Geotechnical Design Report

# I-80 Golconda Summit Interchange (MP HU 32.5 to MP HU 38.8) Truck Climbing Lanes and Parking Project

Project EA: 744429 Project ID: SPI-080-3-(340)

Prepared for State of Nevada Department of Transportation

January 2023



50 W Liberty Street, Suite 205 Reno, NV 89501 This Revised Final Geotechnical Design Report for the I-80 Golconda Summit Interchange Truck Climbing Lanes and Parking Project has been prepared by the following individuals. The undersigned attest to the technical information contained herein and the qualifications of technical specialists providing engineering data upon which recommendations, conclusions, and decisions are based.

Zachary Jarecki, PE (CA) Senior Project Engineer

01/27/2023

01/27/2023

Date

Date

Daniel Jankly, PG (CA) Senior Engineering Geologist



Ravee Raveendra, PE (NV) Senior Geotechnical Reviewer

01/27/2023

Date

# Contents

| Acro | onyms ar | nd Abbreviations                                                             | iv                |  |  |  |  |
|------|----------|------------------------------------------------------------------------------|-------------------|--|--|--|--|
| 1.   | Intro    | duction                                                                      | 1-1               |  |  |  |  |
|      | 1.1      | Authorization and Project Overview                                           | 1-1               |  |  |  |  |
|      | 1.2      | Project Location                                                             |                   |  |  |  |  |
|      | 1.3      | Purpose and Scope of Work                                                    | 1-1               |  |  |  |  |
|      | 1.4      | Limitations                                                                  | 1-2               |  |  |  |  |
| 2.   | Exist    | ing Facilities and Proposed Improvements                                     | 2-1               |  |  |  |  |
|      | 2.1      | Existing Facilities                                                          | 2-1               |  |  |  |  |
|      | 2.2      | Proposed Improvements                                                        | 2-1               |  |  |  |  |
| 3.   | Perti    | nent Reports and Investigations                                              | 3-1               |  |  |  |  |
| 4.   | Phys     | ical Setting                                                                 | 4-1               |  |  |  |  |
|      | 4.1      | Climate                                                                      | 4-1               |  |  |  |  |
|      | 4.2      | Topography and Drainage                                                      | 4-1               |  |  |  |  |
|      | 4.3      | Human-made and Natural Features of Engineering and Construction Significance | 4-1               |  |  |  |  |
|      | 4.4      | Regional Geology                                                             | 4-1               |  |  |  |  |
|      | 4.5      | Geologic Hazards                                                             | 4-2               |  |  |  |  |
|      |          | 4.5.1 Landslides                                                             | 4-2               |  |  |  |  |
|      |          | 4.5.2 Faulting                                                               | 4-2               |  |  |  |  |
| 5.   | Subs     | urface Data                                                                  | 5-1               |  |  |  |  |
|      | 5.1      | Explorations                                                                 | 5-1               |  |  |  |  |
|      |          | 5.1.1 Geologic Reconnaissance Mapping                                        | 5-4               |  |  |  |  |
|      |          | 5.1.2 Geophysical Studies                                                    | 5-4               |  |  |  |  |
|      |          | 5.1.3 Exploration Notes                                                      | 5-4               |  |  |  |  |
| 6.   | Geot     | echnical Testing                                                             | 6-1               |  |  |  |  |
|      | 6.1      | In Situ Testing                                                              | 6-1               |  |  |  |  |
|      | 6.2      | Laboratory Testing                                                           | 6-1               |  |  |  |  |
| 7.   | Geot     | echnical Conditions                                                          | 7-1               |  |  |  |  |
|      | 7.1      | Site Geology                                                                 | 7-1               |  |  |  |  |
|      |          | 7.1.1 Slope Stability and Landslides                                         | 7-2               |  |  |  |  |
|      | 7.2      | Subsurface Conditions                                                        | 7-2               |  |  |  |  |
|      |          | 7.2.1 Roadway Pavements for Truck Climbing Lanes and Shoulders               | 7-2               |  |  |  |  |
|      |          | 7.2.2 EB and WB Cut Slopes                                                   | 7-2               |  |  |  |  |
|      |          | 7.2.3 Bridge Structure                                                       | 7-3               |  |  |  |  |
|      |          | 7.2.4 Truck Parking Area and Associated Ramps                                | 7-3               |  |  |  |  |
|      | 7.3      |                                                                              | 7-3               |  |  |  |  |
|      |          | 7.3.1 Surface Water                                                          | 7-3               |  |  |  |  |
|      | 74       | 7.3.2 Groundwater                                                            | 7-3               |  |  |  |  |
|      | 7.4      | 7.4.1 Ground Rupture                                                         | 7-4<br>7-4        |  |  |  |  |
| 8    | Gant     | achnical Design Recommendations                                              | +,<br>₽_1         |  |  |  |  |
| υ.   | 8 1      | Dynamic Analysis                                                             | <b>0-1</b><br>8-1 |  |  |  |  |
|      | 0.1      | 8.1.1 Parameter Selection                                                    | 8-1               |  |  |  |  |
|      |          | 8.1.2 Liquefaction Analysis                                                  | 8-1               |  |  |  |  |
|      | 8.2      | Cuts, Excavations, and Embankments                                           | 8-1               |  |  |  |  |
|      |          |                                                                              | -                 |  |  |  |  |

| Refere | ences                       |                                         | 9-1  |  |  |  |
|--------|-----------------------------|-----------------------------------------|------|--|--|--|
| 8.11   | Earthw                      | /ork                                    | 8-11 |  |  |  |
| 8.10   | Tempo                       | orary Cuts                              | 8-11 |  |  |  |
| 8.9    | Site Pr                     | eparation                               | 8-11 |  |  |  |
|        | 8.8.2                       | Pavement Structural Sections            | 8-11 |  |  |  |
|        | 8.8.1                       | R-value                                 | 8-10 |  |  |  |
| 8.8    | Structu                     | ural Pavement Design                    | 8-10 |  |  |  |
| 8.7    | Corros                      | ion                                     | 8-9  |  |  |  |
| 8.6    | Expan                       | sion Potential                          | 8-9  |  |  |  |
| 8.5    | Minor Structure Foundations |                                         |      |  |  |  |
| 8.4    | Culver                      | t Foundations                           | 8-8  |  |  |  |
|        | 8.3.3                       | Foundation Recommendations              | 8-7  |  |  |  |
|        | 8.3.2                       | Settlement                              | 8-6  |  |  |  |
|        | 8.3.1                       | Engineering Parameters                  | 8-6  |  |  |  |
| 8.3    | Bridge                      | Structure                               | 8-5  |  |  |  |
|        | 8.2.5                       | Embankments                             | 8-5  |  |  |  |
|        | 8.2.4                       | Grading Factors                         | 8-5  |  |  |  |
|        | 8.2.3                       | Rippability                             |      |  |  |  |
|        | 8.2.2                       | Rockfall Evaluation and Recommendations |      |  |  |  |
|        | 8.2.1                       | Slope Stability                         | 8-1  |  |  |  |

#### Appendices

9.

Appendix A Boring and Geophysical Survey Line Location Maps with Geologic Mapping Appendix B Geotechnical Exploration Data B-1 Soil Boring and Rock Coring Logs B-2 Drill Rig Hammer Calibration Report B-3 Rock Core Photographs Appendix C Geophysical Survey Data Appendix D Laboratory Test Results Appendix E Bridge Structure, Trash Enclosure, and Rock Fall Debris Fence Plans

#### Tables

| Table 5-1. Summary of Current Exploration Data                                       | 5-2  |
|--------------------------------------------------------------------------------------|------|
| Table 6-1. Summary of Laboratory Test Methods                                        | 6-1  |
| Table 7-1. Seismic Design Coefficients                                               | 7-4  |
| Table 8-1. Major Cut and Fill Slopes                                                 | 8-2  |
| Table 8-2. Summary of Soil Strength Parameters for Slope Stability Analysis          | 8-3  |
| Table 8-3. Bridge Generalized Subsurface Soil Profile and Design Strength Parameters | 8-6  |
| Table 8-4. Spread Footing Data (Bridge Structure and Retaining Walls)                | 8-7  |
| Table 8-5. Lateral Earth Pressures                                                   | 8-8  |
| Table 8-6. Summary of Corrosion Test Results                                         | 8-9  |
| Table 8-7. R-value Test Results                                                      | 8-10 |
| Table 8-8. Pavement Structural Sections                                              | 8-11 |

### Figures

| 1-1 | Site Location Map                      | 1-3 |
|-----|----------------------------------------|-----|
| 4-1 | Fault Location Map                     | 4-3 |
| 7-1 | Cut Slope 315 Area Existing Conditions | 7-5 |

# **Acronyms and Abbreviations**

| 50/6"          | 50 blows for 6 inches                                                     |
|----------------|---------------------------------------------------------------------------|
| >              | greater than                                                              |
| <              | less than                                                                 |
| AASHTO         | American Association of State Highway and Transportation Officials        |
| ASTM           | ASTM International                                                        |
| CME            | Central Mine Equipment                                                    |
| CRSP           | Colorado Rockfall Simulation Program                                      |
| EB             | eastbound                                                                 |
| ft/s           | foot (feet) per second                                                    |
| GDR            | Geotechnical Design Report                                                |
| GP             | poorly graded gravel with sand                                            |
| GSI            | Geological Strength Index                                                 |
| H:V            | horizontal to vertical slope ratio                                        |
| HSA            | hollow-stem auger                                                         |
| I-             | Interstate Highway                                                        |
| Kh             | horizontal seismic acceleration coefficient                               |
| ksf            | kip(s) per square foot                                                    |
| mi             | Hoek-Brown Constant                                                       |
| ML             | silt with sand                                                            |
| MP HU          | Milepost Humboldt                                                         |
| NDOT           | State of Nevada Department of Transportation                              |
| no.            | number                                                                    |
| pcf            | pound(s) per cubic foot                                                   |
| PGA            | peak ground acceleration                                                  |
| ppm            | part(s) per million                                                       |
| Project        | I-80 Golconda Summit Interchange Truck Climbing Lanes and Parking Project |
| psf            | pound(s) per square foot                                                  |
| RCB            | reinforced concrete box                                                   |
| ReMi           | refraction microtremor                                                    |
| S <sub>1</sub> | long-term spectral acceleration                                           |
| SC             | clayey sand with gravel                                                   |
| SM             | silty sand with gravel                                                    |
| SPT            | standard penetration test                                                 |
| Ss             | short-period spectral acceleration                                        |
| TCL            | truck climbing lanes                                                      |
| UCS            | Average Unconfined Compressive Strength                                   |

I-80 Golconda Summit Interchange (MP HU 32.5 to MP HU 38.8) Truck Climbing Lanes and Parking Project

- USCS Unified Soil Classification System
- USGS U.S. Geological Survey
- WB westbound

# 1. Introduction

### 1.1 Authorization and Project Overview

The Nevada Department of Transportation (NDOT) has authorized Jacobs to design the Interstate Highway 80 Golconda Summit Interchange Truck Climbing Lanes and Parking Project (project) between Milepost Humboldt (MP HU) 32.5 and MP HU 38.8.

NDOT proposes to widen Interstate (I-) 80 eastbound (EB) and westbound (WB) between MP HU 32.5 and MP HU 38.8 to add 12-foot-wide truck climbing lanes (TCL) and 10-foot-wide shoulders. The EB TCL would begin at "LE" Station 990+00 and end at "PE1" Station 435+00; the WB TCL would begin at Station "PW1" 355+00 and end at Station 496+00. The project also includes the following tasks:

- Replacing the existing I-808 structure (reinforced concrete box [RCB] culvert) with a new precast concrete arch structure (I-3331)
- Extending all existing drainage structures/culverts and relocating existing channels and ditches to accommodate the widening
- Providing barriers, guardrails, and attenuators to accommodate roadside safety items
- Reconstructing the Golconda Summit interchange ramps to accommodate the design speed
- Providing truck parking areas on each side of I-80
- Reconstructing the existing approach roads at Golconda Summit to accommodate the truck parking areas and new I-3331 bridge
- Providing illumination for the interchange ramps and truck parking areas
- Extending ancillary items including new trash enclosure, restrooms, new signage, striping, approaches, minor hydraulic work, rumble strips, and slope stabilization typically comprised of seeding and riprap

The TCLs will be added via widening to the outside. The frontage road under I-80 will be widened from one lane to two, requiring the replacement of the existing 14-foot by 14-foot RCB structure with a single precast concrete arch structure.

The majority of the proposed improvements are anticipated to be constructed within existing department rights-of-way, although additional rights-of-way will be required to accommodate the widening and construction work.

As part of the project, Jacobs has prepared this Geotechnical Design Report (GDR). The purpose of this GDR is to document subsurface geotechnical conditions, provide analyses of anticipated site conditions as they pertain to the project described herein, and provide geotechnical design and construction recommendations for the roadway and structures portions of the project.

### 1.2 **Project Location**

The project is located in Humboldt County, Nevada. All project improvements are located along I-80 between MP HU 32.5 and MP HU 38.8 within NDOT right-of-way. Figure 1-1 depicts the approximate location of the project alignment.

### **1.3 Purpose and Scope of Work**

The purpose of this GDR is to document subsurface geotechnical conditions, provide analyses of anticipated site conditions as they pertain to the project described herein, and provide geotechnical design and construction recommendations for the roadway and structures portions of the project.

The scope of work included collection and review of pertinent existing geotechnical data; field exploration consisting of the drilling, sampling, and logging of hollow-stem auger (HSA) borings; coring and sampling of rock cores; laboratory testing of selected soil and rock samples; development of geotechnical design recommendations; and preparation of this GDR with findings, conclusions, and recommendations.

This GDR presents geotechnical recommendations for remedial grading, cut-and-fill slope stability, pavement structural sections, and bridge structure foundations.

All elevations referenced in this GDR are based on the North American Vertical Datum of 1988, unless otherwise noted.

# 1.4 Limitations

This GDR was prepared for the exclusive use of Jacobs design team members and NDOT for specific application to the design and construction of the proposed improvements. It has been prepared in accordance with accepted standards of practice; no other warranty, express or implied, is made.

The recommendations contained in this GDR are based on the data obtained from review of available geological maps and documents, as well as the current subsurface investigation. The soil boring and rock coring logs indicate subsurface conditions only at specific locations and times, and only to the depths penetrated. They do not necessarily reflect variations that may exist between boring locations, or changes that may take place with time and depth. If variations in subsurface conditions from those described in this report are noted during construction, the recommendations presented in this report must be re-evaluated.

If any change in the nature, design, or location of the proposed improvements occurs, the conclusions and recommendations of this GDR should not be considered valid unless such changes are reviewed, and the conclusions of this GDR are modified or verified in writing by Jacobs. Jacobs is not responsible for any claims, damages, or liability associated with the re-interpretation or reuse of the subsurface data in this report by others.



W7Y46100 gen01 dan

|                 | STATE                  | PROJECT NO.                                                                                                                                  | COUNTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SHEET<br>NO. |
|-----------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                 | NEVADA                 | NHFP-080-3(071)                                                                                                                              | HUMBOLDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1            |
| DE              |                        | DESIGN DESIGNATION<br>AADT 2019 8000<br>AADT 2040 10,400<br>D 50%<br>DHV 1153<br>T(DHV) 45%<br>V 75 MPH                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| <u>.0</u><br>H  | <u>80-</u><br>U 3<br>A | V 75 MPH                                                                                                                                     | N I D A H D<br>STATUS<br>PANDIS VALLY<br>RACING<br>ANTIS VILLY<br>LANDER EUREKA<br>LANDER EUREKA<br>N Y E<br>LANDER EUREKA<br>N Y E<br>LOGO<br>N Y E<br>LIS<br>N Y E<br>L |              |
| E EIREKA COUNTY | R.48E.                 | R.49E.<br>T.34N.<br>T.33N.                                                                                                                   | BATT<br>CLAS VEGAS<br>HAS VEGAS<br>HAS VEGAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| R               | 47E. R                 | T.33N.<br>T.32N.<br>TO ELKO<br>(BO)<br>T.32N.<br>T.31N.<br>BO<br>Geotect<br>Site Loo<br>Figure<br>ABE.<br>BRELLO<br>SUBJECT<br>APPROVED MONT | Iconda Summit<br>hnical Design Rep<br>cation Map<br>1-1<br>MINARY<br>ICON REVISION<br>4-NOV-2022<br>IGN SUBMITTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | port         |
|                 | SAL PARTICIPALITY      | KRISTINA SWALLOW<br>GOVERNOR STEVE S<br>CHAIRMAN, TRANSPO<br>CHAIRMAN, TRANSPO<br>12866                                                      | , DIRECTOR, DEP<br>, P.E. TRANSPORTATI<br>SISOLAK<br>DRTATION BOARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T. OF<br>ON  |

# 2. Existing Facilities and Proposed Improvements

# 2.1 Existing Facilities

Within the project limits, I-80 currently provides two mainline EB lanes with an outside shoulder, two mainline WB lanes with an outside shoulder, and EB and WB truck parking areas at the Golconda Summit. The truck parking areas are accessed via on- and off-ramps and are linked by a frontage road. The frontage road is two lanes but reduces to one lane beneath I-80 within a single 14-foot by 14-foot RCB structure (I-808 structure) located perpendicular to I-80 at approximately "PE1" Station 407+75. The mainline lanes, ramps, and frontage road are situated at, above, and below adjacent existing grades. These grade changes are accommodated via previously constructed embankment fill-and-cut slopes. Fill-and-cut slopes within soils are generally inclined at a 2-horizontal to 1-vertical slope ratio (2H:1V). Existing rock-cut slopes are located adjacent to the EB mainline lanes approximately between "PE1" Station 315+00 and Station 330+00 and adjacent to the WB mainline lanes approximately between "PW1" Station 373+00 and Station 389+00. The EB cut slope is generally inclined at 1H:1V with a 30-foot-wide bench located approximately 40 feet above the slopes toe, with a maximum height of approximately 120 feet. The WB cut slope is generally inclined at 2H:1V with a maximum height of approximately 30 feet.

In addition to the facilities discussed previously, existing improvements along the project alignment include drainage facilities consisting of drainage culverts running perpendicular to the I-80 mainline lanes with outfall areas and open drainage ditches and berms running parallel to the roadways. Underground fiber optic (Lumen) utilities are located within truck parking areas and ramps, and utility lines associated with existing speed detector loops run parallel to the mainline lanes within shoulders.

