    in September 2011.
                122
204
                123
                               DT
                                     D055
                                               510
205
                124
                               DT
                                        0
                                                       913
                                                               1580
                                                                       2460
                                                                                3514
                                         0
                                                        23
                                                 0
                                                               144
                                                                        380
                                                                                 749
```

```
208 1
                                                                HEC-1 INPUT
                                                                                                                            PAGE 4
209
210
                LINE
                               {\tt ID}.\dots.1\dots.2\dots.3\dots.4\dots.5\dots.6\dots.7\dots.8\dots.9\dots.10
211
212
214
                 127
                               KM
                                     Route portion of the Bailey Canyon Creek runoff that crosses Toll
                                     Road in culvert to CP040 3539 0.029 0.073
215
                 128
                                KM
216
                                                                        TRAP
                                                                                  30
217
218
219
                 130
                                       040
220
                 131
                               KM
                                     Runoff hydrograph for subbasin 040
                 132
                                BA
                                     0.821
222
                 133
                                LS
                                                 82
223
                                      0.73
                134
                               UD
225
                 135
226
                               KK
                                     CP040
227
                 136
                                     Combine routed hydrograph from CP035 with runoff hydrograph
228
                 137
                               КM
                                     from subbasin 040
229
                138
                               HC
*
230
231
                 139
                               KK
233
                 140
                                KM
                                     Route combined hydrograph at CP040 to CP045
                                                      0.086
                                                                                            50
234
                 141
                               RD
                                      1734
                                             0.023
                                                                        TRAP
236
237
                 142
                               KK
                                       045
                                KM
                                     Runoff hydrograph for subbasin 045
239
                 144
                               BA
                                     0.943
                                                 82
240
                 145
                               LS
241