# 2.2 Proposed Improvements

NDOT proposes to widen I-80 EB and WB between MP HU 32.5 and MP HU 38.8 to add 12-foot-wide TCLs and 10-foot-wide shoulders. The EB TCL would begin at "LE" Station 990+00 and end at "PE1" Station 435+00; the WB TCL would begin at "PW1" Station 355+00 and end at "PW1" Station 496+00. The project also includes the following tasks:

- Replacing the existing I-808 structure (RCB structure) with a new precast concrete arch structure (I-3331)
- Extending all existing drainage structures/culverts and relocating existing channels and ditches to accommodate the widening
- Providing barriers, guardrails, and attenuators to accommodate roadside safety items
- Reconstructing the Golconda Summit interchange ramps to accommodate the design speed
- Providing truck parking areas on each side of I-80
- Reconstructing the existing approach roads at Golconda Summit to accommodate the truck parking areas and new I-3331 bridge
- Providing illumination for the interchange ramps and truck parking areas
- Extending ancillary items including new trash enclosure, restrooms, new signage, striping, approaches, minor hydraulic work, rumble strips, and slope stabilization typically comprised of seeding and riprap

The TCLs will be added via widening to the outside. To accommodate the widening, fill-and-cut slopes are proposed. Two rock-cut slopes are proposed to push back existing cut slopes. The larger of the two proposed rock-cut slopes, the EB cut slope, will be inclined at 1H:1V with a 25-foot-wide bench located approximately 40 feet above the slope toe. The WB cut slope will be inclined at a 2H:1V slope with no benching. The proposed rock-cut slopes will be adjacent to the EB TCL approximately between "PE1"

I-80 Golconda Summit Interchange (MP HU 32.5 to MP HU 38.8) Truck Climbing Lanes and Parking Project

Station 315+00 and Station 330+00 and adjacent to the WB TCL approximately between "PW1" Station 373+00 and Station 389+00.

The frontage road under I-80 will be widened from one lane to two, requiring the replacement of the existing 14-foot by 14-foot RCB structure with a single precast concrete arch structure.

New pavements are proposed as part of the widening for the project. The pavement sections for the mainline lanes, shoulders, ramps, frontage road, and truck parking areas have been prescribed by NDOT Materials Division.

# 3. **Pertinent Reports and Investigations**

No previous geotechnical reports or investigations were available for the project alignment at the time the GDR was prepared.

Existing regional geologic maps and reference documents were collected and reviewed for this study. The references used to prepare this GDR are listed in Section 13.

# 4. Physical Setting

### 4.1 Climate

The following information has been summarized from data available from weather stations throughout Humboldt County, Nevada.

The average annual precipitation is approximately 8.5 inches; the winter, spring, and fall months receive a little less than an inch per month and the summer months approximately 0.2 inch per month. The average annual snowfall is approximately 16.5 inches; January and December receive approximately 5 inches per month, tapering down to approximately 0.4 inch per month in April.

# 4.2 Topography and Drainage

The project alignment traverses the Edna Mountains. The alignment ascends from an approximate elevation of 4,450 feet at the western end of the improvements, to approximately 4,900 feet at the tall I-80 cut slopes (between "PE1" Station 315+00 and Station 330+00), to 5,160 feet at Golconda Summit, then descends to 4,820 feet by the eastern end of the improvements near "PE1" Station 535+00. Elevations are relative to the National Geodetic Vertical Datum of 1929 and were obtained from U.S. Geological Survey (USGS) topographic maps (USGS 1965a, 1965b).

Cut slopes on the order of 120 feet tall have been constructed previously along EB and WB I-80, generally between "PE1" Station 315+00 and Station 330+00. The WB cut slope in this area will not be impacted by the project. In general, the EB cut slope is up to 120 feet tall, inclined at 1H:1V, and has a 25-to-30-foot-wide bench approximately 30 to 40 feet above the EB lanes. The face of the cut slope is highly irregular because of the variable nature of the bedrock and the effects of weathering. West of these cut slopes, the project alignment is situated on an alluvial fan. East of the cut slopes, the alignment is situated on an alluvial fan. East of the cut slopes, the alignment is situated on a relatively small canyon internal to the Edna Mountains. The detailed topography in the alignment area is shown on the boring location maps (Appendix A). As shown on the boring location maps, portions of the alignment outside the large cut slope area are situated on fill embankments. These embankments are generally inclined at 2H:1V or shallower. The faces of some of the fill embankments are somewhat irregular because of abundant cobbles and boulders protruding from the fill material.

West of Golconda Summit, the alignment area drains toward the west-northwest via sheet flow and small drainages toward the Humboldt River. East of Golconda Summit, the alignment drains toward the east via sheet flow and small drainages into Pumpernickel Valley on the east side of the Edna Mountains. Culverts exist where drainages cross the alignment.

# 4.3 Human-made and Natural Features of Engineering and Construction Significance

The existing EB cut slope between approximate "PE1" Station 315+00 and Station 330+00 (discussed in Section 4.2) is considered to have engineering and construction significance. The EB cut slope will be pushed back to accommodate the proposed widening and will result in a slope with similar geometry. The EB cut slope is discussed in Section 7.2.2.

### 4.4 Regional Geology

The project alignment is situated in the Basin and Ranges geomorphic province of the western United States. The Basin and Range Province is generally characterized as a series of roughly parallel, northeasterly-trending mountain ranges and basins (valleys). The Basin and Range mountains are primarily composed of Tertiary-aged volcanic rocks overlying Mesozoic-aged granitic rocks and metamorphic rocks. Extensional and normal faulting are the dominant recent structural features in the province.

I-80 Golconda Summit Interchange (MP HU 32.5 to MP HU 38.8) Truck Climbing Lanes and Parking Project

Formation of the Basin and Range Province commenced during the Miocene Epoch (less than 20 million years ago) and is ongoing. The basins and ranges formed as the continental crust east of the Sierra Nevada stretched in an east–west direction. The crust has broken (has been faulted) into a series of generally north-south-trending valleys and mountain ranges. Over time, the basins or valleys fill with sediment and, in general, drain internally to a central depression (or playa). The playa areas generally fill with water seasonally. Mount Edna, which the project alignment traverses, is one of the "ranges" of the Basin and Ranges province.

# 4.5 Geologic Hazards

#### 4.5.1 Landslides

Landslides could be activated from natural events such as earthquakes, rainfall, and erosion; or from manmade activities such as removal of lateral support near the base of unstable hillside areas. No landslides have been mapped across or adjacent to the project alignment (USGS 1974a, 1974b; NMBG 1976) and no evidence of deep-seated landslides or global slope instability has been reported in the I-80/Golconda Summit area. However, evidence of minor rockfalls does exist in the area of the existing cut slopes near "PE1" Station 315+00 to Station 330+00. The EB cut slope and slope stability are discussed in Sections 7.1.1, 7.2.2, 8.2.1 and 8.2.2.

#### 4.5.2 Faulting

Based on the latest U.S. Geological Survey (USGS) and Nevada Bureau of Mines and Geology (NMBG) mapping (USGS and NBMG 2022), there are no known Quaternary-aged faults crossing the alignment where improvements are proposed. The nearest mapped active faults to the alignment are northerly-trending splays of the Sulphur Springs Fault, mapped crossing I-80, approximately 2 miles southeast of the eastern end of the project improvements ("PE1" Station 535+00). The Sulphur Springs Fault is considered a "Latest Quaternary" fault, meaning its last known rupture was less than 15,000 years ago. The northern end of the Enda Mountain fault is mapped approximately 2.3 miles south of the I-808 structure ("PE1" Station 408+00). The Edna Mountain fault is considered a "Late Quaternary" fault, meaning its last known rupture was less than 130,000 years ago. Both of these faults are associated with the active Basin and Ranges tectonics. A number of faults internal to the Mount Edna bedrock units have been mapped in the vicinity of the alignment (USGS 1974a, 1974b; NMBG 1976). These bedrock faults predate the Basin and Ranges tectonics, do not cross Quaternary-aged sediments and thus, are not considered to be active. The location of the project alignment relative to the nearby active faults is shown on Figure 4-1. The potential for ground surface rupture associated with known active faults is considered low for the project.



Figure 4-1 Fault Location Map Geotechnical Design Report I-80 Golconda Summit Humboldt County, Nevada



# 5. Subsurface Data

This section discusses the current geotechnical data used for the project. Appendix B provides geotechnical exploration data. The soil boring and rock coring logs are presented in Appendix B-1. The drill rig hammer calibration report is presented in Appendix B-2. Appendix A shows the exploration locations on the boring location maps.

# 5.1 Explorations

The geotechnical explorations for the project consisted of geophysical studies (Section 5.1.2) and 21 geotechnical borings. The explorations were performed by NewFields' (Sparks Nevada office), under subcontract to Jacobs. The HSA and HQ rock core borings were advanced using a Central Mine Equipment (CME)-85 truck-mounted drill rig.

The drill rig used utilized a 140-pound automatic hammer falling freely for 30 inches. A hammer energy efficiency of 86.4% was reported for the CME-85 used on the project. The drill rig calibration report is included in Appendix B-2. Soil samples were generally collected every 5 feet using a standard penetration test (SPT) split-spoon sampler (1.38-inch inside diameter; ASTM International [ASTM] D1586) and Modified California ring sampler (2.50-inch inside diameter; ASTM D3550). The SPT blow counts were primarily used to estimate the soil strength parameters. The blow counts presented on the boring logs (Appendix B-1) are raw field values and have not been corrected for sampler type, overburden pressures, and hammer efficiency. The sampling procedures generally followed SPT and split-barrel soil sampling methods, as outlined in ASTM D1586. Each soil sample collected was described using the Unified Soil Classification System (USCS) in general accordance with ASTM D2487 and D2488.

At three of the boring locations (RC-22-002, -003, and -005), hard rock was encountered before reaching the target depths. HSA drilling was terminated and transitioned to rock core drilling using a double lined core barrel with an HQ diamond core bit. Cores were placed in wooden core boxes and logged using International Society of Rock Mechanics guidelines.

Boring RC-22-004 was redrilled as Boring RC-22-004A, approximately 5 feet to the east of the RC-22-004 location. The boring was redrilled to confirm that the subsurface conditions observed in RC-22-004 were not anomalous.

Table 5-1 presents a summary of the geotechnical borings performed within the project alignment.

Upon completion of sampling activities, the borings were backfilled in compliance with *Nevada Administrative Code* 534.4371.

Appendix A includes boring location maps, while boring logs are included in Appendix B-1, drill rig hammer energy report is provided in Appendix B-2, and photographs of the rock cores are provided in Appendix B-3.

#### Table 5-1. Summary of Current Exploration Data

| Boring<br>No.               | Purpose                                    | Boring<br>Type | Station<br>(feet) | Offset<br>(feet) | Latitude | Longitude  | Ground Surface<br>Elevation<br>(feet) | Total Depth<br>(feet) |
|-----------------------------|--------------------------------------------|----------------|-------------------|------------------|----------|------------|---------------------------------------|-----------------------|
| B-22-101                    | Roadway/Pavement                           | HSA            | "LE" 1000+35.86   | 44.76 Right      | 40.93439 | -117.45240 | 4,467.80                              | 16.5                  |
| B-22-102                    | Roadway/Pavement                           | HSA            | "LE" 1044+52.54   | 28.59 Right      | 40.92972 | -117.43766 | 4,602.83                              | 11.5                  |
| B-22-103                    | Roadway/Pavement/ Fill Slope<br>Stability  | HSA            | "PE1" 302+98.49   | 24.41 Right      | 40.92834 | -117.42019 | 4,794.55                              | 50.9                  |
| B-22-104                    | Roadway/Pavement                           | HSA            | "PE1" 341+78.14   | 23.36 Right      | 40.92643 | -117.40772 | 4,975.71                              | 16.5                  |
| B-22-105                    | Ramp/Pavement                              | HSA            | "PW1" 386+60.69   | 161.48 Right     | 40.92048 | -117.39364 | 5,156.00                              | 11.5                  |
| B-22-106                    | Roadway/Pavement                           | HSA            | "PW1" 432.51+20   | 27.50 Left       | 40.92254 | -117.37760 | 5,019.97                              | 16.5                  |
| B-22-107                    | Roadway/Pavement                           | HSA            | "PW1" 476+44.49   | 27.00 Left       | 40.91717 | -117.36340 | 4,904.57                              | 11.5                  |
| B-22-108                    | Roadway/Pavement                           | HSA            | "PW1" 522+00.38   | 27.48 Left       | 40.91709 | -117.34754 | 4,820.92                              | 16.5                  |
| B-22-109                    | WB Parking Area/<br>Off-Ramp/Pavement      | HSA            | "PW1" 396+59.77   | 237.19 Left      | 40.92204 | -117.39060 | 5,127.77                              | 11.5                  |
| B-22-110                    | WB Parking Area/Pavement                   | HSA            | "PW1" 392+49.54   | 178.85 Left      | 40.92167 | -117.39202 | 5,133.76                              | 21.5                  |
| B-22-111                    | WB Parking Area/<br>On-Ramp/Pavement       | HSA            | "PW1" 389+10.79   | 103.96 Left      | 40.92128 | -117.39317 | 5,145.14                              | 11.4                  |
| B-22-112                    | EB Off-Ramp/Pavement                       | HSA            | "PE1" 392+88.61   | 143.57 Right     | 40.92059 | -117.39159 | 5,159.76                              | 11.5                  |
| B-22-113                    | EB Truck Parking<br>Area/Pavement          | HSA            | "PE1" 395+15.54   | 199.55 Right     | 40.92057 | -117.39074 | 5,150.95                              | 21.5                  |
| B-22-114                    | EB Truck Parking Area/<br>On-Ramp/Pavement | HSA            | "PE1" 398+29.71   | 119.78 Right     | 40.92095 | -117.38969 | 5,142.71                              | 11.5                  |
| RC-22-001                   | Slope Stability EB Cut                     | HSA            | "PE1" 318+65.07   | 80.60 Right      | 40.92930 | -117.41483 | 4,904.48                              | 50.3                  |
| RC-22-002/002Ra             | Slope Stability EB Cut                     | HSA/HQ         | "PE1" 322+08.62   | 80.71 Right      | 40.92917 | -117.41365 | 4,921.69                              | 50.0                  |
| RC-22-003/003R <sup>a</sup> | Slope Stability EB Cut                     | HSA/HQ         | "PE1" 324+60.04   | 78.85 Right      | 40.92899 | -117.41282 | 4,933.35                              | 55.0                  |
| RC-22-004                   | Bridge Structure I-3331                    | HSA            | "PW1" 408+08.94   | 27.17 Right      | 40.92195 | -117.38634 | 5,100.71                              | 50.9                  |
| RC-22-004A                  | Bridge Structure I-3331                    | HSA            | "PW1" 408+13.94   | 27.17 Right      | 40.92196 | -117.38633 | 5,100.71                              | 50.5                  |
| RC-22-005/005Ra             | Bridge Structure I-3331                    | HSA/HQ         | "PE1" 407+58.14   | 57.53 Right      | 40.92161 | -117.38644 | 5,088.28                              | 49.0/60.0             |

#### Table 5-1. Summary of Current Exploration Data

| Boring<br>No. | Purpose                | Boring<br>Type | Station<br>(feet) | Offset<br>(feet) | Latitude | Longitude  | Ground Surface<br>Elevation<br>(feet) | Total Depth<br>(feet) |
|---------------|------------------------|----------------|-------------------|------------------|----------|------------|---------------------------------------|-----------------------|
| RC-22-006     | Slope Stability WB Cut | HSA            | "PW1" 383+59.79   | 117.11 Left      | 40.92118 | -117.39481 | 5,162.15                              | 50.4                  |

Notes:

Groundwater was not encountered in any of the borings tabulated.

<sup>a</sup> Boring was switched to rock coring after encountering hard rock and is indicated with an "R" at the end of the boring number.

No. = number

#### 5.1.1 Geologic Reconnaissance Mapping

On April 19 and April 20, 2022, a Jacobs engineering geologist performed geologic reconnaissance along the project corridor. The reconnaissance included cursory geologic mapping of the EB cut area ("PE1" Station 315+00 to Station 330+00) along the existing midslope bench. The results of the reconnaissance have been incorporated accordingly in this report.

#### 5.1.2 Geophysical Studies

Geophysical studies were performed to aid in the characterization of the bedrock at the location of the rock cut adjacent to the EB mainline lanes, the rock cut adjacent to the WB mainline lanes, and the new bridge structure at the frontage road undercrossing. The following sections discuss the testing performed.

#### 5.1.2.1 Refraction Microtremor Surveys

Two refraction microtremor (ReMi) surveys were performed to estimate vertical shear wave velocity profiles in the upper 100 feet. The ReMi surveys were performed at the rock cut adjacent to the EB mainline lanes and at the new bridge location. ReMi survey locations are shown in Appendix A.

The ReMi method provides an effective and efficient means to acquire general, one-dimensional information about large volumes of the subsurface with one equipment setup. This method is used to estimate shear wave velocity profiles and provide site-specific Vs30 soil classification data. ReMi surveys consisted of a 24-channel system with 4.5-Hertz geophones spaced 10 feet apart, for a total line length of 230 feet. Broadband ambient site noise was used as a surface wave energy source, as well as a 10-pound sledgehammer struck against a polyethylene plate. For the active records, the energy source was offset 10 feet from both ends of the survey line. A sampling time and interval of 30 seconds and 2 milliseconds, respectively, was used for each record. A dispersion curve consisting of the lower bound of the spectral energy shear wave velocity versus frequency trend is manually selected from the shear wave plot. An interpreted vertical S-wave profile is then obtained by fitting multiple layers and S-wave velocities to match the selected dispersion curve. The ReMi survey results are presented in Appendix C.

#### 5.1.2.2 Refraction Surveys

Three refraction surveys were performed to obtain seismic P-wave velocities to aid in assessing the rippability of shallow rock. The refraction surveys were performed at the rock cut adjacent to the EB mainline lanes, the rock cut adjacent to the WB mainline lanes, and at the new bridge location. Appendix A shows the Refraction Survey locations.

Refraction surveys were performed using a 24-channel seismograph system with 4.5-Hertz geophones spaced 10 feet apart. Data were acquired midpoint between Geophone 1 and 2 at 30-foot spacings down the line (between phones 4 and 5, 7 and 8, and so on). The energy source consisted of a 10-pound sledgehammer struck against a polyethylene plate. Readings were recorded every 0.125 millisecond for a duration of 0.5 second along each line. Relative elevations between geophones were measured using a tape measure, string line, and line level. Elevations shown on the plots are relative to an elevation of 100 feet taken at Geophone No. 1. Appendix C presents the seismic refraction survey results.

Caution should be used during interpretation of seismic velocity near the ends of the survey lines, as significant background noise can influence the results. Discussion on rippability is provided in Section 8.2.2. The results of the refraction surveys are included in Appendix C.

#### 5.1.3 Exploration Notes

The integrity of the weathered bedrock that exists at the ground surface within the existing cuts and within shallow depths throughout the rest of the project limits was unknown before the current geotechnical investigation. It was anticipated that hard bedrock (that is, HSA refusal) would be encountered at the borings advanced at the existing EB and WB cuts and the bridge location. However, during the

investigation it was noted that the HSA drill rig could advance augers and drive split-spoon samplers within material identified as highly weathered bedrock. As a result, only two of the three borings advanced at the EB cut, none of the borings advanced at the WB cut, and only one of the two borings advanced at the bridge location encountered bedrock hard enough to result in HSA refusal and allow HQ rock coring before reaching target depths.

# 6. Geotechnical Testing

### 6.1 In Situ Testing

Blow counts from the SPT sampler and standard California ring sampler were recorded during the explorations. No other in situ testing was performed for the project.

# 6.2 Laboratory Testing

A laboratory testing program was developed to provide data on relevant engineering properties of the soils and rock along the alignment where improvements are proposed. Selected soil and rock samples were tested for relevant physical and engineering properties. Testing was performed in general accordance with applicable ASTM, American Association of State Highway and Transportation Officials (AASHTO), and NDOT standards. The laboratory results were checked for completeness and reasonableness by Jacobs geotechnical engineers. The tests performed on the soil and rock samples collected during the investigation are summarized in Table 6-1. Appendix D presents the laboratory test results from the current investigation.

| Type of Test                                                   | Applicable Test Method   | Purpose                                       |
|----------------------------------------------------------------|--------------------------|-----------------------------------------------|
| Moisture Content and Dry Density                               | ASTM D2937               | In situ soil moisture content and dry density |
| Sieve Analysis                                                 | Nevada T206              | Soil classification                           |
| Atterberg Limits                                               | Nevada T210 and T211/212 | Soil classification                           |
| Unconfined Compression Tests of Rock Cores with Elastic Moduli | ASTM D7012, Method D     | Rock strength parameter                       |
| R-Value                                                        | Nevada T115D             | Pavement design                               |
| Expansion Index                                                | ASTM D4829               | Swell potential of soils                      |
| Soil pH                                                        | AASHTO T298              | Soil corrosivity potential                    |
| Minimum Electrochemical Resistivity                            | AASHTO T288              | Soil corrosivity potential                    |
| Sulfate Content                                                | AASHTO T290              | Soil corrosivity potential                    |
| Chloride Content                                               | AASHTO T291              | Soil corrosivity potential                    |

#### Table 6-1. Summary of Laboratory Test Methods

# 7. Geotechnical Conditions

# 7.1 Site Geology

This section summarizes the geologic units mapped along the project alignment and is based on the most recent USGS geologic mapping (1974a, 1974b). As depicted by the topography shown on the boring location maps (Appendix A), much of the project alignment is situated on a fill embankment. The discussion in this section overlooks these fill soils, which are described in Section 7.2 and on the boring logs in Appendix B. The geology along the project alignment is depicted on the boring location maps in Appendix A (the geologic contacts depicted on the boring location maps are based on geologic reconnaissance and the most recent USGS geologic mapping [1974a, 1974b]).

From the western project limits to approximate "PE1" Station 298+00, the project alignment is mapped as being underlain by Quaternary-aged (historic to less than 2-million-year-old) alluvial soils and gravels (unit Qa/Qg on the boring location maps). From "PE1" Station 298+00 to Station 320+00, the alignment is mapped as being underlain by the upper and middle Cambrian (approximately 500 million years old) Preble Formation (USGS 1974a) (unit Cp on the boring location map). The Preble Formation is described as a phyllitic (metamorphosed and altered by low heat and temperature) shale with some interbedded limestone. The unit also contains some quartzite beds and is intensely deformed and has contorted bedding (USGS 1974a).

From "PE1" Station 320+00 to Station 335+00, the alignment is mapped as being underlain by the Upper Permian-aged (approximately 250-million-year-old) Edna Mountain Formation (unit Pem on the boring location map). This unit is described as a calcareous quartzite that is locally conglomeratic.

From "PE1" Station 335+00 to Station 387+00, the alignment is mapped as being underlain by alluvial soil and the Lower Permian- and Pennsylvanian-aged (approximately 300 million years old) Pumpernickel Formation, Chert and Shale – Undivided (unit IPpu on the boring location map). This unit is described as thin-bedded chert and siliceous shale, with minor amounts of greenstone, quartzite, pebble conglomerate and limestone. However, based on Boring RC-22-006, it appears that at least the eastern portion of the subject area is underlain by Pumpernickel Formation—quartzite and limestone (unit PIPpq on the boring location map)—and not chert and shale.

From "PE1" Station 387+00 to the eastern limits of the improvements ("PE1" Station 535+00), the alignment is mapped as being underlain by Quaternary alluvial soil and gravels with the exception of the following areas:

- Between I-80 WB lanes and area to the north, between "PW1" Station 410+00 and Station 415+50): This area is mapped as being underlain by the Pumpernickel Formation—interbedded shale and chert (unit IPpsc on the boring location map) described as siliceous shale and thin-bedded chert.
- Between I-80 EB lanes and the existing access road to the I-808 bridge ("PE1" Station 398+00 to Station 407+50): This area is mapped as being underlain by the Pumpernickel Formation—quartzite and limestone (unit PIPpq on the boring location map).
- WB lanes between "PW1" Station 409+00 and Station 415+00: This area is mapped as being underlain by the Pumpernickel Formation—interbedded shale and chert unit, described as siliceous shale and thin-bedded chert.
- EB lanes from "PE1" Station 416+00 to Station 427+00; EB and WB lanes from "PE1" Station 439+00 to Station 451+00 and "PE1" Station 458+00 to Station 467+00: These areas are mapped as being underlain by the Pumpernickel Formation interbedded shale and chert unit (described as siliceous shale and thin-bedded chert) and Upper Cretaceous (approximately 70 million years old) granodiorite (unit Kgd on the boring location map), described as medium-grained to porphyritic intrusive rock, commonly altered by silica.

#### 7.1.1 Slope Stability and Landslides

No landslides have been mapped across or adjacent to the project alignment (USGS 1974a, 1974b; NMBG 1976) and no evidence of deep-seated landslides or global slope instability has been reported in the I-80/Golconda Summit area. However, evidence of minor rockfalls does exist in the area of the existing cut slopes near "PE1" Station 315+00 to Station 330+00. The condition of the EB slope (during April 2022) is shown on Figure 7-1. Discussion on the current conditions of the EB cut slope are presented in Section 7.2.2 and design considerations are presented in Section 8.

# 7.2 Subsurface Conditions

The project generally consists of four main elements for which geotechnical investigations were performed: (1) new roadway pavements for TCLs, mainline shoulders, and Golconda interchange ramps; (2) EB and WB cuts; (3) new bridge structure; and (4) truck parking areas and associated on- and off-ramps. The subsurface conditions for each of these elements are discussed in the following sections.

#### 7.2.1 Roadway Pavements for Truck Climbing Lanes and Shoulders

The subsurface conditions generally consist of varying depths of fill material over native soils. The fill materials consist of medium-dense to dense silty sand with gravel and range in thickness from 0 to 35 feet with an average depth of 5 feet. This fill material was most likely sourced from the existing cuts along the project alignment. The top 10 feet of native soils generally consist of medium dense to very dense silty and clayey sand with gravel with some layers of silty and clayey gravel with sand.

#### 7.2.2 EB and WB Cut Slopes

The investigations for the EB cut ("PE1" Station 315+00 to Station 330+00) were performed within the existing bench located 30 to 40 feet above the roadway surface. The investigation for the WB cut ("PW1" Station 374+00 to Station 387+00) was performed at the top of the existing cut slope. The subsurface conditions generally consist of highly weathered to slightly weathered bedrock throughout. However, the rock type hardness and weathering varied between the EB and WB cuts, and also within the cuts.

The EB cut has a variation in rock type from west to east. The western side of the cut consists of highly to completely weathered phyllitic shale to the depth investigated (50 feet). The phyllitic shale was penetrated by HSA to the full depth. Split-spoon samplers were able to be driven with close to refusal blow counts (50 blows for 6 inches [50/6"]). The middle and eastern end of the EB cut consist of slightly to moderately weathered calcareous quartzite to the depth investigated (50 feet). The calcareous quartzite is significantly stronger than the phyllitic shale and required HQ rock coring within 5 feet of the ground surface. Based on the field investigation and geologic reconnaissance, the proposed EB 1H:1V cut slope with bench will be composed of two distinctly different bedrock types. Phyllitic shale dominates the geology of the western portion of the slope, while the eastern portion is dominated by calcareous quartzite. The contact between the units is irregular but, as shown on the boring location map, appears to extend from the toe of the current slope near "PE1" Station 319+25 to the top of the current slope near "PE1" Station 323+65. The phyllitic shale is anticipated to be completely to highly weathered, moderately to intensely fractured, thinly bedded, and very weak to weak; the phyllitic shale will also have localized (strong to very strong) limestone beds. Bedding attitudes taken along the midslope bench within the phyllitic shale indicate that the beds dip to the south to southwest (into slope) at 10 to 50 degrees. The shale beds are typically highly folded and contorted. The calcareous quartzite is anticipated to be fresh to moderately weathered, slightly to intensely fractured, and medium strong to very strong. Structure within the quartzite also indicates a dominant southerly dip. Figure 7-1 presents representative photographs of the existing EB cut.

The WB cut ("PW1" Station 373+00 to Station 387+00) consists of highly weathered to moderately weathered quartzite and limestone to the full depth investigated (50 feet). The quartzite and limestone were penetrated by HSA to the full depth. Split-spoon samplers were able to be driven with refusal blow counts (50/6"). Based on the field investigation and geologic reconnaissance, the proposed WB 2H:1V cut slope will be composed of moderately to highly weathered, moderately to intensely fractured, and weak to

very strong quartzite and limestone bedrock. Because of the weathered and fractured nature of the rock, some areas will consist of very dense silty to clayey gravels and very dense sands and silty sands with gravels. Other areas may appear as relatively intact, relatively hard, but relatively highly fractured rock.

#### 7.2.3 Bridge Structure

The subgrade conditions generally consist of fill material over bedrock. The fill material consists of loose to medium-dense clayey sand with gravel with a thickness of approximately 12 feet. This fill material was most likely sourced from the existing cuts along the project alignment. The underlying bedrock consists of highly weathered quartzite and limestone to a depth of approximately 50 feet. Within the upper 50 feet the quartzite and limestone were penetrated by HSA to the full depth. Split-spoon samplers were able to be driven at or near refusal blow counts (50/6"). Below 50 feet and to the depth investigated (60 feet), the quartzite and limestone becomes slightly weathered and requires HQ rock coring.

#### 7.2.4 Truck Parking Area and Associated Ramps

The subgrade conditions generally consist of native soils consisting of medium-dense to very dense silty sand with gravel and silty gravel with sand to the depth investigated (21.5 feet). Bedrock is mapped (USGS 1974a, 1974b) between the I-80 EB lanes and the existing access road to the I-808 bridge ("PE1" Station 398+00 to Station 407+50). Based on geologic reconnaissance and nearby borings (RC-22-004 and RC-22-005), the bedrock in this area consists of highly weathered quartzite and limestone that can be penetrated by HSA to 50 feet below ground surface. The bedrock will be variable, similar to the WB cut discussed in Section 7.2.2.

#### 7.3 Water

#### 7.3.1 Surface Water

No permanent standing surface water was observed within the project limits. Temporary surface water may be encountered within culverts and drainage gullies during rainfall events.

#### 7.3.1.1 Scour

Where the alignment is crossed by drainage gullies, they are controlled by engineered culverts. There are no gullies/rivers mapped adjacent to or crossing the I-808 bridge area (USGS 1965a); therefore, river scour is not considered a significant hazard to the project

#### 7.3.1.2 Erosion

In general, the earth units along the project alignment are considered to have moderate potential for erosion. Visual inspection of the manufactured (cut and embankment) slopes presents in the corridor indicates some erosional impacts are present, such as localized erosional gullies and rills and minor rockfalls (at cut slope areas).

#### 7.3.2 Groundwater

Groundwater was not encountered during drilling of any of the current borings (Appendix B-1). In general, the bedrock units in the project area are not considered to have groundwater tables; however, significant amounts of groundwater can materialize in fractures, in/near faulted areas, and perched on less permeable layers.

The Humboldt River is a perennial river, and it is likely that shallow groundwater conditions exist close to the river. However, the west end of the project alignment is the closest to the river and is more than a mile from the river. Based on the available information and proposed improvements, we do not anticipate that groundwater will impact the project.

I-80 Golconda Summit Interchange (MP HU 32.5 to MP HU 38.8) Truck Climbing Lanes and Parking Project

A design groundwater table deeper than 50 feet is assumed for the project alignment. However, the groundwater table may fluctuate because of seasonal variations, nearby construction, irrigation, and numerous other constructed and natural influences.

# 7.4 **Project Site Seismicity**

Based on the results of the geotechnical borings and geophysical testing, Site Class C was assumed for the entire project. The general procedure spectrum specified in Article 3.10.2 of the AASHTO LRFD Bridge Design Specifications (AASHTO 2020) can be considered to estimate the ground motion parameters: peak ground acceleration (PGA) and corresponding short-period (S<sub>s</sub>) and long-period (S<sub>1</sub>) spectral acceleration coefficients. Ground motion parameters were obtained using the USGS seismic design maps website (USGS 2022), which correspond to the values from Figures 3.10.2.1-1, 3.10.2.1-1, and 3.10.2.1-3 of AASHTO LRFD Bridge Design Specifications (AASHTO 2020). These parameters were compared to the minimum seismic coefficients for Humboldt County from the NDOT Structures Manual (NDOT 2008), Section 12.3.5 and the higher value used for design. The mapped ground motion coefficients were modified by the corresponding site factors presented in Tables 3.10.3.2-1, 3.10.3.2-2, and 3.10.3.2-3. Table 7-1 summarizes the seismic coefficients for the project:

| Seismic Parameter                                        | Value |
|----------------------------------------------------------|-------|
| Mapped Peak Ground Acceleration (PGA) (g)                | 0.197 |
| Mapped Short-Period Spectral Acceleration ( $S_s$ ) (g)  | 0.474 |
| Mapped Long-Period Spectral Acceleration (S1) (g)        | 0.15ª |
| Site Factor for PGA (F <sub>pga</sub> )                  | 1.2   |
| Site Factor for $S_s$ (F <sub>a</sub> )                  | 1.2   |
| Site Factor for $S_1$ (F <sub>v</sub> )                  | 1.65  |
| Design Peak Ground Acceleration $(A_s)$ (g)              | 0.237 |
| Design Short-Period Spectral Acceleration $(S_{ds})$ (g) | 0.569 |
| Design Long-Period Spectral Acceleration $(S_{d1})$ (g)  | 0.248 |

#### Table 7-1. Seismic Design Coefficients

<sup>a</sup> Controlled by the minimum value for Humboldt County (NDOT 2008)

#### 7.4.1 Ground Rupture

Based on the Quaternary Fault and Fold database (USGS and NBMG 2022) and the geologic map covering the site (USGS 1974a, 1974b; NMBG 1976), no active, or potentially active (Quaternary age) faults are mapped adjacent to or crossing the project alignment.

As shown on Figure 4-1, the nearest Quaternary-aged fault is Sulphur Spring fault, which is mapped approximately 4.25 miles southeast of the I-808 bridge site and approximately 2 miles southeast of the eastern limits of the improvements. Considering the distance to the site, this fault does not pose a ground rupture risk within the project alignment. The potential for ground surface rupture within the project limits associated with known active faults is considered low.





Figure 7-1b Cutslope 315 Area Existing Conditions Geotechnical Design Report I-80 Golconda Summit Humboldt County, Nevada



# 8. Geotechnical Design Recommendations

### 8.1 Dynamic Analysis

#### 8.1.1 Parameter Selection

As discussed in Section 7.4, the design PGA within the project limits is 0.237. One-half of this PGA coefficient (approximately 0.12) is used in the dynamic analyses for the project pertaining to the wingwalls at the undercrossing.

#### 8.1.2 Liquefaction Analysis

When a loose and saturated sand deposit is subjected to seismic loading without substantial dissipation of excess pore water pressure, the deposit may liquefy and lose its shear strength. According to the available geotechnical data, the subsurface soils within the project limits consist primarily of medium-dense to very dense sand and gravel soils with a groundwater table greater than 50 feet below ground surface. Therefore, liquefaction potential for the project limits is considered very low.

### 8.2 Cuts, Excavations, and Embankments

#### 8.2.1 Slope Stability

Based on a review of the grading plans for the project, three major cut slopes and one major fill slope (embankment slopes) are proposed as part of the improvements. The major slopes are summarized in Table 8-1. As indicated by the proposed cut/fill line shown on the boring location maps, numerous, minor, cut and (sliver) fill slopes are proposed as part of the project. These minor slopes are not considered significant enough to affect the stability of existing slopes. The project's proposed permanent slopes will be constructed at an inclination of 2H:1V and 3H:1V, with the exception of the large EB rock-cut slope, which will be constructed at an inclination of 1H:1V with a 25-foot-wide bench at a height of 40 feet.

The global stability of the major permanent slopes was evaluated using SLIDE2 Modeler (Version 9.009) computer software (Rocscience 2020). The modified Bishop's Method was used to compute the static and pseudo-static factor of safety for the critical failure surfaces. In the stability analyses, a traffic surcharge load of 250 pounds per square foot (psf) was applied where roadway exists at the top of the slope. The ultimate shear strengths were used in the static and pseudostatic analyses in areas underlain by soil. Peak shear strengths were considered for the analysis in areas underlain by bedrock. In the pseudostatic analyses, a seismic force was applied to the soil/rock mass based on a horizontal seismic acceleration coefficient (K<sub>h</sub>) equal to 0.12, corresponding to one-half of the PGA coefficient (refer to Section 7.4). The computed factors of safety for the static and pseudostatic cases were greater than 1.3 and 1.1, respectively. Therefore, the proposed major cut-and-fill slopes are considered globally stable for static and seismic loading conditions. Major cut-and-fill slope parameters are provided in Table 8-1. Soil and bedrock strength parameters used in the slope stability analysis are summarized in Table 8-2.