                                UD
                                      0.87
242
244
                 147
                               KK
                                     CP045
                                     Combine routed hydrograph from CP040 with runoff hydrograph
245
                 148
                               KM
                                     from subbasin 045
247
248
                 150
                               HC
*
250
                151
                               KK
                                      R050
251
                                     Route combined hydrograph at CP045 to CP050 \,
                 152
                               KM
252
                 153
                                      5748
                                             0.018
                                                      0.053
253
254
255
                 154
                               KK
                                       050
256
                                     Runoff hydrograph for subbasin 050
                 155
                               KM
257
                                ва
                               LS
UD
258
                 157
                                                 79
                                      0.52
259
                158
                                                               HEC-1 INPUT
                                                                                                                            PAGE 5
261 1
262
263
264
                LINE
                               {\tt ID}.\dots.1\dots.2\dots.3\dots.4\dots.5\dots.6\dots.7\dots.8\dots.9\dots.10
265
266
267
                 159
                                     CP050
                 160
                               KM
                                     Combine routed hydrograph from CP045 with runoff hydrograph
                                     from subbasin 050
269
                162
                               HC
*
                                         2
270
272
                 163
                                KK
                                      Toll
273
                                KM
                 164
                                     Retrieve diverted runoff from CP035 that flows in Toll Road
                               DR
*
274
                 165
                                      D055
275
276
277
                166
                                KK
                                      R055
                                     Route diverted hydrograph from CP035 in Toll Road to CP055
278
                               KM
                 167
279
                 168
                               RD
                                      9490 0.026 0.045
                                                                       TRAP
280
281
282
                 169
                               KK
                                       055
                               KM
BA
283
                 170
                                     Runoff hydrograph for subbasin 055
284
                 171
                                     0.542
285
                 172
                                LS
                                                 77
286
                 173
                               UD
                                      0.61
287
288
289
                 174
                               KK
                                     CP055
                               KM
                                     Combine routed hydrograph from CP035 with runoff hydrograph
                               KM
HC
291
                 176