#### Table 8-1. Major Cut and Fill Slopes

| Slope<br>No. | I-80<br>Direction | Approximate<br>Station Limits<br>(begin-end) | Proposed<br>Maximum Slope<br>Height/Inclination<br>(H:V) | Cross<br>Section<br>No.     | Explorations              | Anticipated Geologic Conditions                                                                                                                                                                                                                                                                                                                                                                         | Conclusions and Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|-------------------|----------------------------------------------|----------------------------------------------------------|-----------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CS315        | Eastbound         | "PE1" Station<br>315+00 to 330+00            | 120 feet/1:1 with<br>Bench                               | CS320+25<br>and<br>CS323+25 | RC-22-001,<br>002 and 003 | Phyllitic shale with limestone and<br>calcareous quartzite bedrock.<br>Variable rock types with variable<br>hardness, from very weak to very<br>strong. Fracturing to vary from<br>intensely to slightly fractured.                                                                                                                                                                                     | Globally stable as designed at 1H:1V<br>with 25-foot-wide bench. Challenging<br>excavation should be anticipated,<br>(Section 8.2.2). Rockfall hazard<br>mitigation includes upper catchment<br>area, lower catchment area, rockfall<br>fencing, and concrete barrier.<br>Recommend full time geologic<br>monitoring during excavation, by the<br>NDOT geotechnical consultant of record.<br>Manual scaling of the slope face to<br>dislodge any hazardous loose clasts<br>may be required. |
| FS331        | Eastbound         | "PE1" Station<br>330+20 to 382+70            | 20.5 feet/2:1<br>and<br>21 feet/2:1                      | FS362 and<br>FS379          | B-22-104                  | Medium-dense to very dense Silty<br>and clayey sand with gravel, silty<br>sand, and clayey gravel with sand.                                                                                                                                                                                                                                                                                            | Globally stable as designed at 2H:1V.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CCS373       | Westbound         | "PW1" Station<br>373+00 to 387+00            | 31 feet/2:1                                              | CS377+00                    | RC-22-006                 | Quartzite with limestone bedrock.<br>Moderately to highly weathered,<br>moderately to intensely fractured,<br>and very weak to strong. Some<br>areas will consist of very dense silty<br>to clayey gravels; and very dense<br>sands and silty sands with gravels.<br>Other areas may appear as<br>relatively intact, relatively hard, but<br>relatively highly fractured rock.                          | Globally stable as designed at 2H:1V.<br>Local areas may consist of hard rock<br>(Section 8.2.2).                                                                                                                                                                                                                                                                                                                                                                                           |
| CS417        | Eastbound         | "PE1" Station<br>416+85 to 421+40            | 33 feet/3:1                                              | CS419+43                    | -                         | Assumed to be interbedded<br>siliceous shale and thin bedded<br>chert. Variable hardness from very<br>weak to strong. Fracturing to vary<br>from intensely to slightly fractured.<br>Some areas may consist of very<br>dense silty to clayey gravels; and<br>very dense sands and silty sands<br>with gravels. Other areas may<br>appear as relatively intact, but<br>relatively highly fractured rock. | Existing slope is approximately 3H:1V.<br>Analysis indicates that proposed cut<br>slope is globally stable as designed at<br>3H:1V.                                                                                                                                                                                                                                                                                                                                                         |

| Soil/Rock<br>Unit                    | Rock/Soil Type                                 | Unit<br>Weight<br>(pcf) | Internal Shear<br>Strength<br>(degrees) | Cohesion<br>(psf)      | UCS (psf) | GSI | m <sub>i</sub> |
|--------------------------------------|------------------------------------------------|-------------------------|-----------------------------------------|------------------------|-----------|-----|----------------|
| New Fill                             | Silty/Clayey Sand<br>with Gravel               | 125                     | 34                                      | 50                     |           |     |                |
| Existing Fill                        | Silty/Clayey Sand with Gravel                  | 125                     | 32                                      | 100                    |           |     |                |
| Phyllitic<br>59,Shale                | Highly Weathered<br>Bedrock (cross<br>bedding) | 130                     | 37                                      | 400                    |           |     |                |
|                                      | Highly Weathered<br>Bedrock (along<br>bedding) | 130                     | 32                                      | 100                    |           |     |                |
| Calcareous<br>Quartzite              | Moderately<br>Weathered Bedrock                | 150                     | Generalized Ho                          | Generalized Hoek-Brown |           | 45  | 20             |
| Quartzite,<br>Limestone,<br>and Tuff | Highly Weathered<br>bedrock                    | 140                     | 34                                      | 50                     |           |     |                |
| Limestone                            | Highly Weathered<br>Bedrock                    | 140                     | 40                                      | 100                    |           |     |                |
| Fault Zones                          |                                                |                         | 34                                      | 0                      |           |     |                |

# Table 8-2. Summary of Soil Strength Parameters for SlopeStability Analysis

GSI = Geological Strength Index

m<sub>i</sub> = Hoek-Brown Constant

pcf = pound(s) per cubic foot

psf = pound(s) per square foot

UCS = Average Unconfined Compressive Strength

The assumed strength parameters for the new fill, existing fill, phyllitic shale, and quartzite, limestone, and tuff are based on the density, gradation, and classification of recovered soil samples, and highly weathered bedrock samples recovered as soil, as they compare to established strength correlations for soils (FHWA 2016). The strength parameters for the calcareous quartzite were established based on the results of unconfined compression testing on rock core specimens. The unconfined compressive strength data was used to develop strength parameters for the rock mass using the Hoek-Brown methodology, as described in *AASHTO LRFD Bridge Design Specification* (2020) Section 10.4.6.4. The geological strength index was estimated using Figure 10.4.6.4-1 based on the geologic structure and surface quality of the rock. The constant (m<sub>i</sub>) was selected in accordance with Table 10.4.6.4-1 for Quartzite. A disturbance factor (D) of 1.0 was used to account for anticipated rock cut disturbance. The anticipated conditions to be encountered are presented in Table 8-1.

#### 8.2.2 Rockfall Evaluation and Recommendations

The proposed CS315 geometry is similar to the existing slope; however, the proposed designs allow for roughly 20 feet of toe of slope catchment area behind the edge of shoulder concrete barrier—to allow for potential rockfalls. Based on the project's *Preliminary Design Field Study Report* (NDOT 2022), NDOT indicated as follows: "District did not indicate they frequently needed to remove rocks from the benches" and that "The existing 1:1 slope appears to be stable, with minimal rock fall." There is no knowledge of past rockfall issues along the existing EB cut. The proposed maximum cut height is similar to the existing maximum height, and the addition of the 20-foot-wide rockfall catchment area at the shoulder will decrease the I-80 mainline rockfall hazard at the cut area.

In general, the CS315 critical profile, from top to bottom, consists of a roughly 80-foot-tall, 1:1 slope, a 25-foot-wide upper catchment area, a roughly 40-foot-tall 1:1 slope, and a lower 20-foot-wide catchment area. The catchment areas are gently inclined into slope. Because of the variable nature of the bedrock, excavation of the cut slope will likely not yield a smooth 1H:1V slope face. Similar to the slope face of the existing cut (Figure 7-1), irregularities should be expected.

As shown on the project plan set, the following rockfall protection measures are being implemented for the EB Cut (CS315):

- A 25-foot-wide midslope bench (upper catchment area), gently inclined into slope; the bench will be 30 to 40 feet above the proposed slope toe.
- Special upper catchment area fence, 6-foot tall with approximately 2-inch mesh (No. 6 galvanized steel) placed near the outside edge of the midslope bench. Details of the rock fall debris fence are included in Appendix E.
- A 20-foot setback (lower catchment area) from toe of slope (at road grade) to the edge of the I-80 shoulder. This rockfall area catchment zone will be gently inclined toward the slope's toe.
- A 3-foot-tall concrete traffic barrier at the edge of shoulder.

Evaluation of these rockfall protection measures was performed using the Colorado Rockfall Simulation Program (CRSP) Version 4.0. Based on the CRSP analysis, rocks are not projected to pass either the upper catchment area rockfall fence or the lower catchment area barrier. In addition, the project design features generally satisfy the 1963 Ritchie rockfall catch ditch criteria (Ritchie, 1963).

During excavation, a geologist with experience in rockfall evaluation should be retained to map and observe the cut full time. The geologist would be on-site to identify unanticipated geologic conditions that may pose an immediate hazard and to identify any large bedrock blocks that could pose a future rockfall hazard. An evaluation of the cut should be performed regularly to ensure no rock fragments that pose a rockfall hazard are present. Precarious rock fragments that remain after completion of the cut may require removal using manual scaling or other special techniques.

#### 8.2.3 Rippability

As discussed in Section 5.1.3.2, refraction surveys were conducted at the EB cut (CS315, along the existing midslope bench), WB cut (CS377, at the top of the existing cut slope), and bridge location (south of I-80) to assess the rippability of the bedrock encountered at these locations. Appendix A shows the refraction survey line locations on the boring location maps and results are presented in Appendix C. In general, rock is considered to be rippable with using a Caterpillar D9 equipped with a multi or single shank ripper when the measured P-wave velocities are less than 6,000 feet per second (ft/s), marginally rippable between 6,000 and 8,000 ft/s, and non-rippable which will require blasting or other nonconventional methods (such as saw-cutting and hammering, nonexplosive pyrotechnics, expansive-viscous chemical agents, pressurized foams) from 8,000 ft/s and up. P-wave velocities are only a general indicator of rock rippability. Other rock mass characteristics, such as bedding features, rock strength, and joint characteristics may affect rippability.

For CS315, it is estimated that the Preble Formation phyllitic shale unit will be rippable using conventional excavation methods. However, the limestone beds internal to this unit will likely require nonconventional techniques. For planning purposes, it is assumed that 25% of the area mapped as Preble Formation (unit Cp on the boring location maps) will be limestone and require nonconventional techniques. For the areas mapped as Calcareous Quartz (unit Pem on the boring location maps), the rippability of the material will be highly dependent on the fracture density of the rock. Large intact blocks of quartzite will be extremely difficult to rip, while moderately to highly fractured zones may be rippable to some degree. For planning purposes at CS315, it is estimated that 50% of the area mapped as Calcareous Quartz (unit Pem on the boring location maps) will require nonconventional techniques. Based on laboratory testing within the Calcareous Quartz, the unconfined compressive strengths vary from approximately 9,600 to 21,700 pounds per square inch. Unconfined compressive strength test results of rock are included in Appendix D.

For EB cut (CS417), it is estimated that most of the bedrock in this area will be rippable using conventional techniques. It is anticipated that 20 to 30% of the material may be intact corestones that would require additional effort, such as pneumatic hammering.

For the WB cut (CS377), it is estimated that most of the bedrock in this area will be rippable using conventional techniques. It is anticipated that 15% of the material may be intact corestones that would require additional effort, such as pneumatic hammering.

Considering the proposed improvements and anticipated subsurface conditions, rippability is not anticipated to be a concern at the bridge location, although cobble- and boulder-sized intact bedrock fragments may be encountered.

#### 8.2.4 Grading Factors

#### 8.2.4.1 Soil

Earthwork will be required as part of the proposed improvements. Estimates of shrinkage and bulkage grading factors are provided for earthwork quantity calculations. Shrinkage and bulkage occur when a material is excavated and replaced at a density substantially different from its original density. For planning and estimating purposes, soil removal and compacted replacement shrinkage factors of 5 to 10% can be assumed for granular sandy soils. For truck-hauling purposes, a bulking factor of 10 to 15% for granular sandy soils can be assumed.

#### 8.2.4.2 Bedrock

Excavation of bedrock will be required as part of the proposed improvements at the EB and WB cuts. A bulking factor of 20 to 30% should be assumed if the rock is rippable and excavated using conventional techniques. For rock that is not rippable and requires nonconventional techniques to excavate, a bulking factor of 50% or more should be assumed because of the increased size (diameter) of rock debris generated.

#### 8.2.5 Embankments

The new roadway embankments for the project are primarily sliver fills that will tie into the adjacent, existing embankment slopes. These new embankment fills range from 4H:1V to 2H:1V in inclination and will be placed on existing artificial fill soils and native soils. Before placement of compacted embankment fill on existing slopes, the existing ground or embankment slopes will be prepared in accordance with NDOT Standard Specification Section 203. Cut material can be compacted along with the new embankment material. This benching of new material into existing material will promote bonding of the materials. Where new pavement sections will be supported on new or existing embankment fill, a nonwoven geotextile (Class 1) should be used, as discussed in Section 8.8.

Fill-induced settlement of less than 1 inch is anticipated for the new roadway sliver fills. The majority of settlement is from granular soils and is anticipated to occur during construction.

All slopes will be subject to surficial erosion. Significant slopes may be protected from surface runoff by means of top-of-slope compacted earth berms or concrete interceptor drains. Where practical, slopes should be landscaped with a suitable plant material requiring minimal cultivation and irrigation water to thrive.

### 8.3 Bridge Structure

The proposed bridge will be a prefabricated structure consisting of the CONTECH Construction Products proprietary Concrete Arch System, or equivalent. The following sections were prepared with recommendations specific to the CONTECH Concrete Arch System. CONTECH engineers are responsible for the precast concrete arch design and Jacobs engineers are responsible for the design of

the cast-in-place stem walls, wingwalls, headwalls, and footings. However, the recommendations can be used by others to develop equivalent culvert systems for use on the project.

The CONTECH Concrete Arch System is a combination of precast concrete arch elements, with cast-inplace concrete stem walls, wingwalls, headwalls, and footings. For this application, the arch system will consist of one elliptical arch with a span of approximately 42 feet and a length of approximately 176 feet. Because of its size, the 176-foot-long precast arch element would be shipped in 6-foot-long segments. During assembly of the arch element, the 6-foot-long arch segments would be joined at a seam that would be backfilled with cast-in-place concrete. The footings will be founded on native, highly weathered bedrock. Once the precast arch elements are assembled on the cast-in-place footings, the entire structure would be overfilled to the specified elevations. Fill placement and compaction above the Concrete Arch System should be performed in accordance with the manufacturer's specifications.

Appendix E presents the General Plan, Bridge Plan, and Profile and Cross-sections for this structure.

#### 8.3.1 Engineering Parameters

The laboratory test results were used to develop the engineering properties of the subsurface materials. In addition to laboratory tests, SPT blow counts from the test boring were used to estimate equivalent friction angles for granular soils based on established correlations in the literature (FHWA 2017).

The generalized soil profiles and the material properties used for engineering analyses are presented in Table 8-3.

| Geologic<br>Unit                                            | Elevation of<br>Layer <sup>a,b</sup><br>(± feet) | Soil<br>Type | Average<br>Corrected <sup>c</sup> SPT<br>N-Values<br>(blows per foot) | Total Unit<br>Weight<br>(pcf) | Cohesion <sup>d</sup><br>(psf) | Friction<br>Angled<br>(degree) <sup>e</sup> |
|-------------------------------------------------------------|--------------------------------------------------|--------------|-----------------------------------------------------------------------|-------------------------------|--------------------------------|---------------------------------------------|
| Fill                                                        | 5,100 – 5,088                                    | SC/SM        | 30                                                                    | 120                           | 200                            | 34                                          |
| Highly<br>Weathered<br>Quartzite,<br>Limestone, and<br>Tuff | 5,088 – 5,039                                    | GC/SC/SM     | >100                                                                  | 125                           | 0                              | 36                                          |
| Slightly<br>Weathered<br>Quartzite and<br>Limestone         | <5,039                                           | Bedrock      |                                                                       |                               |                                |                                             |

Table 8-3. Bridge Generalized Subsurface Soil Profile and Design Strength Parameters

<sup>a</sup> Bottom of footing elevations for the proposed bridge structure are between 5,073.50 and 5,074.25 feet. Wingwall footing elevations range from 5,089.00 to 5,075.00 feet.

<sup>b</sup> Groundwater elevation for design is at or below 5,039.00 feet.

 $^\circ\,\text{SPT}$  blow counts are corrected for overburden and efficiency.

<sup>d</sup> Cohesion based on established strength correlations for soils (FHWA 2017).

<sup>e</sup> Friction angle based on established strength correlations for soils (FHWA 2017).

> = greater than

< = less than

GC = clayey gravel with sand

SC = clayey sand

SM = silty sand

#### 8.3.2 Settlement

The footings will be supported by highly weathered bedrock. Because of the granular nature of the weathered bedrock and weak cementation, all settlement is anticipated to be from elastic compression and will occur during the construction of the bridge. It is anticipated that settlement of the footings will be

less than 1.0 inch with differential settlement less than 0.1 inch over the 42-foot arch span, which is less than the maximum allowable horizontal distortion of 1/200 for the arch span.

#### 8.3.3 Foundation Recommendations

Based on the subsurface information obtained from the geotechnical investigation, the site consists of fill material over highly weathered bedrock. The footing elevation will be located within the highly weathered bedrock. Therefore, the bridge structure can be supported on spread footings.

#### 8.3.3.1 Bearing Resistance and Footing Widths

The structure will be founded within highly weathered quartzite, limestone, and tuff bedrock. During the geotechnical investigation, this material was recovered as dense to very dense silty and clayey sand with gravel.

The footing design for the proposed bridge structure and retaining walls was checked to verify that it meets the Load and Resistance Factor Design (LRFD) requirement for settlement (for Service Limit State) and bearing resistance (for Strength and Extreme Event Limit States), in accordance with AASHTO LRFD (2020). Footing dimensions used in design were based on the plans provided in Appendix E. The service permissible net contact stress, strength factored gross nominal bearing resistance, and extreme event gross nominal bearing resistance for the foundations are provided in Table 8-4.

| Structure                               | Design<br>Wall<br>Height<br>(feet) | Design<br>Footing<br>Width<br>(feet) <sup>a</sup> | Effective Footing<br>Width (feet)<br>Service/Strength/<br>Extreme | Service Limit<br>State<br>Permissible<br>Net Contact<br>Stress (ksf) | Strength<br>Factored Gross<br>Nominal Bearing<br>Resistance (ksf) | Extreme Event<br>Factored Gross<br>Nominal Bearing<br>Resistance (ksf) <sup>b</sup> |
|-----------------------------------------|------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Trash<br>Enclosures                     |                                    | 4.0                                               | 3.36/2.61/2.45                                                    | 4.0                                                                  | 9.3                                                               | 20                                                                                  |
| Concrete<br>Arch<br>Bridge/Stem<br>Wall | 12'-2" to<br>13'-11"               | 17.0                                              | 12.0/13.6/ <sup>b</sup>                                           | 5.0                                                                  | 37                                                                |                                                                                     |
| Wingwall                                | 8.0                                | 5.0                                               | 3.8/3.6/3.4                                                       | 4.0                                                                  | 16                                                                | 28                                                                                  |
| Wingwall                                | 12.0                               | 7.5                                               | 5.9/5.7/5.3                                                       | 4.0                                                                  | 18                                                                | 32                                                                                  |
| Wingwall                                | 14.0                               | 7.5                                               | 5.1/4.8/4.4                                                       | 4.0                                                                  | 17                                                                | 30                                                                                  |
| Wingwall                                | 18.0                               | 10.0                                              | 7.5/5.3/6.5                                                       | 4.0                                                                  | 20                                                                | 40                                                                                  |
| Wingwall                                | 20.0                               | 13.0                                              | 11.2/10.7/10.0                                                    | 4.0                                                                  | 26                                                                | 47                                                                                  |
| Wingwall                                | 24.0                               | 14.0                                              | 11.0/10.3/9.6                                                     | 4.0                                                                  | 26                                                                | 46                                                                                  |
| Wingwall                                | 26.0                               | 15.5                                              | 12.3/11.6/10.7                                                    | 4.0                                                                  | 26                                                                | 47                                                                                  |
| Wingwall                                | 28.0                               | 18.0                                              | 15.8/15.0/14.2                                                    | 4.0                                                                  | 28                                                                | 50                                                                                  |

Table 8-4. Spread Footing Data (Bridge Structure and Retaining Walls)

<sup>a</sup> Footing widths and effective footing widths provided by the structural engineer.

<sup>b</sup> Extreme limit state not applicable to concrete arch bridge foundation that do not cross an active fault according to AASHTO LRFD Section 3.10.

ksf = kip(s) per square foot

#### 8.3.3.2 Coefficient of Friction

Based on the ultimate friction factors for dissimilar materials presented in Table 5-15 (FHWA 2002), a friction factor of 0.55 can be assumed for mass concrete (cast-in-place) on clean gravel, gravel-sand mixtures, or coarse sand, according to Section 5.4. Resistance factors for the Service, Strength, and

Extreme Limit States are 1.0, 0.80, and 1.0, respectively, according to AASHTO Table 10.5.5.2.2-1 (AASHTO 2020).

#### 8.3.3.3 Lateral Earth Pressures

Structures that can deflect into or away from backfill should be designed assuming passive and active earth pressure conditions, respectively. Structures that are rigid and do not deflect should be designed assuming the at-rest earth pressure condition. Assuming that the backfill consists of dense compacted sand or sand/gravel mixtures, the culvert structure must have the ability to move away from the backfill 0.1% of its height to mobilize active lateral earth pressures and move into the backfill 1% of its height to mobilize passive lateral earth pressures, according to AASHTO Table C3.11.1-1 (AASHTO 2020). Whether the proposed arch system is considered a flexible or rigid structure is unclear; therefore, recommendations are provided for all static earth pressure conditions. Table 8-5 summarizes the lateral earth pressure conditions. The values in the table assume that the backfill material is free draining and, therefore, do not include hydrostatic pressures. Additionally, the backfill material is assumed to have a moist unit weight of 135 pcf and an internal friction angle of 34 degrees.

| Condition | Earth Pressure Coefficient | Equivalent Fluid Pressure<br>(Drained Condition)<br>(psf per foot) |
|-----------|----------------------------|--------------------------------------------------------------------|
| Active    | 0.25                       | 34                                                                 |
| Passive   | 7.34                       | 990                                                                |
| At-rest   | 0.44                       | 60                                                                 |
| Seismic   | 0.08                       | 11                                                                 |

#### Table 8-5. Lateral Earth Pressures

Active, passive, and at-rest earth pressures have triangular distributions with the largest load occurring at the base of the arches. The seismic lateral earth pressure (where applicable) has a triangular distribution with the largest load occurring at the bottom of structures, similar to the active earth pressure. To account for the lateral active earth pressure resulting from traffic surcharge loading, a design value of 80 psf is recommended. To account for the lateral at-rest earth pressure resulting from traffic surcharge loading, a design value of 120 psf is recommended. This load has a rectangular distribution along the height of the arches. The values provided in Table 8-5 are nominal values and appropriate resistance factors should be applied to the passive earth pressure for lateral sliding resistance. Due to sloping conditions in front of the proposed wingwalls, the passive earth pressure in front of the footing should be ignored for lateral sliding resistance. Passive earth pressures can be used for shear key design.

Proper drainage should be designed and constructed behind the proposed arch system and wing walls to allow for drained conditions throughout the backfill soil and to prevent excessive hydrostatic pressure.

#### 8.3.3.4 Wing Walls and Spandrel Walls (Headwalls)

Wing walls and headwalls will be cast-in-place concrete structures. The wingwalls will be supported on spread footings and the headwalls will be supported by the concrete arch structure. Lateral earth pressures presented in Section 8.3.3.4 are applicable to wingwall and headwall design.

# 8.4 Culvert Foundations

No drainage structure improvements that require geotechnical evaluation are included in the project limits. Improvements consist of extensions to existing culverts. The existing culverts consist of 48-, 36-, 30-, and 24-inch corrugated metal pipes, and one 6-foot by 4-foot RCB. All culverts will be extended in kind. Therefore, recommendations for design and construction of culvert structures are not provided in this GDR.
### 8.5 Minor Structure Foundations

A trash enclosure and two restroom structures are proposed for each of the truck parking areas. The trash enclosures have a footprint of approximately 11 feet by 21 feet and consist of a 6-foot-tall masonry block wall founded on spread footings enclosing a concrete slab on grade. Loading from the walls and slab is anticipated to be relatively minimal. The structure will be founded within native silty and clayey sand with gravel. The bearing resistances for this structure is provided in Table 8-4. The resistance factor at the Service Limit State is 1.0.

The restrooms are proposed to consist of prefabricated buildings with a footprint of approximately 14 feet by 12 feet. An underground vault is located approximately 4½ feet beneath the restroom buildings and will bear on native or alluvial soils. Excavations for the restroom vaults may be difficult and gravels and oversized cobbles and/or possible boulders may be encountered. The trash enclosure plans are included in Appendix E.

### 8.6 Expansion Potential

Expansive soils are characterized by their ability to undergo significant volume changes (shrink or swell) because of variations in moisture content even without an increase in external loads. Changes in soil moisture content can result from precipitation, landscape irrigation, utility leakage, perched groundwater, drought, or other factors, and may result in unacceptable settlement or heave of structures or concrete slabs supported on grade.

The project alignment is underlain predominantly by granular (nonexpansive) soils, and expansive soils are not anticipated to be a concern to the project.

### 8.7 Corrosion

Selected soil samples collected during the current investigation were tested for minimum soil resistivity, soil pH, water soluble sulfate content, and chloride content using the procedures described in AASHTO T288, T298, T290, and T291, respectively. Table 8-6 summarizes the results of the available corrosion test data. The laboratory test results are included in Appendix D. *Corrosion/Degradation of Soil Reinforcements for Mechanically Stabilized Earth Walls and Reinforced Soil Slopes* (FHWA 2009), defines a "mildly corrosive" environment as being a site where the soil has a sulfate content greater than 200 parts per million (ppm), a chloride content greater than 100 ppm, a pH between 5 and 10, or a resistivity value greater than 3,000 ohm-centimeters.

| Station <sup>a</sup><br>(feet) | Offset <sup>a</sup><br>(feet) | Boring<br>Designation | Sample<br>Depth<br>(feet) | Soil Type<br>(USCS) | Minimum<br>Resistivity<br>(ohm-<br>centimeters) | рН   | Sulfate<br>Content<br>(ppm) | Chloride<br>Content<br>(ppm) |
|--------------------------------|-------------------------------|-----------------------|---------------------------|---------------------|-------------------------------------------------|------|-----------------------------|------------------------------|
| "PE1"<br>1000+35.86            | 44.76 Right                   | B-22-101              | 0-5.0                     | GC - Native         | 1,610                                           | 8.33 | 40.7                        | 36.4                         |
| "PE1"<br>302+98.49             | 24.41 Right                   | B-22-103              | 0-5.0                     | SM - Fill           | 10,960                                          | 8.80 | 11.5                        | 24.9                         |
| "PE1"<br>341+78.14             | 23.36 Right                   | B-22-104              | 0-5.0                     | SM - Fill           | 1,740                                           | 8.39 | 22.3                        | 35.3                         |
| "PW1"<br>522+00.38             | 27.48 Left                    | B-22-108              | 0-5.0                     | SC - Native         | 320                                             | 7.92 | 1,162.0                     | 102.7                        |
| "PW1"<br>396+59.77             | 237.19 Left                   | B-22-109              | 0-5.0                     | SM - Native         | 290                                             | 8.60 | 666.3                       | 257.6                        |
| "PE1"<br>398+29.71             | 119.78<br>Right               | B-22-114              | 0-5.0                     | ML - Native         | 130                                             | 8.10 | 1,342.6                     | 403.6                        |

### Table 8-6. Summary of Corrosion Test Results

| Station <sup>a</sup><br>(feet) | Offset <sup>a</sup><br>(feet) | Boring<br>Designation | Sample<br>Depth<br>(feet) | Soil Type<br>(USCS)         | Minimum<br>Resistivity<br>(ohm-<br>centimeters) | рН   | Sulfate<br>Content<br>(ppm) | Chloride<br>Content<br>(ppm) |
|--------------------------------|-------------------------------|-----------------------|---------------------------|-----------------------------|-------------------------------------------------|------|-----------------------------|------------------------------|
| "PE1"<br>318+65.07             | 80.60 Right                   | RC-22-001             | 20-25.0                   | Phyllitic Shale (SC)        | 4,560                                           | 7.62 | 15.0                        | 7.1                          |
| "PW1"<br>408+08.94             | 27.17 Right                   | RC-22-004             | 0-5.0                     | SC - Fill                   | 320                                             | 7.98 | 606.6                       | 75.6                         |
| "PE1"<br>407+58.14             | 57.53 Right                   | RC-22-005             | 7.5-9                     | Quartzite/Limestone<br>(GP) | 4,020                                           | 8.49 | 7.3                         | 4.5                          |

Table 8-6. Summary of Corrosion Test Results

GP = Poorly graded gravel with sand

ML = Silt with sand

Based on the *Corrosion/Degradation of Soil Reinforcements for Mechanically Stabilized Earth Walls and Reinforced Soil Slopes* (FHWA 2009) and available corrosion test data, the on-site materials within the project limits are considered at a minimum "mildly corrosive" to structural elements. A corrosion engineer should review the test results to determine whether corrosion protection for metal and concrete elements should be incorporated into the design.

### 8.8 Structural Pavement Design

The project consists of new pavement structural sections for the proposed TCLs and shoulders, EB and WB on- and off-ramps, truck parking areas, and frontage road. The only exceptions are for the few locations where existing pavement structural sections are at an alignment and profile that will remain unchanged along the frontage road. It should be noted that a mill and overlay of the existing I-80 lanes and WB chain-off area was deemed unnecessary and is therefore not included in the project scope.

### 8.8.1 R-value

Six R-value tests were performed on representative samples throughout the project limits. Table 8-7 provides a summary of the test results.

| Boring ID | Depth<br>(feet) | Material                                    | R-value | Comments                                                             |
|-----------|-----------------|---------------------------------------------|---------|----------------------------------------------------------------------|
| RC-22-001 | 0 to 5          | Native - Clayey Sand with Gravel            | 31      | Sample taken within material that will be excavated from EB rock cut |
| RC-22-001 | 15 to 20        | Highly-Completely Weathered Phyllitic Shale | 27      | Sample taken within material that will be excavated from EB rock cut |
| B-22-102  | 0 to 5          | Fill – Silty Sand with Gravel               | 67      | Sample taken along mainline within embankment fill                   |
| B-22-108  | 0 to 5          | Native – Clayey Sand with Gravel            | 48      | Sample taken along mainline within native soil                       |
| B-22-109  | 0 to 5          | Native – Silty Sand with Gravel             | 64      | Sample taken within WB truck parking area within native soil         |
| B-22-112  | 0 to 5          | Native – Silty Sand                         | 69      | Sample taken within EB truck parking area within native soil         |

### Table 8-7. R-value Test Results

The testing results indicate moderate-to-high R-values for all materials sampled; however, a fairly wide range exists. The design of the pavement structural sections should consider this range along with the source of the pavement subgrade material (in situ native, existing fill, or excavated native).

### 8.8.2 Pavement Structural Sections

The pavement structural sections for the project were prescribed by the Assistant Chief Materials Engineer of the NDOT Materials Division, in an email dated February 1, 2022. Table 8-8 presents a summary of the NDOT Materials Section prescribed pavement structural sections for the project. Where new pavement sections will be supported on new or existing embankment fill, a nonwoven geotextile (Class 1) should be placed on prepared subgrade directly underneath the aggregate base of pavement structural sections. The geotextile should be placed on prepared subgrade directly underneath the aggregate base. The geotextile utilized shall meet the requirements of Section 731.03.02 of the NDOT Standard Specifications for Road and Bridge Construction (NDOT, 2014). Geotextiles should be placed in accordance with NDOT Standard Specification Section 203.

| Roadway Segment                                                               | Pavement Structural Section                                                                                                                                                        |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New EB and WB TCL and Shoulders                                               | <ul><li>1-inch Plantmix Bituminous Open-Graded (0.375-inch) Surface</li><li>11-inch Plantmix Bituminous Surface (Type 2C)</li><li>8-inch Aggregate Base (Type 1 Class B)</li></ul> |
| New EB and WB TCLs – 12-inch Cold Milled (3-inch) Overlap with Existing Lanes | 1-inch Plantmix Bituminous Open-Graded (0.375-inch) Surface<br>3-inch Plantmix Bituminous Surface (Type 2C)                                                                        |
| Existing I-80 EB and WB Lanes – Cold Milled (1-inch)                          | 1-inch Plantmix Bituminous Open-Graded (0.375-inch) Surface                                                                                                                        |
| New EB and WB On- and Off-Ramps                                               | 5-inch Plantmix Bituminous Surface (Type 2C)<br>8-inch Aggregate Base (Type 1 Class B)                                                                                             |
| New Frontage Road                                                             | 4-inch Plantmix Bituminous Surface (Type 2C)<br>8-inch Aggregate Base (Type 1 Class B)                                                                                             |
| Existing Frontage Road to be Maintained – Cold Milled (2-inch)                | 2-inch Plantmix Bituminous Surface (Type 2C)                                                                                                                                       |
| New EB and WB Truck Parking Areas                                             | Seal Coat 3-inch Plantmix Bituminous Surface (Type 2C)<br>8-inch Aggregate Base (Type 1 Class B)                                                                                   |

### **Table 8-8. Pavement Structural Sections**

### 8.9 Site Preparation

Site preparation will be performed in accordance NDOT Standard Specifications. Site preparation for the proposed widening will include the removal of surface vegetation, organic soil, and any trash or debris, as needed, in the areas where improvements will be located. Oversized, loose, soft, or wet material also should be removed and replaced with competent backfill. Removed detrimental material should not be used as structure backfill and should be disposed of offsite. Existing utilities, drainage structures, and other existing structures also may need to be removed or protected before construction.

### 8.10 Temporary Cuts

All temporary excavations should be performed in accordance with the state and federal safety requirements. Shoring within the NDOT right-of-way, if required, may be designed in accordance with AASHTO standards. It is the responsibility of the contractor to provide stable excavation for the temporary cuts within the project limits.

### 8.11 Earthwork

Earthwork should be performed in accordance with NDOT Standard Specifications. Measures to control the impact of surface water on the stability of temporary excavations will be employed and will remain the sole responsibility of the contractor.

I-80 Golconda Summit Interchange (MP HU 32.5 to MP HU 38.8) Truck Climbing Lanes and Parking Project

Backfill soil surrounding and above footings, behind walls, and beneath footings should be placed and compacted in accordance with NDOT Standard Plans and Specifications. If unsuitable material is encountered during construction (soft material, organic material, construction debris, or oversized material), the material will be overexcavated until it is completely removed or the subgrade is firm and unyielding, whichever is greater. Generally, the lateral extent of the overexcavation should be equal to the depth of the overexcavation. Granular Backfill should meet the requirements of NDOT Standard Specifications. The overexcavation backfill should be placed in thin, loose lifts; moisture-conditioned, as necessary, to near-optimum moisture content; and compacted to a minimum 95% relative compaction according to NDOT Standard Specifications.

In accordance with NDOT Standard Specifications, native on-site material may be used for placement as compacted roadway and embankment fill; however, it should be free of organic material, debris, and oversized material according to NDOT Standard Specifications. In accordance with NDOT Standard Specification 203.03.14, the maximum rock size permitted in embankment fills is 3-feet diameter. Oversized material should be placed in accordance with NDOT Standard Specifications. To facilitate future trenching, oversized material should not be placed within the range of foundation excavations, future utilities, or underground construction unless specifically approved by the geotechnical engineer.

The new roadway embankments for the project are primarily sliver fills that will tie into the adjacent, existing embankment slopes. Before placement of compacted embankment fill on existing slopes, prepare the existing ground or embankment according to NDOT Standard Specification Section 203. Where new pavement sections will be supported on new or existing embankment fill, a nonwoven geotextile (Class 1) should be used, as discussed in Section 8.8. Embankment fill should be placed in thin, loose lifts; moisture-conditioned, as necessary, to near-optimum moisture content; and compacted to a minimum 90% relative compaction according to NDOT Standard Specifications.

# 9. References

American Association of State Highway and Transportation Officials (AASHTO). 2020. *LRFD Bridge Design Specifications, 9th Edition.* 

American Association of State Highway and Transportation Officials (AASHTO). 2015. Load and Resistance Factor Design (LRFD) Specifications for Structural Supports for Highway Signs, Luminaries, and Traffic Signals. 1st Edition.

Colorado Department of Transportation (CDOT). 2000. Colorado Rockfall Simulation Program, Version 4.0. Report No. CDOT-SYMB-CGS-99-1. March.

Federal Highway Administration (FHWA). 2001. *Rockfall Catchment Area Design Guide*. Report No. FHWA-OR-RD-02-04m. December.

Federal Highway Administration (FHWA). 2002. Geotechnical Engineering Circular No. 6. *Shallow Foundations*. FHWA Report No. FHWA-SA-02-054 <a href="https://www.fhwa.dot.gov/engineering/geotech/pubs/010943.pdf">https://www.fhwa.dot.gov/engineering/geotech/pubs/010943.pdf</a> September.

Federal Highway Administration (FHWA). 2009. *Corrosion/Degradation of Soil Reinforcements for Mechanically Stabilized Earth Walls and Reinforced Soil Slopes,* Publication No. FHWA-NHI-09-087, National Highway Institute, dated November 2009.

Federal Highway Administration (FHWA). 2016. National Highway Institute (NHI) Courses No. 132021 and 132022. *Design and Construction of Driven Pile Foundations – Volume 1*. FHWA NHI-16-009. https://www.fhwa.dot.gov/engineering/geotech/pubs/gec12/nhi16009\_v1.pdf July.

Federal Highway Administration (FHWA). 2017. National Highway Institute (NHI) Course No. 132031, Geotechnical Engineering Circular No. 5. *Geotechnical Site Characterization*. FHWA NHI-16-072. https://www.fhwa.dot.gov/engineering/geotech/pubs/nhi16072.pdf April.

Naval Facilities Engineering Systems Command (NAVFAC). 1986, *Foundations & Earth Structures Design Manual 7.02*, dated September 1986.

Nevada Bureau of Mines and Geology (NMBG). 1976. Geologic Map of North-Central Nevada. Map 50. 1:250,000 scale.

Nevada Department of Transportation (NDOT). 2008. *Structures Manual*, dated September 2008, with revisions through 2019.

Nevada Department of Transportation (NDOT). 2014. *Standard Specifications for Road and Bridge Construction*, dated 2014.

Nevada Department of Transportation (NDOT). 2022. *I-80 Golconda Summit Preliminary Design Field Study Report. I-80 MP HU 32.5 to MP HU 38.8, Humboldt County Nevada.* Project: SPI-080-3-(340). Dated February 25.

Ritchie, A. M., 1963. "Evaluation of Rockfall and Its Control." Federal Highway Research Record, No.17, pp. 13-28.

Rocscience. 2020. SLIDE2 Modeler Version 9.009 Computer Software.

U.S. Geological Survey (USGS). 1965a. Topographic Map of the Golconda Quadrangle, Nevada. 1:24,000 scale. Photo revised in 1981.

I-80 Golconda Summit Interchange (MP HU 32.5 to MP HU 38.8) Truck Climbing Lanes and Parking Project

U.S. Geological Survey (USGS). 1965b. Topographic Map of the Iron Point Quadrangle, Nevada. 1:24,000 scale. Photo revised in 1981.

U.S. Geological Survey (USGS). 1974a. Geologic Map of the Golconda Quadrangle, Nevada. Map No GQ-1174. 1:24,000 scale.

U.S. Geological Survey (USGS). 1974b. Geologic Map of the Iron Point Quadrangle, Nevada. Map No GQ-1175. 1:24,000 scale.

U.S. Geological Survey (USGS). 2022. USGS seismic design maps website. Available at: https://earthquake.usgs.gov/ws/designmaps/aashto-2009.html.