                                     from subbasin 055 on the west side of Toll Road
292
                 177
293
294
295
                 178
                               KK
                                     CP055
296
                 179
                               KM
                                     Combine hydrograph from CP050 with combined hydrograph at CP055
297
                 180
                               HC
298
299 1
                      SCHEMATIC DIAGRAM OF STREAM NETWORK
300
301
302
      LINE
                 (V) ROUTING
                                       (--->) DIVERSION OR PUMP FLOW
303
304
                 (.) CONNECTOR
                                       (<---) RETURN OF DIVERTED OR PUMPED FLOW
305
306
        47
                    005
307
308
                                 010
        53
```

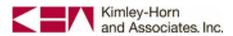
310				
311			•	
312	58	CP010		
313		V		
314		V		
315	61	R015		
316 317		•		
318	64	•	015	
319	04	•		
320		•	•	
321	69	CP015	•	
322	0,5	V		
323		V		
324	73	R025		
325				
326				
327	76		020	
328				
329				
330	81			025
331				
332				
333	86	CP025		
334		V		
335		V		
336 337	90	R030		
338		•		
339	93	•	030	
340	93	•	030	
341		•	•	
342	98	CP030	•	
343	50	V		
344		V		
345	102	R035		
346				
347				
348	105		035	
349				
350				
351	110	CP035		
352				
353				
354	123	-	> D05	5
355	114	D040		
356		V		
357	100	V D040		
358 359	126	R040		
360		•		
361	130	•	040	
362	130	•	040	
363				
363 364	135	CP040		
364	135	CP040 V		
364 365	135	CP040 V V		
364	135 139	V		
364 365 366		V V		
364 365 366 367 368 369		V V		
364 365 366 367 368 369 370		V V	045	
364 365 366 367 368 369 370 371	139	V V		
364 365 366 367 368 369 370	139	V V		
364 365 366 367 368 369 370 371 372 373	139	V V R045	045	
364 365 366 367 368 369 370 371 372 373	139	V V R045	045	
364 365 366 367 368 369 370 371 372 373 374 375	139 142 147	V V R045	045	
364 365 366 367 368 370 371 372 373 374 375 376	139	V V R045	045	
364 365 366 367 368 370 371 372 373 374 375 376	139 142 147	V V R045	045	
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378	139 142 147 151	V V R045	045	
364 365 366 367 368 370 371 372 373 374 375 376	139 142 147	V V R045	045	
364 365 366 367 368 370 371 372 373 374 375 376 377 378 379 380	139 142 147 151	V V R045	045	
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378	139 142 147 151	V V V R045	045 	
364 365 366 367 368 370 371 372 373 374 375 376 377 378 379 380 381	139 142 147 151	V V R045	045 	
364 365 366 367 368 370 371 372 373 374 375 376 377 378 379 380 381 382	139 142 147 151	V V V R045	045 	
364 365 366 367 368 370 371 372 373 374 375 376 377 378 379 380 381 382 383	139 142 147 151	V V V R045	045 	D055
364 365 366 367 370 371 372 373 374 375 376 377 380 381 381 382 383	139 142 147 151 154 159	V V V R045	045 	D055
364 365 366 367 368 369 370 371 372 373 374 375 380 381 382 383 384 385 386 387	139 142 147 151 154 159	V V V R045	045 	D055
364 365 366 367 368 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 388	139 142 147 151 154 159 165 163	V V V R045	045 	D055
364 365 366 367 368 370 371 372 373 374 375 376 381 382 383 383 385 386 387 388 388	139 142 147 151 154 159 165 163	V V V R045	045 	D055
364 365 367 368 369 371 372 373 375 376 377 380 381 382 383 384 385 387 388 389 389	139 142 147 151 154 159 165 163	V V V R045	045 	D055
364 365 366 367 371 372 373 374 375 376 377 380 381 382 383 384 385 387 388 389 391	139 142 147 151 154 159 165 163	V V V R045	045 	
364 365 367 368 369 371 372 373 374 375 378 381 382 383 384 385 386 387 388 389 390 391 392	139 142 147 151 154 159 165 163 166	V V V R045	045 	D055
364 365 367 368 369 370 371 372 373 374 375 380 381 382 383 384 385 387 388 389 390 391 393	139 142 147 151 154 159 165 163 166	V V V R045	045 	055