U.S. Geological Survey (USGS) and Nevada Bureau of Mines and Geology (NMBG). 2022. Quaternary Fault and Fold Database of the United States. Accessed June 3, 2022. Available at: <u>U.S. Quaternary</u> Faults (arcgis.com)

Appendix A Boring and Geophysical Survey Line Location Maps with Geologic Mapping



#### W7Y46100\_gt101.dgn





W7Y46100\_gt102.dgn

|   | STATE  | PROJECT NO.         | COUNTY            | SHEET<br>NO.                             |
|---|--------|---------------------|-------------------|------------------------------------------|
|   | NEVADA | NHFP-080-3(071)     | HUMBOLDT          | GT2                                      |
|   |        |                     | T. 25 N. A. 40 E. |                                          |
|   |        | f 2                 | fo aP             | .00                                      |
|   |        |                     |                   | ATCHLINE "LE" 1019+00.0<br>SEE SHEET GT3 |
|   | CUT    | CUT CUT CUT         | FILL DOOZ         | M                                        |
| / |        |                     |                   |                                          |
|   |        | BOR I NC            | GOLCONDA SUMMIT   | N                                        |
|   |        | 100.000000:1.000000 | PLOT SCALE JEGS   | VCPWU01                                  |



W7Y46100\_gt103.dgn

| STATE  | PROJECT NO.     | COUNTY             | SHEET<br>NO.                               |
|--------|-----------------|--------------------|--------------------------------------------|
| NEVADA | NHFP-080-3(071) | HUMBOLDT           | GT3                                        |
| NEVADA | NHFP-080-3(071) | HUMBOLDT           | MATCHLINE "LE" 1034+00.00<br>SEE SHEET GT4 |
|        | BORING          | G LOCATION<br>PLAN | N                                          |
|        |                 |                    |                                            |







W7Y46100\_gt105.dgn

| STATE  | PROJECT NO.       | COUNTY           | SHEET<br>NO.                               |
|--------|-------------------|------------------|--------------------------------------------|
| NEVADA | NHFP-080-3(071)   | HUMBOLDT         | GT5                                        |
|        |                   | T. 35 W.J. 40 E. |                                            |
|        |                   |                  | 0                                          |
|        |                   |                  | IATCHLINE "LE" 1064+00.00<br>SEE SHEET GT6 |
|        | CUT FILL          | FILL FILL        | W                                          |
| ~      | STAT              | TE OF NEVADA     |                                            |
|        | BOR INC           | GOLCONDA SUMMIT  | N                                          |
|        | 100 00000;1 00000 | PLOT SCALE JEGS  | <b>VCPWU</b>                               |





W7Y46100\_gt106.dgn

|    | STATE                   | PROJECT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COUNTY            | NO.          |
|----|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
|    | NEVADA                  | NHFP-080-3(071)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HUMBOLDT          | GT6          |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                 |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CEC 12            | O.F.         |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 35 N. + R. 4    | 0 -          |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 55             |              |
|    |                         | ١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŋ                 |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V V               |              |
|    |                         | l Rui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                 |              |
| 5  |                         | The second secon | $^{\circ}$        |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
| ш  | June                    | $-fe^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda$         |              |
| -5 | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sqrt{\lambda}$  |              |
| ~  | $\langle \cdot \rangle$ | rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |              |
| -  | V /                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I   A             |              |
| /  | $\sim$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    | ~                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                 |              |
| /  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | II II             |              |
|    |                         | The state of the s | 1 P               |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    | I                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 285 mm            |              |
|    | at                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200               |              |
|    |                         | of the second se | 1<br>Hin          |              |
| _  | - 0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
| 4  | of                      | 4710'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No.No.            |              |
|    |                         | ////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-16              |              |
| _  | >                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T B               |              |
|    |                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |              |
| /  |                         | 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ŏ                 |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
| -  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4720'             |              |
|    |                         | FILL FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4710'             |              |
| -  |                         | FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |              |
| -  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $/ \  ( \  A$     |              |
| 1  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | $\setminus$  |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sum$            | $\mathbf{Y}$ |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | A            |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V Amminin         |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
| _  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                 |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
| ш  | TTEMT                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OF TRANSPORTATION |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         | I-80 - (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GOLCONDA SUMMIT   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         | BORINO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G LOCATION        | N I          |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | *            |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FLAN              |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |

100.000000:1.000000 PLOT SCALE

JEGSVCPWU01



W7Y46100\_gt107.dgn

|              | STATE           | PROJECT NO.                           | COUNTY                      |                  | NO.      |
|--------------|-----------------|---------------------------------------|-----------------------------|------------------|----------|
|              | NEVADA          | NHFP-080-3(071)                       | HUMBOLI                     | DT               | GT7      |
|              |                 |                                       | 35 SEC                      | <sup>10</sup> E. |          |
| (            | ~               |                                       |                             | 5                |          |
| <u>ч</u> ч   | لمستع           |                                       |                             |                  |          |
| ) _          | 5               | to pe                                 |                             | ™<br>I           |          |
|              | $\frown$        | ~ } }                                 | Cn                          | K                |          |
|              | $\sim$          | me same                               | $\int$                      | 7.9°             |          |
| $\sim$       |                 |                                       |                             | <u>۲</u>         |          |
|              | ~               |                                       |                             |                  |          |
|              |                 | ,0+2+                                 | 1                           |                  |          |
|              |                 | .05/+                                 |                             | = <u>,097</u> .  |          |
| Ē            | E               |                                       |                             | 00               |          |
| _            | TOP             |                                       |                             | 0                |          |
|              |                 |                                       | $\Lambda$                   | t b              | 8        |
|              |                 |                                       |                             | <u>3</u> 68      | ່ບ       |
| >            | *760'           | 7737                                  |                             | >  <u>-</u>      | ЕТ       |
|              |                 |                                       |                             | <u> </u>         | Ψ        |
| -            |                 |                                       |                             | <u> </u>         | S<br>    |
|              |                 |                                       |                             | JUH<br>30        | SEE      |
| 2            |                 |                                       |                             |                  |          |
| _            |                 |                                       | FILL -E.O.P. F              | ii Ž             |          |
| $\geq$       |                 |                                       | 4760'                       |                  |          |
|              | 47              |                                       |                             | -                |          |
| 5            | FFZ             | 2 2 mm                                | ا <sup>م</sup> کے کہ        |                  |          |
| 2            | $\sqrt{r}$      |                                       |                             |                  |          |
| 0.5          | × ~ ~           |                                       | 0512                        |                  |          |
|              | 7.              | · · · · · · · · · · · · · · · · · · · | , ً کے کہ                   |                  |          |
| $\checkmark$ | < <u> </u>      | لم <b>حمر</b> الم الم                 | ر کر کے                     |                  |          |
| ш            | пупф            |                                       |                             |                  |          |
| $\sim$       | $\sim $ $\vee $ |                                       | ~//~                        |                  |          |
|              |                 |                                       |                             |                  |          |
|              |                 |                                       |                             |                  |          |
|              |                 |                                       |                             |                  |          |
|              |                 | STA<br>DEPARTMENT                     | TE OF NEVADA<br>OF TRANSPOR | RTATION          |          |
|              |                 | I-80 - 0                              | GOLCONDA SUN                | _<br>IMIT        |          |
|              |                 | BORING                                | G LOCA                      | ΤΙΟΙ             | N        |
|              |                 |                                       | ΡΙΔΝ                        |                  |          |
|              |                 |                                       |                             |                  |          |
|              |                 |                                       |                             |                  |          |
|              |                 | 100.000000:1.000000                   | PLOT SCALE                  | JEGS             | SVCPWU01 |



W7Y46100\_gt108.dgn

\_ \_ . .. . \_ .

|                 | STATE        | PROJECT NO.         | COUNTY            | NO.      |
|-----------------|--------------|---------------------|-------------------|----------|
|                 | NEVADA       | NHFP-080-3(071)     | HUMBOLDT          | GT8      |
|                 |              | •                   |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     | . /               |          |
|                 |              |                     | · 35 N. T.R.      |          |
|                 |              |                     | 10 E.             |          |
| 5               | <u>.</u>     | 7                   |                   |          |
| ш               | Jun          | クディー                | 1                 |          |
|                 |              |                     |                   |          |
| $\frac{1}{2}$   |              |                     |                   |          |
|                 |              | fo fo               | Harris ( )        |          |
|                 |              |                     | 2 Junit           |          |
|                 | ڪر ل         |                     |                   |          |
| 5               |              | 90                  | 1 / / A           |          |
|                 |              |                     |                   |          |
| <b>†</b>        |              |                     |                   |          |
|                 | 820          |                     |                   |          |
|                 | 0287         |                     |                   |          |
|                 | - Det        |                     |                   |          |
| $\overline{\ }$ |              | P CoP               |                   |          |
|                 |              |                     | o                 |          |
| 5               | >            |                     |                   |          |
|                 | $\mathbf{X}$ |                     | 40                |          |
|                 | -P-P-        | PD PD               | 155               |          |
| $\overline{}$   | -            | Re et et            |                   |          |
| _               |              |                     |                   |          |
| $\neg$          |              |                     | ; <del>`</del> .5 |          |
|                 |              | interest of         |                   |          |
|                 |              |                     | THUS I            |          |
| $\sim$          |              |                     |                   |          |
| /               |              |                     | N N N             |          |
| /               | $\sim$       | i C                 | 1                 |          |
| _               | $\sim$       |                     | 1                 |          |
| $\leq$          | 5            | +820                | 1                 |          |
|                 |              |                     | 1                 |          |
|                 |              |                     |                   |          |
|                 | MITTIN       | THE A               | 1                 |          |
| _               |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              | /                   |                   |          |
|                 |              | /                   |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     | E OF NEVADA       |          |
|                 |              |                     |                   |          |
|                 |              | I-80 - 0            | GOLCONDA SUMMIT   |          |
|                 |              | _                   |                   |          |
|                 |              | BORING              | ; LOCATIO         | N        |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              |                     |                   |          |
|                 |              | 100.000000:1.000000 | PLOT SCALE JFG    | SVCPWU01 |
|                 |              |                     |                   |          |

\_\_\_\_



#### W7Y46100\_gt109.dgn JNTY SHEET NO.

| STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROJECT NO.                    | COUNTY                                            | SHEET<br>NO. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------|--------------|
| NEVADA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NHFP-080-3(071)                | HUMBOLDT                                          | GT9          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                   | At           |
| Automatical Action of the second seco |                                | MATCHINE "1990.00                                 |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAT<br>DEPARTMENT<br>I-80 - 0 | OF NEVADA<br>OF TRANSPORTATION<br>GOLCONDA SUMMIT |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BORING                         | G LOCATION<br>Plan                                | N            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.000000:1.000000            | PLOT SCALE JEGS                                   | VCPWU01      |



W7Y46100\_gt110.dgn



### W7Y46100\_gt111.dgn

|        | STATE  | PROJECT NO.                    | COUNTY                                  | NO.                                                  |
|--------|--------|--------------------------------|-----------------------------------------|------------------------------------------------------|
|        | NEVADA | NHFP-080-3(071)                | HUMBOLDT                                | GT11                                                 |
|        |        | PROJECT NO.<br>NHFP-080-3(071) | COUNTY<br>HUMBOLDT                      | MÅTCHLINE "PE1" 357+00.00<br>SEE SHEET GT12<br>그 3 월 |
|        |        | JJJJ                           | 50407<br>ALL FILL                       | MATCHLS                                              |
|        | 5000   |                                | 5030'                                   |                                                      |
| η<br>N |        |                                |                                         |                                                      |
|        | 7 7    |                                |                                         |                                                      |
|        |        | STA<br>DEPARTMENT<br>I-80 - 0  | TE OF NEVADA<br>T OF TRANSPORTATION<br> |                                                      |
|        |        | BORING                         | G LOCATIO<br>PLAN                       | N                                                    |
| _      |        | 100.000000:1.000000            | PLOT SCALE JEGS                         |                                                      |





W7Y46100\_gt112.dgn



W7Y46100\_gt113.dgn

| STATE     |     | PROJECT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COUNTY               | NO.         |
|-----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|
| NEVADA    | NHF | P-080-3(071)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HUMBOLDT             | GT13        |
| RC<br>CUT |     | D.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P.<br>0.P. | HUMBOLDT<br>HUMBOLDT | NO.<br>GT13 |
|           |     | CT 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |
|           |     | DEPARTMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OF TRANSPORTATION    |             |
|           |     | I-80 - (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GOLCONDA SUMMIT      |             |
|           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |             |
|           |     | BORINO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G LOCATION<br>PLAN   | N           |
| <br>      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |             |







W7Y46100\_gt115.dgn



W7Y46100\_gt116.dgn

| NEVADA NHFP                                                         | -080-3(071) |                                          |              |
|---------------------------------------------------------------------|-------------|------------------------------------------|--------------|
|                                                                     | 000 3(0717  | HUMBOLDT                                 | GT16         |
|                                                                     |             |                                          |              |
|                                                                     |             |                                          |              |
|                                                                     |             |                                          |              |
|                                                                     |             |                                          |              |
|                                                                     |             |                                          |              |
|                                                                     |             |                                          |              |
|                                                                     |             | 1                                        |              |
|                                                                     |             | To an SEC                                |              |
|                                                                     |             | 33 N. T.R. 41 E.                         |              |
|                                                                     |             |                                          |              |
|                                                                     |             |                                          |              |
| ,                                                                   |             |                                          |              |
|                                                                     |             |                                          |              |
|                                                                     |             |                                          |              |
|                                                                     |             |                                          |              |
| $\langle \langle \rangle \rangle$                                   |             |                                          |              |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                              | $\searrow$  | three and a second                       | $\mathbf{i}$ |
|                                                                     |             |                                          | /            |
| $) \rangle \rangle \langle \langle \langle \rangle \rangle \rangle$ | to//        | 2 1/20-14                                |              |
|                                                                     |             | V / - 👸 - 7                              |              |
| Lfa ~ ~                                                             | Qa/Qg       | $2 \sim 1$                               |              |
| FILL .                                                              | Fu ,        |                                          |              |
|                                                                     |             | je j |              |
| // ×2040,                                                           | TX//        | T FUL                                    |              |
| $\prec$                                                             |             | $\checkmark$ $\checkmark$                |              |
|                                                                     |             |                                          |              |
|                                                                     |             | 00                                       |              |
| $ \downarrow \land \checkmark \checkmark \checkmark$                |             |                                          |              |
|                                                                     |             | T do 1                                   |              |
| A                                                                   | $\angle$    | ANK<br>ANG                               |              |
|                                                                     |             |                                          |              |
| 5040                                                                |             |                                          |              |
|                                                                     |             | <u> </u>                                 |              |
|                                                                     |             |                                          |              |
| CUT                                                                 |             |                                          |              |
| > > > / / /                                                         |             | TH                                       |              |
| $\langle \rangle \rangle \rangle \rangle \rangle$                   | A state     |                                          |              |
|                                                                     | ý k         | Y                                        |              |
| \ \ <b>š</b> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                  |             | /                                        |              |
|                                                                     | >  / Y < c  | 1                                        |              |
| king 1 1 1                                                          | <u> </u>    | 1                                        |              |
| 2-2- Standard (                                                     | 040°        |                                          |              |
|                                                                     | the 1/1     |                                          |              |
| 11534                                                               | - Filter    |                                          |              |
| '                                                                   | 1173-31     |                                          |              |
| _                                                                   | · / /       |                                          |              |
| Γ                                                                   | STA         | TE OF NEVADA                             |              |
|                                                                     |             | T OF TRANSPORTATION                      |              |
|                                                                     | I-80 -      | GOLCONDA SUMMIT                          |              |
|                                                                     |             |                                          |              |
|                                                                     |             |                                          | NI           |
|                                                                     | DURINU      | S LUCATIO                                | N            |
|                                                                     | DURING      | PLAN                                     | N            |
|                                                                     | DURIN       | PLAN                                     | N            |
|                                                                     | BURING      | PLAN                                     | N            |



W7Y46100\_qt117.dgn



W7Y46100\_gt118.dgn



W7Y46100\_gt119.dgn

|   | STATE  | PROJECT NO.                    | COUNTY             | SHEET<br>NO.                                  |
|---|--------|--------------------------------|--------------------|-----------------------------------------------|
| Γ | NEVADA | NHFP-080-3(071)                | HUMBOLDT           | GT19                                          |
|   |        | PROJECT NO.<br>NHFP-080-3(071) | COUNTY<br>HUMBOLDT | ← MATCHLINE "PE1" 472+00.00<br>SEE SHEET GT20 |



W7Y4<u>6100\_gt120.dgn</u>

|   | STATE           | PROJECT NO.                    | COUNTY             | SHEET<br>NO.         |
|---|-----------------|--------------------------------|--------------------|----------------------|
|   | NEVADA          | NHFP-080-3(071)                | HUMBOLDT           | GT20                 |
|   | STATE<br>NEVADA | PROJECT NO.<br>NHFP-080-3(071) | COUNTY<br>HUMBOLDT | SHEET<br>NO.<br>GT20 |
| 6 | >               |                                | ,0834              |                      |
|   |                 |                                |                    | \                    |
|   |                 | STAT                           | E OF NEVADA        |                      |
|   |                 |                                |                    |                      |
|   |                 | BURING                         | PLAN               | N                    |

100.000000:1.000000 PLOT SCALE

JEGSVCPWU01



W7Y46100\_qt121.dgn



### W7Y46100\_gt122.dgn

| STATE  | PROJECT NO.                    | COUNTY                                               | SHEET<br>NO.                     |
|--------|--------------------------------|------------------------------------------------------|----------------------------------|
| NEVADA | NHFP-080-3(071)                | HUMBOLDT                                             | GT22                             |
|        |                                | T. 35 SEC 10<br>N R. 41 E.                           |                                  |
|        |                                |                                                      | 00.00                            |
|        | +830.                          | 5                                                    | INE "PE1" 515+0<br>EE SHEET 6T23 |
|        | 4830'-                         |                                                      | MAŤCHL<br>SE                     |
|        |                                |                                                      |                                  |
|        | STAT<br>DEPARTMENT<br>I-80 - ( | TE OF NEVADA<br>OF TRANSPORTATION<br>COLCONDA SUMMIT |                                  |
|        | BORING                         | CLOCATION                                            | N                                |



## W7Y46100\_gt123.dgn

|   | STATE  | PROJECT NO.         | COUNTY                           | SHEET<br>NO. |
|---|--------|---------------------|----------------------------------|--------------|
|   | NEVADA | NHFP-080-3(071)     | HUMBOLDT                         | GT23         |
|   |        |                     | T. 35 N. R.                      | 41 E.        |
| ш | шшш    |                     |                                  |              |
|   |        | Lap to              | 200                              |              |
|   |        |                     | 9400.00<br>2400.00               |              |
|   |        |                     | SEE SHEET GT                     |              |
|   |        | Qa/Qg               | MATC                             |              |
|   |        |                     |                                  |              |
|   |        |                     | E OF NEVADA<br>OF TRANSPORTATION |              |
|   |        | BORING              | G LOCATION<br>Plan               | N            |
|   |        | 100.000000:1.000000 | PLOT SCALE JEGS                  | VCPWU0       |



W7Y46100\_gt124.dgn

Appendix B Geotechnical Exploration Data B-1 Soil Boring and Rock Coring Logs

# NewFields

# UNIFIED SOIL CLASSIFICATION SYSTEM



# **BORING KEY**

# NewFields

## **Symbol Description**

## **Soil Samplers**



Standard Penetration Test (1 3/8 in. dia. ASTM D1586) Modified California Sampler (2.5 in. dia. ASTM D3550)

Undisturbed Thin Wall Shelby Tube

## **Groundwater Symbols**

| $\nabla$ |
|----------|
| _        |
| V        |

Water Encountered During Drilling

Water Encountered After Drilling

NFWE No Free Water Encountered

## **Moisture Condition**

| Dry Absence of moisture; dusty; dry to to |                                               |
|-------------------------------------------|-----------------------------------------------|
| Moist Damp but no visible water           |                                               |
| Wet                                       | Visible free water; usually below water table |