364 365 367 368 369 371 372 375 374 375 376 380 381 382 384 385 384 385 387 388 389 391 392 393	139 142 147 151 154 159 165 163 166	V V V R045	045 	055
364 365 367 368 369 370 371 372 373 374 377 380 381 382 383 384 385 389 390 391 392 393 394 395	139 142 147 151 154 159 165 163 166	V V V R045	045 	055
364 365 367 368 367 370 371 372 373 374 375 380 381 382 383 384 385 387 389 390 391 391 393 394 395	139 142 147 151 154 159 165 163 166	V V V R045	045 	055
364 365 367 368 370 371 372 373 374 377 378 380 381 382 383 384 385 386 387 391 392 393 394 395 395	139 142 147 151 154 159 165 163 166 169 174	V V V R045	045 	055
364 365 367 368 369 370 371 372 373 374 375 382 383 384 385 385 389 390 391 392 393 394 395 396 398	139 142 147 151 154 159 165 163 166 169 174	V V V R045	045 	055
364 365 367 368 367 371 371 373 374 375 380 381 382 383 384 385 387 388 389 390 391 392 393 394 395	139 142 147 151 154 159 165 163 166 169 174	V V V R045	045	055
364 365 367 368 370 371 372 373 375 376 377 380 381 382 383 384 385 386 390 391 392 393 393 395 396 397 398	139 142 147 151 154 159 165 163 166 169 174 178 (***) RUI	V V V V R045	045	055
364 365 367 368 369 370 371 372 373 374 375 380 381 381 385 383 384 385 389 390 391 392 393 395 395 396 397 398	139 142 147 151 154 159 165 163 166 169 174 178 (***) RUI 1*********	V V V R045	045	055
364 365 367 368 367 371 372 373 374 375 380 381 382 383 384 385 387 388 389 390 391 392 393 394 400 401 402	139 142 147 151 154 159 165 163 166 169 174 178 (***) RUI	V V V R045	045	055
364 365 367 368 369 370 371 372 373 374 375 380 381 381 385 383 384 385 389 390 391 392 393 395 395 396 397 398	139 142 147 151 154 159 165 163 166 169 174 178 (***) RUI 1************************************	V V V V R045	045	055
364 365 367 368 369 370 371 372 373 374 375 376 377 380 381 382 383 384 385 389 391 392 393 394 400 401 402 403	139 142 147 151 154 159 165 163 166 169 174 178 (***) RUI 1********** * FLOOI	V V V R045	045	055
364 365 366 367 368 370 371 372 373 374 387 387 388 389 381 385 386 387 390 391 392 393 394 395 396 401 402 403 404	139 142 147 151 154 159 165 163 166 169 174 178 (***) RUI 1********** * FLOOI	V V V V R045	045	055
364 365 366 367 370 371 372 373 374 377 380 381 382 383 384 385 386 387 388 389 391 392 393 394 400 401 402 403 404 405	139 142 147 151 154 159 165 163 166 169 174 178 (***) RUI 1********** * * FLOOI	V V V V R045	045	055
364 365 366 367 368 370 371 372 373 374 387 381 382 383 381 385 386 387 388 389 391 392 393 394 400 401 404 405 406	139 142 147 151 154 159 165 163 166 169 174 178 (***) RUI 1******** * FLOOI * * RUN D2	V V V V R045	045	055
364 365 366 367 368 370 371 372 373 375 380 381 382 383 384 385 386 387 391 392 393 391 392 393 394 401 402 402 405 407	139 142 147 151 154 159 165 163 166 169 174 178 (***) RUI 1************************************	V V V V R045	045	055
364 365 367 368 367 371 372 373 374 375 380 381 382 383 384 385 385 386 387 391 392 393 394 400 401 402 403 406 407 408	139 142 147 151 154 159 165 163 166 169 174 178 (***) RUI 1************************************	V V V V R045	045	055

411 412 U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

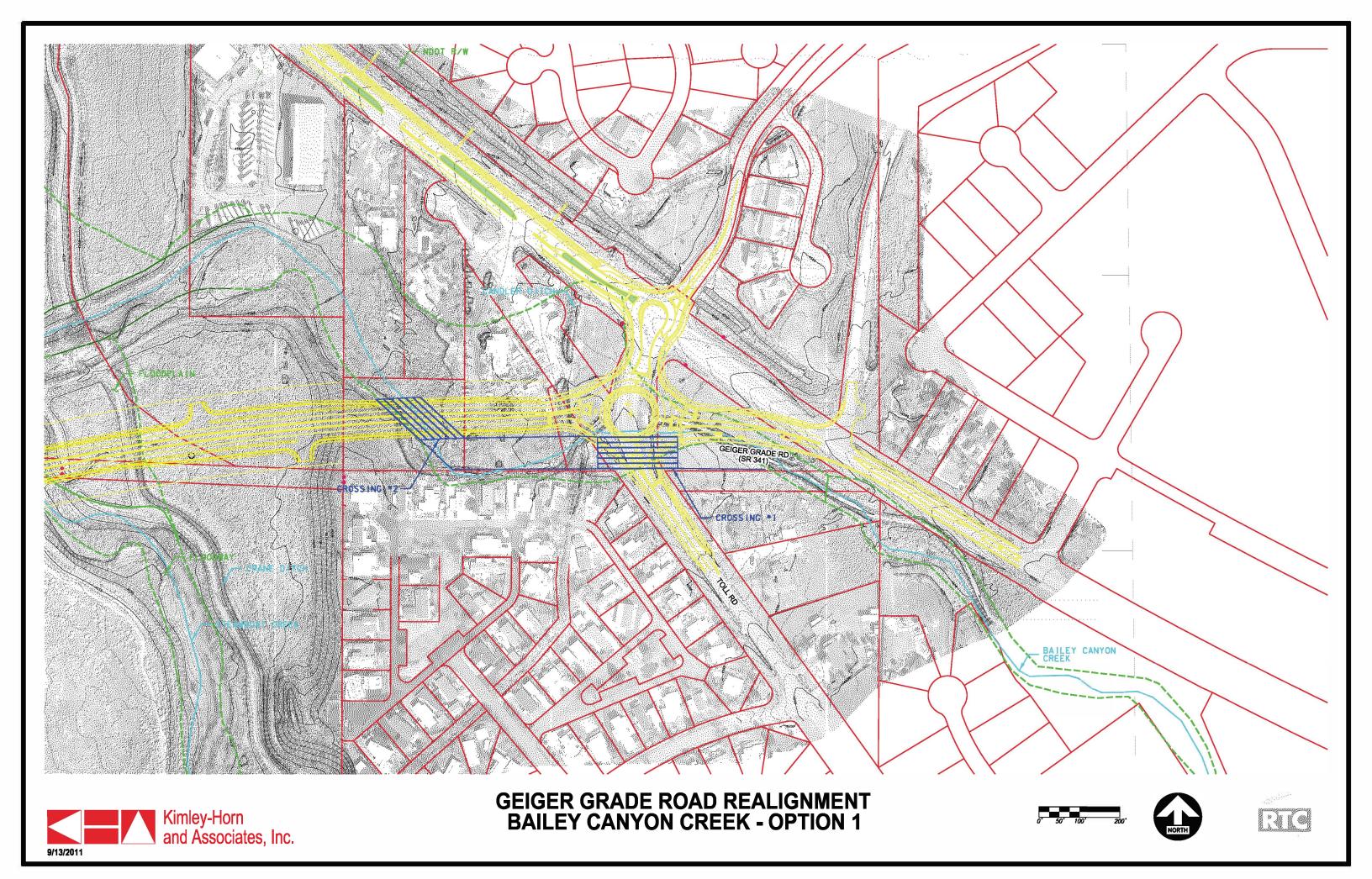
515

R015

2.98


1 FLOW

622.


```
415
                                     GEIGER GRADE ROAD REALIGNMENT
416
                                     Model for Bailey Canyon Creek Watershed
417
                                     Existing Conditions
418
                                     Prepared for the Regional Transportation Commission
420
                                     of Washoe County
421
422
                                     Prepared by Kimley-Horn and Associates, Inc.
                                     KHA Project Number 092528005
September 2011
423
424
425
426
                                     MODELING PARAMETERS
                                      - 100 Year 24 Hour Storm Event
428
                                     - NOAA Atlas 14 Rainfall Data
429
                                      - SCS Unit Hydrograph
                                       SCS Curve Number Method
431
                                     - Muskingum-Cunge Routing Method
432
                                     Topographic and land use data received from Washoe County September 2011
434
435
                                     Diversion data obtained from capacity analysis of split flow using normal
                                     depth
437
438
                                     MODELING NOMENCLATURE
                                     SUBBASIN HYDROGRAPH:
439
                                                          - the most upstream subbasin
440
                                         Example: 005
442
                                     SUBBASIN DIVERSION:
                                         Example: D040 - flow is diverted northeast towards combination point CP Example: D055 - flow is diverted northwest towards combination point CP
443
445
446
                                     ROUTE HYDROGRAPH:
447
                                         Example: RCP030 - flow is routed towards CP030
448
                                     COMBINE HYDROGRAPH:
450
                                         Example: CP035 - combine flow at concentration point 035
451
453
454
                                     PREFIXES FOR MODELING OPERATIONS
                                         D
                                                Divert flow
                                                Routing flow
456
                                         CP
                                                Combination point
                                                               *******************
457
458
       45 IO
                       OUTPUT CONTROL VARIABLES
459
460
                              IPRNT
                                               5 PRINT CONTROL
461
                              TPLOT
                                               0
                                                  PLOT CONTROL
                                              0. HYDROGRAPH PLOT SCALE
462
                              OSCAL
463
464
          IT
                       HYDROGRAPH TIME DATA
                                               5
                                                  MINUTES IN COMPUTATION INTERVAL
465
                              NMIN
466
                              IDATE
                                                  STARTING DATE
                                           0000
467
                              ITIME
                                                  STARTING TIME
468
                                             400 NUMBER OF HYDROGRAPH ORDINATES
                                 NO
469
                             NDDATE
                                          2
                                                  ENDING DATE
470
                                           0915
                             NDTIME
                                                  ENDING TIME
471
                             ICENT
                                              19
                                                  CENTURY MARK
472
                         COMPUTATION INTERVAL
473
                                                     .08 HOURS
                               TOTAL TIME BASE
                                                  33.25 HOURS
475
                ENGLISH UNITS
476
                     DRAINAGE AREA
                                             SQUARE MILES
478
                     PRECIPITATION DEPTH
                                             INCHES
479
                     LENGTH, ELEVATION
                                             FEET
480
                     FLOW
                                             CUBIC FEET PER SECOND
                     STORAGE VOLUME
481
                                             ACRE-FEET
482
                     SURFACE AREA
                                             ACRES
483
                     TEMPERATURE
                                             DEGREES FAHRENHEIT
484
485
          JP
                       MULTI-PLAN OPTION
486
                             NPLAN
                                               1 NUMBER OF PLANS
487
488
                       MULTI-RATIO OPTION
489
                           RATIOS OF PRECIPITATION
490
491 1
492
493
                     PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
494
                                        FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES  \mbox{TIME TO PEAK IN HOURS} 
495
497
498
                                                                    RATIOS APPLIED TO PRECIPITATION
    OPERATION
                      STATION
                                   AREA
                                            PLAN
                                                             RATIO 1
500
                                                                  .98
501
502
    HYDROGRAPH AT
503 +
                           005
                                    1.67
                                              1
                                                  FLOW
                                                                428.
504
                                                                13.58
                                                  TIME
505
    HYDROGRAPH AT
506
507 +
                           010
                                    1.31
                                              1
                                                  FLOW
508
                                                  TIME
                                                               13.58
509
      2 COMBINED AT
511 +
                        CP010
                                    2.98
                                                  FT.OW
                                                                623.
512
                                                  TIME
                                                               13.58
513
514
    ROUTED TO
```

	J. J. J.	20.20.			
6 7				TIME	13.75
8 HYDROGRAPH AT 9 + 0	015	3.00	1	FLOW TIME	568. 13.33
2 2 COMBINED AT 3 +	CP015	5.98	1	FLOW TIME	1161. 13.50
5 6 ROUTED TO 7 +	R025	5.98	1	FLOW TIME	1162. 13.75
9 0 HYDROGRAPH AT 1 + 2	020	1.18	1	FLOW TIME	220. 13.42
3 4 HYDROGRAPH AT 5 +	025	3.38	1	FLOW	499.
6 7 8 3 COMBINED AT 9 +	CP025	10.54	1	TIME	13.75 1861.
0 1 2 ROUTED TO 3 +	R030	10.54	1	TIME FLOW	13.75 1862.