## **Plasticity**

| None   | A 1/8-in. (3-mm) thread cannot be rolled at any water content                                                                                                                                                                                        | PI = 0       |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Low    | The thread can barely be rolled and<br>the lump cannot be formed when<br>drier than the plastic limit                                                                                                                                                | 1 < PI < 10  |  |
| Medium | The thread is easy to roll and not<br>much time is required to reach the<br>plastic limit. The thread cannot be<br>rerolled after reaching the plastic<br>limit. The lump crumbles when drier<br>than the plastic limit                              | 10 < PI < 20 |  |
| High   | It takes considerable time rolling and<br>kneading to reach the plastic limit.<br>The thread can be refolled several<br>times after reaching the plastic limit.<br>The lump can be formed without<br>crumbling when drier than the<br>plastic limit. | 20 < PI < 40 |  |

### Particle Size Reference

| Component   | Particle Size Range                 |
|-------------|-------------------------------------|
| Boulders    | 12"                                 |
| Cobbles     | 12" – 3"                            |
| Gravels     |                                     |
| Coarse      | 3" - ¾"                             |
| Fine        | ¾" − No. 4 (4.75mm)                 |
| Sand        |                                     |
| Coarse      | No. 4 (4.75mm) – No. 10 (2mm)       |
| Medium      | No. 10 (2mm) – No. 40 (0.42mm)      |
| Fine        | No. 40 (0.42mm) – No. 200 (0.075mm) |
| Silt & Clay | < No. 200                           |

## **Apparent Density of Coarse-Grained Soils**

| <b>Apparent Density</b> | SPT (# blows/ft) | Mod. Cal. Sampler |
|-------------------------|------------------|-------------------|
| Very Loose              | < 4              | < 6               |
| Loose                   | 4 - 10           | 6 - 15            |
| Medium Dense            | 10 - 30          | 15 - 45           |
| Dense                   | 30-50            | 45 - 75           |
| Very Dense              | > 50             | > 75              |

## **Consistency of Fine-Grained Soils**

| Consistency SPT (# blows/ft) |         | Mod. Cal. Sampler |  |
|------------------------------|---------|-------------------|--|
| Very Soft                    | < 2     | < 3               |  |
| Soft                         | 2 - 4   | 3 - 6             |  |
| Medium Stiff                 | 4 - 8   | 6 - 12            |  |
| Stiff                        | 8 - 15  | 12 - 23           |  |
| Very Stiff                   | 15 - 30 | 23 - 45           |  |
| Hard                         | > 30    | > 45              |  |

### **Angularity of Coarse-Grained Particles**

| Angular     | Particles have sharp edges and relatively  |
|-------------|--------------------------------------------|
|             | plane sides with unpolished surfaces       |
| Sub-Angular | Edges more rounded                         |
| Sub-Rounded | Particles have nearly plane sides but have |
|             | well-rounded corners and edges             |
| Rounded     | Particles have smooth, curved sides and no |
|             | edges                                      |

### **Cementation**

| Weak     | Crumbles with little finger pressure       |
|----------|--------------------------------------------|
| Moderate | Crumbles with considerable finger pressure |
| Strong   | Will not break with finger pressure        |



# **CORE LOG – KEY TO SYMBOLS**

| <b>Discontinuity Types</b> |                    |  |
|----------------------------|--------------------|--|
| Symbol                     | Discontinuity Type |  |
| С                          | Contact            |  |
| J                          | Joint              |  |
| В                          | Bedding Plane      |  |
| F                          | Fault              |  |
| S                          | Shear Zone         |  |
| V                          | Vein               |  |
| FO                         | Foliation          |  |
| М                          | Mechanical         |  |

| Grain Size  |                 |
|-------------|-----------------|
| Description | Particle Size   |
| Coarse      | > 0.20 in       |
| Medium      | 0.04 - 0.20 in  |
| Fine        | 0.004 - 0.04 in |
| Aphanitic   | < 0.004 in      |

| Type of Infilling |             |
|-------------------|-------------|
| Symbol            | Infill Type |
| Са                | Calcite     |
| СН                | Chlorite    |
| Cl                | Clay        |
| Fe                | Iron Oxide  |
| G                 | Gouge       |
| Mi                | Mica        |
| Mn                | Manganese   |
| No                | None        |
| Ру                | Pyrite      |
| Qt                | Quartz      |
| St                | Silt        |
| Sd                | Sand        |
| Gy                | Gypsum      |
| Ep                | Epidote     |
|                   |             |

RQD

 $= \frac{\sum (Length of intact pieces \ge 4 inches) * 100}{Total length of core run}$ 

| Bedding / Foliation / Flow Structure |                      |
|--------------------------------------|----------------------|
| Description                          | Field Identification |
| Massive                              | > 10 feet            |
| Very Thickly Bedded                  | 3 feet - 10 feet     |
| Thickly Bedded                       | 1 foot - 3 feet      |
| Moderately Bedded                    | 4 inches - 1 foot    |
| Thinly Bedded                        | 1inch - 4 inches     |
| Very Thinly Bedded                   | 3/8 inch - 1 inch    |
| Laminated                            | < 3/8 inch           |

| Discontinuity Surface Roughness |                |                                                  |
|---------------------------------|----------------|--------------------------------------------------|
| Symbol                          | Description    | Field Identification                             |
| VR                              | Very Rough     | Near vertical ridges are evident                 |
| R                               | Rough          | Some ridge; surface abrasive                     |
| SR                              | Slightly Rough | Asperities on surface can be felt                |
| S                               | Smooth         | Appears and feel smooth                          |
| SS                              | Slickensided   | Smooth surface with striations/polishing visible |


|                                                   | Discontinuity Spacing                                             |                                              |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|--|--|--|
| Symbol Description Field Identification           |                                                                   |                                              |  |  |  |  |  |  |  |  |  |
| UF                                                | Unfractured                                                       | No fractures such as stick rock              |  |  |  |  |  |  |  |  |  |
| VW Very Wide Facture spacing greater than 10 feet |                                                                   |                                              |  |  |  |  |  |  |  |  |  |
| W                                                 | Wide                                                              | Fracture spacing between 3 and 10 feet       |  |  |  |  |  |  |  |  |  |
| МС                                                | Moderately Close                                                  | Fracture spacing between 1 and 3 feet        |  |  |  |  |  |  |  |  |  |
| С                                                 | Close                                                             | Fracture spacing between 2 inches and 1 foot |  |  |  |  |  |  |  |  |  |
| VC                                                | VC         Very Close         Fracture spacing less than 2 inches |                                              |  |  |  |  |  |  |  |  |  |

| Aperature Size |                                         |               |                   |  |  |  |  |  |  |  |  |  |
|----------------|-----------------------------------------|---------------|-------------------|--|--|--|--|--|--|--|--|--|
| Symbol         | Symbol Description Field Identification |               |                   |  |  |  |  |  |  |  |  |  |
| VT             | Very Tight                              | < 0.1 mm      |                   |  |  |  |  |  |  |  |  |  |
| Т              | Tight                                   | 0.1 - 0.25 mm | "Closed Features" |  |  |  |  |  |  |  |  |  |
| PO             | Partly Open                             | 0.25 - 0.5 mm |                   |  |  |  |  |  |  |  |  |  |
| 0              | Open                                    | 0.5 - 2.5 mm  |                   |  |  |  |  |  |  |  |  |  |
| MO             | Moderately Open                         | 2.5 - 10 mm   | "Gapped Features" |  |  |  |  |  |  |  |  |  |
| W              | Wide                                    | > 10 mm       |                   |  |  |  |  |  |  |  |  |  |
| VW             | Very Wide                               | 1 - 10 cm     |                   |  |  |  |  |  |  |  |  |  |
| EW             | Extremely Wide                          | 10 - 100 cm   | "Open Features"   |  |  |  |  |  |  |  |  |  |
| С              | Cavernous                               | >1 m          |                   |  |  |  |  |  |  |  |  |  |

|        |                      | Degree of Weathering                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
|--------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Symbol | Weathering Grade     | Description                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| F      | Fresh                | No visible sign of rock material weathering; perhaps slight discoloration on major discontinuity surfaces                                                                                                        |  |  |  |  |  |  |  |  |  |
| SW     | Slightly Weathered   | Discoloration indicates weathering of rock material and discontinuity<br>surfaces. All of the rock material may be discolored by weathering and<br>may be somewhat weaker externally than in its fresh condition |  |  |  |  |  |  |  |  |  |
| MW     | Moderately Weathered | Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a continuous framework or as corestones                                          |  |  |  |  |  |  |  |  |  |
| HW     | Highly Weathered     | More than half of the rock materials is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present as a discontinuous framework or as corestones                                             |  |  |  |  |  |  |  |  |  |
| CW     | Completely Weathered | All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact                                                                                                |  |  |  |  |  |  |  |  |  |
| RS     | Residual Soil        | All rock material has been weathered to a soil. The mass structure and material fabrics are destroyed. There is a large change in volume, but the soil has not been significantly transported                    |  |  |  |  |  |  |  |  |  |



|       | Soil and Rock Hardness Grading Scale |                                                                                                                                  |                                                                |  |  |  |  |  |  |  |
|-------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|--|--|--|
| Grade | Description                          | Field Identification                                                                                                             | Approximate Range of<br>Uniaxial Compressive Strength<br>(MPa) |  |  |  |  |  |  |  |
| S1    | Very Soft Clay                       | Easily penetrated several inches by fist                                                                                         | < 0.025                                                        |  |  |  |  |  |  |  |
| S2    | Soft Clay                            | Easily penetrated several inches by thumb                                                                                        | 0.025 - 0.05                                                   |  |  |  |  |  |  |  |
| S3    | Firm Clay                            | Can be penetrated several inches by thumb with moderate effort                                                                   | 0.05 - 0.10                                                    |  |  |  |  |  |  |  |
| S4    | Stiff Clay                           | Readily indented by thumbnail but<br>penetrated only with great effort                                                           | 0.10 - 0.25                                                    |  |  |  |  |  |  |  |
| S5    | Very Stiff Clay                      | Readily indented by thumbnail                                                                                                    | 0.25 - 0.50                                                    |  |  |  |  |  |  |  |
| S6    | Hard Clay                            | Indented with difficulty by thumbnail                                                                                            | > 0.50                                                         |  |  |  |  |  |  |  |
| RO    | Extremely Weak<br>Rock               | Indented with thumbnail                                                                                                          | 0.25 - 1.0                                                     |  |  |  |  |  |  |  |
| R1    | Very Weak Rock                       | Crumbles under firm blows with point of geological hammer, can be peeled by a nocket knife                                       | 10-50                                                          |  |  |  |  |  |  |  |
| R2    | Weak Bock                            | Can be peeled by a pocket knife with<br>difficulty, shallow indentations made by<br>firm blow with point of geological<br>hammer | 5.0 - 25.0                                                     |  |  |  |  |  |  |  |
|       |                                      | Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological                   |                                                                |  |  |  |  |  |  |  |
| R3    | Medium Strong Rock                   | hammer                                                                                                                           | 25.0 - 50.0                                                    |  |  |  |  |  |  |  |
| R4    | Strong Rock                          | specimen requires more than one blow of geological hammer to fracture                                                            | 50.0 - 100.0                                                   |  |  |  |  |  |  |  |
| R5    | Very Strong Rock                     | Specimen requires many blows of geological hammer to fracture                                                                    | 100.0 - 250.0                                                  |  |  |  |  |  |  |  |
| R6    | Extremely Strong<br>Rock             | Specimen can only be chipped with geological hammer                                                                              | > 250.0                                                        |  |  |  |  |  |  |  |

|        | Fracture Spacing     |                                             |  |  |  |  |  |  |  |  |  |
|--------|----------------------|---------------------------------------------|--|--|--|--|--|--|--|--|--|
| Symbol | Description          | Field Identification                        |  |  |  |  |  |  |  |  |  |
| UF     | Unfractured          | Fracture spacing greater than 6 feet        |  |  |  |  |  |  |  |  |  |
| SF     | Slightly Fractured   | Fracture spacing between 2 to 6 feet        |  |  |  |  |  |  |  |  |  |
| MF     | Moderately Fractured | Fracture spacing between 8 inches to 2 feet |  |  |  |  |  |  |  |  |  |
| HF     | Highly Fractured     | Fracture spacing between 2 to 8 inches      |  |  |  |  |  |  |  |  |  |
| IF     | Intensely Fractured  | Fracture spacing less than 2 inches         |  |  |  |  |  |  |  |  |  |

| NewFields                                                                                                                                                                          | B-22-101<br>PAGE 1 OF 1                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLIENT Nevada DOT                                                                                                                                                                  | PROJECT NAME _ I-80 - Golconda Summit                                                                                                                                                                                    |
| PROJECT NUMBER _ 475.0499.000                                                                                                                                                      | PROJECT LOCATION Humboldt County, Nevada                                                                                                                                                                                 |
| DATE STARTED _4/11/22 COMPLETED _4/11/22                                                                                                                                           | GROUND ELEVATION _ 4467.80 ft HOLE SIZE _ 8-in                                                                                                                                                                           |
| DRILLING CONTRACTOR Cascade Drilling, CME-85                                                                                                                                       | COORDINATES ():                                                                                                                                                                                                          |
| DRILLING METHOD Hollow Stem Auger                                                                                                                                                  | LATITUDE _40.93439 LONGITUDE117.45240                                                                                                                                                                                    |
| LOGGED BY R. Berg CHECKED BY J. Ruzicka                                                                                                                                            | DEPTH TO WATER (FT BGS) _ no free water encountered                                                                                                                                                                      |
| NOLE (1)<br>NOLE (1)<br>NATERIAL DESCRIPTION<br>Surface Conditions: Clear Ground                                                                                                   | SAMPLE TYPE<br>BLOW<br>COUNTS<br>(N VALUE)<br>RECOVERY<br>(INCHES)<br>MOISTURE<br>CONTENT (%)<br>LIMIT<br>LIMIT<br>LIMIT<br>LIMIT<br>PLASTICITY<br>CONTENT (%)<br>LIMIT<br>LIMIT<br>NDEX<br>% SAND<br>% FINES<br>% FINES |
|                                                                                                                                                                                    | j     j       avel     j       t,<br>arse     SPT     7-2-2<br>(4)       16     Drilling Rate 2:<br>to 5' < 1 min                                                                                                        |
| Silty Sand with Gravel (SM), brown slightly moist, lo<br>nonplastic with low plasticity lenses, fine to coarse su<br>fine and coarse subangular to subrounded gravel, re<br>to HCI | MC         4-4-5<br>(9)         16         14.1           25         39         36         dry density = 98<br>pcf<br>Drilling Rate 5'<br>7.5' 2 min                                                                     |
|                                                                                                                                                                                    | SPT         3-3-4<br>(7)         18         Drilling Rate 7.1           to 10' 3 min         to 10' 3 min         to 10' 3 min                                                                                           |
| 4455<br>                                                                                                                                                                           | MC 8-22-13 18<br>(35) 18<br>Drilling Rate 10'<br>15' 1 min                                                                                                                                                               |

14-16-20 (36)

18

SPT

Bottom of Hole = 16.5' Boring Terminated at Planned Depth Groundwater Not Encountered Borehole Backfilled with Bentonite Chips

dense

15

#### NewFields CLIENT Nevada DOT PROJECT NAME 1-80 - Golconda Summit PROJECT NUMBER 475.0499.000 PROJECT LOCATION Humboldt County, Nevada DATE STARTED \_4/11/22 COMPLETED \_4/11/22 GROUND ELEVATION \_4602.83 ft HOLE SIZE \_8-in DRILLING CONTRACTOR Cascade Drilling, CME-85 COORDINATES ():

DRILLING METHOD Hollow Stem Auger

LOGGED BY R. Berg CHECKED BY J. Ruzicka LATITUDE \_40.92972 LONGITUDE \_-117.43766

B-22-102

PAGE 1 OF 1

DEPTH TO WATER (FT BGS) \_ no free water encountered

**NOTES** Autohammer, 30-inch drop, ERi=77.8%

| ELEVATION<br>(ft) | o DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION<br>Surface Conditions: Clear Ground                                                                                                                            |   | SAMPLE TYPE | (N VALUE)<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) | ATTEF<br>LINIL<br>LIWIL<br>LIWIL | PLASTICITY | % GRAVEL | % SAND | % FINES | REMARKS                                                   |
|-------------------|-----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|----------------------------------|----------------------|-------------------------|----------------------------------|------------|----------|--------|---------|-----------------------------------------------------------|
|                   | <br> <br>       |                | 6" Aggregate Base<br>FILL: Silty Sand with Gravel (SM), black to brown, slightly<br>moist, medium dense, nonplastic, fine to coarse sand, fine<br>and coarse gravel up to 1.5" dia. |   |             |                                  |                      |                         |                                  |            |          |        |         | Drilling Rate 0' to<br>2.5' < 1 min                       |
|                   |                 |                |                                                                                                                                                                                     | X | SPT         | 3-6-12<br>(18)                   | 4                    |                         |                                  |            | 43       | 44     | 13      | bulk sample 0.5-5'<br>Drilling Rate 2.5'<br>to 5' < 1 min |
|                   |                 |                |                                                                                                                                                                                     | K | МС          | 12-15-15<br>(30)                 | 18                   | 2.0                     |                                  |            |          |        |         | dry density =<br>118.9 pcf                                |
| 4505              |                 |                | Silty Sand with Gravel (SM), brown, slightly moist, dense,                                                                                                                          |   |             |                                  |                      |                         |                                  |            |          |        |         | 7.5' < 1  min                                             |
| 4595              |                 |                | gravel up to 2.5" dia.                                                                                                                                                              | X | SPT         | 6-19-20<br>(39)                  | 18                   |                         |                                  |            | 32       | 53     | 15      | Drilling Rate 7.5'                                        |
|                   | 10              |                |                                                                                                                                                                                     |   |             |                                  |                      |                         |                                  |            |          |        |         |                                                           |
|                   |                 |                | medium dense                                                                                                                                                                        | M | мс          | 17-20-20<br>(40)                 | 13                   |                         |                                  |            |          |        |         |                                                           |
|                   |                 |                | Bottom of Hole = 11.5'                                                                                                                                                              |   |             |                                  |                      |                         |                                  |            |          |        |         |                                                           |