4 5 6 HYDROGRAPH AT				TIME	13.83
7 + 8 .9 .0 2 COMBINED AT	030	1.74	1	FLOW TIME	504. 13.08
1 + 2 3 4 ROUTED TO	CP030	12.28	1	FLOW TIME	2186. 13.67
5 + 6 7	R035	12.28	1	FLOW TIME	2185. 13.75
8 HYDROGRAPH AT 9 + 0	035	.52	1	FLOW TIME	280. 12.67
2 2 COMBINED AT 3 + 4	CP035	12.80	1	FLOW TIME	2238. 13.75
6 DIVERSION TO 7 + 8	D055	12.80	1	FLOW TIME	320. 13.75
9 0 HYDROGRAPH AT 1 + 2	D040	12.80	1	FLOW TIME	1918. 13.75
3 4 ROUTED TO 5 +	R040	12.80	1	FLOW TIME	1918. 13.92
7 8 HYDROGRAPH AT 9 + 0	040	.82	1	FLOW TIME	398. 12.83
1 2 2 COMBINED AT	CP040	13.62	1		
5 6 ROUTED TO 7 +		13.62			
8 9 0 HYDROGRAPH AT 1 +		.94		FLOW	402.
2 3 4 2 COMBINED AT 5 +				TIME	12.92
7 8 ROUTED TO		14.56			
9 + 0 1 2 HYDROGRAPH AT		14.56			2157. 14.08
3 + 4 5 6 2 COMBINED AT		.29		TIME	158. 12.58
7 + 8 9	CP050	14.85	1	FLOW TIME	2179. 14.08
0 HYDROGRAPH AT 1 + 2 3	Toll	.00	1	FLOW TIME	320. 13.75
4 ROUTED TO 5 + 6	R055	.00	1	FLOW TIME	321. 14.08
8 HYDROGRAPH AT					

9 +		055	.54	1 FLOW TIME	242. 12.67							
1												
2 2 COMBIN 3 +	ED AT	CP055	.54	1 FLOW	362.							
, T		CPUSS	.54	TIME	14.08							
				11111	11.00							
2 COMBIN	ED AT											
+		CP055	15.39	1 FLOW	2541.							
1				TIME	14.08							
-				СТТММ7	ARY OF KINEMA	TTC WATE _	MITCHANCIA	M_CINCE DOI!	TING			
					FLOW IS DIRE				IING			
				· ·	12011 20 22102	01 11011011			LATED TO			
								COMPUTATION				
	ISTAQ	ELEMENT	DT .	PEAK		VOLUME	DT	PEAK	TIME TO	VOLUME		
					PEAK				PEAK			
			(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
			(11114)	(CID)	(11114)	(114)	(11114)	(CIB)	(11114)	(114)		
	FOR PLAI	N = 1 RAT	OO. =OI									
	R01	5 MANE	5.00	622.42	825.00	1.65	5.00	622.42	825.00	1.65		
CONTRACTOR	v cimmann	. (AC EE)	TATEL ON	26225.02	EVGEGG 000	0.00	ON 262	00.02 Dagin	GEOD A GE	1077E 01 DEDGENE	EDDOD	0
CONTINUIT	1 SUMMAR	(AC-FI)	- INFLOW=	.2022E+U3	EXCESS= .000	OE+OO OOIF	_OW= .∠6∠	ZE+U3 BASIN	SIORAGE=	.1277E-01 PERCENT	ERROR=	. 0
	FOR PLAI	N = 1 RAT										
	R02	5 MANE	5.00	1162.23	825.00	1.50	5.00	1162.23	825.00	1.50		
ONTERNITE TO	V CIIMMAD	, (AC ET)	TNET ON-	47700.02	EVORCC- 000	OE:OO OUTER	OW - 477	1 P . 0 2 D A C T N	CTODACE-	.2829E-01 PERCENT	EDDOD-	. 0
CONTINUIT	1 SUMMAR	(AC-FI)	- INFLOW=	.4//UE+U3	EXCESS= .000	OE+OO OOIF	_OW= .4//	IE+U3 BASIN	SIORAGE=	.2829E-UI PERCENI	ERROR=	.0
	FOR PLAI	V = 1 RAT	:IO= .00									
	R030	MANE	5.00	1862.12	830.00	1.41	5.00	1862.12	830.00	1.41		
ONTERNITE	V CIIMMAD	. (AC ET)	TNET ON-	70225.02	EVGECC- 000	OE:OO OUTTE	OW 702	AE O DACIN	CTODACE-	.1613E-01 PERCENT	EDDOD-	.0
CONTINUIT	1 SUMMAR	(AC-FI)	- INFLOW=	./923E+03	EXCESS= .000	OE+OO OOIF	JOW= ./92	4E+U3 BASIN	SIORAGE=	.1613E-UI PERCENI	ERROR=	. 0
	FOR PLAI	V = 1 RAT	:IO= .00									
	R03	5 MANE	5.00	2185.06	825.00	1.45	5.00	2185.06	825.00	1.45		
יי דו ווא דיינאר	V SIIMMIP V	/ (AC-FT)	- TNFLOW-	9488F+03	FYCFSS= 000	0F+00 OUTE	.OW= 948	8F+03 BASTN	STOPAGE=	.4794E-01 PERCENT	FPPOP=	.0
JIVI 11VO 1 I	1 DOMPHIC	(AC II)	INI DOW-	. 5 1001 105	ENCEDD000	01.00 0011.	10W510	OB.OS BADIN	DIORAGE-	. 1791B OI IBROBRI	Diction-	. 0
		N = 1 RAT										
	R040) MANE	5.00	1917.82	835.00	1.40	5.00	1917.82	835.00	1.40		
ONTINUIT	Y SUMMAR	(AC-FT)	- TNFLOW=	.9575E+03	EXCESS= .000	0E+00 OUTF	OW= .957	5E+03 BASIN	STORAGE=	.4143E-01 PERCENT	ERROR=	. 0
		\ /						DIDIN		II I I I I I I I I I I I I I I I		
		I = 1 RAT										
	R04!	5 MANE	5.00	2018.86	840.00	1.45	5.00	2018.86	840.00	1.45		
'ONTTNIITT	V SIIMMIP V	/ (AC-FT)	- TNFLOW-	1052F+04	FYCFSS= 000	0F+00 OUTE	.OW= 105	2F+04 BASTN	STOPAGE=	.4020E-01 PERCENT	FPPOP=	.0
20141114011	1 DOMPHIC	(AC II)	INI DOW-	.10521.01	ENCEDD000	01.00 0011.	1011105	ZE:01 BADIN	DIORAGE-	. 1020B OI IBROBRI	Diction-	. 0
	FOR PLAI	N = 1 RAT	.00 =OI									
	R050) MANE	5.00	2156.92	845.00	1.49	5.00	2156.92	845.00	1.49		
COMPINITE	V SIIMMIP V	/ (AC-FT)	- TNFLOW-	1160F+04	FYCFSS= 000	0F+00 OUTE	.OW= 116	OF+O4 BASTN	STOPAGE=	.1268E+00 PERCENT	FPPOP=	.0
.0141114011	1 DOMPHIC	(AC II)	INI DOW-	.11001101	ENCEDD000	01.00 0011.	1011110	OB OI BADIN	DIORAGE-	.1200B TO TERCENT	Diction-	. 0
		N = 1 RAT										
	R05	5 MANE	4.00	321.08	844.00	-1.00	5.00	320.75	845.00	-1.00		
*** NORMA	L END OF	HEC-1 ***	r									
*** NORMA	L END OF	HEC-1 ***	•									
*** NORMA	L END OF	HEC-1 ***	•									

ATTACHMENT 10: GEIGER GRADE ROAD REALIGNMENT EXHIBIT

Modernize hydrologic prediction processes by creating custom statewide SSURGO Green and Ampt parameter database

Appendix B. HEC-HMS Model Support Data

<u>Folders</u>

```
GIS_Data
Soils
soilmu_a_nv628.shp
soilmu_a_nv772.shp
Watersheds
Subbasins.shp
KHA_Data
```

Miscellaneous shapefiles from Original Hydrologic Study

HECHMS_Data

CurveNumber – HEC-HMS model converted from Original Hydrologic Study GA_ThreeInch – HEC-HMS Green and Ampt hydrologic model

SupportFiles

BaileyCanyonHMSFlowComparisons.xlsx – Excel file used for results comparison

GA_Detail.csv – Green and Ampt values averaged for HEC-HMS model per subbasin

GA_Summary.csv - Green and Ampt values per subbasin extracted from soils/basin data

Soil data files available upon request

Contact NDOT Research at (775) 888-7000 info@dot.nv.gov and request

"Research Project 674-19-803 Soil Data"

Nevada Department of Transportation Kristina L. Swallow, P.E. Director Ken Chambers, Research Division Chief (775) 888-7220 kchambers@dot.nv.gov 1263 South Stewart Street Carson City, Nevada 89712