Boring Terminated at Planned Depth Groundwater Not Encountered Borehole Backfilled with Bentonite Chips

|                            | Ν           | ev                        | vFields                                                                                                              |                                            |               |            |            |              |          |        |      |       | B-22-103<br>PAGE 1 OF 2           |  |
|----------------------------|-------------|---------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|------------|------------|--------------|----------|--------|------|-------|-----------------------------------|--|
| CLIE                       | <u>1</u> TN | Vevada                    | a DOT                                                                                                                | PROJECT                                    | NAME          | 80 - 0     | Golcor     | nda Su       | mmit     |        |      |       |                                   |  |
| PRO                        | JECT        | NUME                      | ER 475.0499.000                                                                                                      | PROJECT                                    | LOCATIO       | N <u>H</u> | umbo       | dt Cou       | inty, Ne | evada  | 1    |       |                                   |  |
| DAT                        | E STA       | RTED                      | <u>4/11/22</u> <b>COMPLETED</b> <u>4/11/22</u>                                                                       | GROUND ELEVATION 4794.55 ft HOLE SIZE 8-in |               |            |            |              |          |        |      |       |                                   |  |
| DRIL                       | LING        | CONT                      | RACTOR Cascade Drilling, CME-85                                                                                      | COORDIN                                    | ATES ():      |            |            |              |          |        |      |       |                                   |  |
| DRIL                       | LING        | METH                      | OD _Hollow Stem Auger                                                                                                | LATIT                                      | UDE _40.9     | 2834       |            |              | LON      | IGITU  | DE _ | -117  | .42019                            |  |
| LOG                        | GED         | <b>BY</b> _ R             | Berg CHECKED BY J. Ruzicka                                                                                           | DEPTH                                      | H TO WAT      | ER (F      | T BGS      | <b>S)</b> no | free wa  | ater e | ncou | ntere | d                                 |  |
| NOT                        | ES _/       | utoha                     | mmer, 30-inch drop, ERi=77.8%                                                                                        |                                            |               |            |            |              |          |        |      |       |                                   |  |
|                            |             |                           |                                                                                                                      | ш                                          |               |            | (9         | ATTE         | RBERG    | Ì      |      |       |                                   |  |
| NOL                        | Ξ           | l≓,,,                     |                                                                                                                      | TYP                                        | UE) ∠TS       | ERY<br>S)  | JRE<br>(%) |              |          | VEL    | þ    | ES    | SKS                               |  |
| ₩<br>E<br>A<br>E<br>E<br>E | EPT<br>(#)  | LOO I                     | MATERIAL DESCRIPTION                                                                                                 | LE                                         |               | SE         | TEN        | ₽Ę           | БЩ       | GRA    | SAI  | L N   | MAF                               |  |
| ЕГЕ                        |             | Б                         | Surface Conditions: Clear Ground                                                                                     | AMF                                        | L morz        | NE<br>NE   | NON NON    | LIN          | AST      | %      | %    | %     | RE                                |  |
|                            | 0           |                           |                                                                                                                      | 0                                          |               |            |            |              | Ы        |        |      |       |                                   |  |
| -                          | -           |                           | 6" Aggregate Base                                                                                                    | - <u> </u>                                 |               |            |            |              |          |        |      |       | Drilling Rate 0' to               |  |
| -                          |             |                           | dense, nonplastic, fine to coarse sand, fine and coarse                                                              |                                            |               |            |            |              |          |        |      |       | 2.5' < 1 min                      |  |
| -                          | ┥           |                           | angular gravel, cobbles and boulders, asphalt debris                                                                 |                                            | 3-12-13       |            | -          |              |          | 29     | 54   | 17    | bulk sample 0.5-5'                |  |
| -                          | -           |                           |                                                                                                                      | SPT                                        | (25)          | 15         |            |              |          |        |      |       | Drilling Rate 2.5'                |  |
| 4790                       | 5           |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       |                                   |  |
| -                          | ┥           |                           | dense                                                                                                                | мс                                         | 21-24-24      | 15         | 10.6       |              |          |        |      |       | dry density = 96.6                |  |
| •                          | -           |                           |                                                                                                                      |                                            | (+0)          |            |            |              |          |        |      |       | Drilling Rate 5' to               |  |
| -                          | ┥           |                           | FILL: Poorly Graded Gravel with Silt and Sand (GP-GM)                                                                | ,                                          | 12-11-15      | 1.0        | -          |              |          |        |      | 10    | 7.5 2 min                         |  |
| -                          |             |                           | brown, slightly moist, medium dense, nonplastic, fine to<br>coarse sand, fine and coarse angular gravel, cobbles and | A SPT                                      | (26)          | 12         |            |              |          | 56     | 32   | 12    | Drilling Rate 7.5                 |  |
| 4785                       | 10          |                           | boulders                                                                                                             |                                            |               |            |            |              |          |        |      |       | to 10' < 1 min                    |  |
| -                          | -           |                           | light brown, dense                                                                                                   | мс                                         | 45-35-22      | 12         | 8.3        |              |          |        |      |       | dry density =                     |  |
|                            |             |                           |                                                                                                                      |                                            | (01)          |            |            |              |          |        |      |       |                                   |  |
|                            | ┥           |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       | Drilling Rate 10' to<br>15' 3 min |  |
|                            | ┥           |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       |                                   |  |
| 4780                       | 15          |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       |                                   |  |
|                            | -           |                           | based on cuttings, decreasing sand, medium dense                                                                     | SPT                                        | 49-4-8/0in    | n 0        |            |              |          |        |      |       |                                   |  |
|                            | ╡           |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       | hard drilling                     |  |
|                            | ╡           |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       | 17-17.5'<br>Drilling Rate 15' to  |  |
|                            | + -         |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       | 20' 3 min<br>rods plunaina        |  |
| 4//5                       | 20          |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       | 19-19.5'                          |  |
| -                          |             |                           | dense                                                                                                                | мс                                         | 40-30-11 (41) | 0          |            |              |          |        |      |       |                                   |  |
| -                          |             |                           |                                                                                                                      |                                            | ()            |            | 1          |              |          |        |      |       | Drilling Data 20' to              |  |
| -                          |             |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       | 25' 4 min                         |  |
| -                          | + -         |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       |                                   |  |
| 4770                       | 25          |                           |                                                                                                                      |                                            | 50/0:         |            | _          |              |          |        |      |       |                                   |  |
| -                          |             |                           | on cuttings logged as <b>Poorly graded Gravel (GP)</b> , slightly                                                    |                                            | <u></u>       |            |            |              |          |        |      |       |                                   |  |
| -                          |             | KK                        | moist, very dense, fine and coarse subanguar angular<br>gravel                                                       |                                            |               |            |            |              |          |        |      |       | Drilling Rate 25' to              |  |
| -                          |             | $\sum$                    |                                                                                                                      |                                            |               |            |            |              |          |        |      |       | 30' 7 min                         |  |
| -<br>4765                  | 1           |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       |                                   |  |
| -100                       | 30          | $\bigotimes$              |                                                                                                                      |                                            |               | -          | -          |              |          |        |      |       |                                   |  |
| -                          |             | $\langle \rangle \rangle$ |                                                                                                                      | SPT                                        | 33-50/5in     | 6          | -          |              |          |        |      |       | rock in shoe                      |  |
| -                          | 1 -         |                           |                                                                                                                      |                                            |               |            |            |              |          |        |      |       | Drilling Rate 30' to              |  |
| -                          |             | $\mathbb{K}$              |                                                                                                                      |                                            |               |            |            |              |          |        |      |       | 35' 9 min                         |  |
| -<br>4760                  | 1           | $\langle \rangle \rangle$ |                                                                                                                      |                                            |               |            |            |              |          |        |      |       |                                   |  |
| 4/00                       | 35          | $\mathbb{N}$              |                                                                                                                      |                                            |               |            |            |              |          |        |      |       |                                   |  |

CLIENT Nevada DOT

PROJECT NAME I-80 - Golconda Summit

| PROJE                                                                                                   |                            | ER _475.0499.000                                                                                                                                                                                              | PROJECT     | LOCATIO                     | Ν <u>Η</u> ι         | umbol                   | ldt Cou                       | inty, Ne | evada    | 1      |         |                                                   |
|---------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|----------------------|-------------------------|-------------------------------|----------|----------|--------|---------|---------------------------------------------------|
| ELEVATION<br>(ft)<br>DEPTU                                                                              | 25 DEPIH<br>GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                                                                                          | SAMPLE TYPE | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) | ATTEF<br>LIN<br>DINUL<br>IWIT | BERG     | % GRAVEL | % SAND | % FINES | REMARKS                                           |
|                                                                                                         |                            | LIMESTONE, medium strong, highly weathered, based<br>on cuttings logged as <b>Poorly graded Gravel (GP)</b> , slightly<br>moist, very dense, fine and coarse subanguar angular<br>gravel ( <i>continued</i> ) | MC          | 70/5in                      | 2                    |                         |                               |          |          |        |         | rock in shoe<br>Drilling Rate 35' to<br>40' 4 min |
| HILL                                                                                                    |                            | SHALE/LIMESTONE, extremely weak, highly to completely weathered, recovered as silty sand, yellow tan, dry, nonplastic, fine sand, reaction to HCI, layered                                                    | ¥ SPT       | 50/5in                      | 5                    |                         |                               |          |          |        |         | Drilling Rate 40' to<br>45' 5 min                 |
| 11111111111111111111111111111111111111                                                                  |                            | <b>PHYLLITIC SHALE</b> , extremely weak, highly weathered, recovered as silty sand, yellow to blue, dry, nonplastic, fine sand, layered                                                                       | MC          | 42-70/4in                   | 10                   | -                       |                               |          |          |        |         | Drilling Rate 45' to<br>50' 1 min                 |
| NF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 9/22/22 13:25 - S:/PROJECTS/0499.00080 GOLCONDA_TRUCKCLIA |                            | Bottom of Hole = 50.9'<br>Boring Terminated at Planned Depth<br>Groundwater Not Encountered<br>Borehole Backfilled with Bentonite Chips                                                                       |             |                             |                      |                         |                               |          |          |        |         |                                                   |

|           | N             | ev             | wFields                                                  |                 |             |                             |                      |                         |        |                |          |        | F       | <b>B-22-104</b><br>PAGE 1 OF 1 |
|-----------|---------------|----------------|----------------------------------------------------------|-----------------|-------------|-----------------------------|----------------------|-------------------------|--------|----------------|----------|--------|---------|--------------------------------|
| CLI       | ENT _         | Nevada         | a DOT                                                    | PF              | ROJECT      |                             | 80 - G               | olcond                  | la Sur | nmit           |          |        |         |                                |
| PR        | OJECT         | NUME           | BER 475.0499.000                                         | PF              | ROJECT      | LOCATIO                     | N <u>Hu</u>          | mbold                   | t Cou  | nty, Ne        | evada    | I      |         |                                |
| DA        | TE ST/        | RTED           | 4/12/22 COMPLETED 4/12/22                                | G               |             | ELEVATIO                    | <b>N</b> 49          | 75.71                   | ft     | HOL            | LE SI    | ZE _   | 8-in    |                                |
| DR        | LLING         | CONT           | RACTOR Cascade Drilling, CME-85                          | COORDINATES (): |             |                             |                      |                         |        |                |          |        |         |                                |
| DR        | LLING         | METH           | OD Hollow Stem Auger                                     |                 | LATITU      | DE 40.9                     | 2643                 |                         |        | LON            | GITU     | DE     | -117.4  | 40772                          |
| LO        | GGED          | <b>BY</b> _R   | . Berg CHECKED BY _ J. Ruzicka                           |                 | DEPTH       | TO WATE                     | ER (FT               | BGS)                    | no f   | ree wa         | ater e   | ncou   | ntered  | d                              |
| NO        | TES _/        | Autoha         | mmer, 30-inch drop, ERi=77.8%                            |                 |             |                             |                      |                         |        |                |          |        |         |                                |
| ELEVATION | DEPTH<br>(ff) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION<br>Surface Conditions: Clear Ground |                 | SAMPLE TYPE | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) |        | PLASTICITY STR | % GRAVEL | % SAND | % FINES | REMARKS                        |

7-7-13

(20)

9-7-13 (20)

17-50/5in

17-35-49

(84)

17-17-20

(37)

14

18 13.7

9

18

14

SPT

MC

SPT

MC

SPT

bulk sample 0.5-5' Drilling Rate 0' to 2.5' < 1 min

Drilling Rate 2.5' to 5' < 1 min

dry density = 100.8 pcf Drilling Rate 5' to 7.5' < 1 min

Drilling Rate 7.5' to 10' < 1 min

Drilling Rate 10' to 15' 1 min

20 42 38

4975

4970

4965

4960

5

10

15

6" Aggregate Base

fine gravel

fine sand

to subrounded gravel

Bottom of Hole = 16.5'

Boring Terminated at Planned Depth Groundwater Not Encountered Borehole Backfilled with Bentonite Chips

FILL: Silty Sand with Gravel (SM), dark brown, moist, nonplastic, fine to coarse sand, fine and coarse rounded to subrounded gravel up to 2.5" dia., asphalt debris

Clayey Sand with Gravel (SC), dark brown, slightly moist,

very dense, low plasticity, fine sand, fine subangular gravel up to 3/8" dia.

Silty Sand (SM), tan yellow, dry, very dense, nonplastic,

Clayey Gravel with Sand (GC), brown, slightly moist,

dense, low plasticity, fine to coarse sand, fine subangular

PAGE 1 OF 1

CLIENT Nevada DOT

PROJECT NUMBER 475.0499.000

DATE STARTED \_4/12/22 COMPLETED \_4/12/22

DRILLING CONTRACTOR Cascade Drilling, CME-85

DRILLING METHOD Hollow Stem Auger

PROJECT NAME 1-80 - Golconda Summit

PROJECT LOCATION Humboldt County, Nevada

GROUND ELEVATION \_5156.00 ft HOLE SIZE \_8-in COORDINATES ():

LOGGED BY R. Berg CHECKED BY J. Ruzicka

LATITUDE \_40.92048 \_\_\_\_\_ LONGITUDE -117.39364 DEPTH TO WATER (FT BGS) no free water encountered

NOTES Autohammer, 30-inch drop, ERi=77.8%

| ELEVATION<br>(ft) | o DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION<br>Surface Conditions: Light Grasses                                                                                                                                                             | SAMPLE TYPE | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) | ATTEF<br>LIM<br>LIMIL<br>LIMIL | % GRAVEL | % SAND | % FINES | REMARKS                                                 |
|-------------------|-----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|----------------------|-------------------------|--------------------------------|----------|--------|---------|---------------------------------------------------------|
| 5155              |                 |                | Topsoil (SM), moist, low plasticity, fine sand, roots<br>Silty Sand with Gravel (SM), slightly moist, dense,<br>nonplastic, fine to coarse sand, fine subangular gravel up<br>to 3/8" dia., cemented, reaction to HCI |             |                             |                      |                         |                                |          |        |         | bulk sample 0-5'<br>Drilling Rate 0' to<br>2.5' < 1 min |
|                   |                 |                |                                                                                                                                                                                                                       | SPT         | 3-16-20<br>(36)             | 12                   |                         |                                |          |        |         | Drilling Rate 2.5'<br>to 5' < 1 min                     |
| 5150              |                 |                | very dense                                                                                                                                                                                                            | мс          | 18-28-53<br>(81)            | 18                   |                         |                                | 21       | 58     | 21      | Drilling Rate 5' to<br>7.5' < 1 min                     |
|                   |                 |                | medium dense, decreasing gravel content, subangular to subrounded                                                                                                                                                     | SPT         | 12-11-10<br>(21)            | 8                    |                         |                                |          |        |         | Drilling Rate 7.5'<br>to 10' < 1 min                    |
| <br>5145          | 10              |                | increased gravel content                                                                                                                                                                                              | мс          | 17-14-17<br>(31)            | 14                   |                         |                                |          |        |         |                                                         |
| 1                 |                 |                | Bottom of Hole = 11.5'<br>Boring Terminated at Planned Depth<br>Groundwater Not Encountered<br>Borehole Backfilled with Bentonite Chips                                                                               |             |                             |                      |                         |                                |          |        |         |                                                         |

|                              | N          | ev             | wFields                                                  | B-22-10<br>PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|------------------------------|------------|----------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| CLI                          | ENT _!     | Vevada         | a DOT                                                    | PROJECT NAME _I-80 - Golconda Summit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| PRC                          | OJECT      | NUME           | SER 475.0499.000                                         | PROJECT LOCATION Humboldt County, Nevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
| DAT                          | TE STA     | RTED           | <u>4/12/22</u> <b>COMPLETED</b> <u>4/12/22</u>           | GROUND ELEVATION _5019.97 ft HOLE SIZE _8-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| DRI                          | LLING      | CONT           | RACTOR Cascade Drilling, CME-85                          | COORDINATES ():                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| DRI                          | LLING      | METH           | OD Hollow Stem Auger                                     | LATITUDE _40.92254 LONGITUDE117.37760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| LOC                          | GGED I     | BY <u>R</u>    | . Berg CHECKED BY _ J. Ruzicka                           | DEPTH TO WATER (FT BGS) _no free water encountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| NOT                          | TES _A     | utoha          | mmer, 30-inch drop, ERi=77.8%                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| REV2.GPJ<br>ELEVATION<br>(#) | DEPTH (ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION<br>Surface Conditions: Clear Ground | SAMPLE TYPE<br>BLOW<br>COUNTS<br>(N VALUE)<br>RECOVERY<br>(N VALUE)<br>RECOVERY<br>(N VALUE)<br>RECOVERY<br>(N VALUE)<br>(N VALUE)<br>RECOVERY<br>(N VALUE)<br>(N VAL |  |  |  |  |  |  |  |  |  |

7-9-7

(16)

8-20-18 (38)

6-13-13

(26)

11-14-14

(28)

6-10-10

(20)

14

15

13

15

13

30

SPT

MC

SPT

MC

SPT

Bottom of Hole = 16.5' Boring Terminated at Planned Depth Groundwater Not Encountered

nonplastic, fine sand

6" Aggregate Base

FILL: Sitty Sand with Gravel (SM), light brown, slightly moist, medium dense, nonplastic, fine to coarse sand, fine and coarse angular gravel up to 2" dia.

Clayey Gravel with Sand (GC), brown, slightly moist,

Silty Sand (SM), light brown, slightly moist, fine sand,

Silt with Sand (ML), dark brown, slightly moist, very stiff,

very dense, nonplastic, fine sand, reaction to HCI

coarse subangular gravel up to 2.5" dia.

medium dense, low plasticity, fine to coarse sand, fine and

Borehole Backfilled with Bentonite Chips

NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 9/22/22 13:26 - S'/PROJECTS/0499.000\_1-80 GOLCONDA\_TRUCKCIMBINGLANES/03-LOGS/GINT/-80 GOLCONDA SUMMIT\_REV2. 5010

5005

0

10

15

5015 5

Drilling Rate 0' to 2.5' < 1 min

bulk sample 0.5-5'

Drilling Rate 2.5' to 5' 1 min

Drilling Rate 5' to 7.5' < 1 min

rock in shoe

Drilling Rate 7.5' to 10' 1 min

Drilling Rate 10' to 15' 4 min

harder drilling

46 39

56 24 20

10

15

# CLIENT \_Nevada DOT PROJECT NUMBER \_175.0499.000 PROJECT NUMBER \_475.0499.000 PROJECT LOCATION \_Humboldt County, Nevada

DATE STARTED \_4/12/22 \_\_\_\_\_ COMPLETED \_4/12/22 \_\_\_\_\_

LOGGED BY R. Berg CHECKED BY J. Ruzicka

DRILLING CONTRACTOR Cascade Drilling, CME-85

DRILLING METHOD Hollow Stem Auger

GROUND ELEVATION 4904.57 ft HOLE SIZE 8-in

COORDINATES ():

LATITUDE \_40.91717 LONGITUDE \_-117.36340

B-22-107

PAGE 1 OF 1

DEPTH TO WATER (FT BGS) \_ no free water encountered

NOTES Autohammer, 30-inch drop, ERi=77.8%

| ELEVATION<br>(ft) | o DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION<br>Surface Conditions: Clear Ground                                                                                                                                               |   | SAMPLE TYPE | (N VALUE)<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) |  | % GRAVEL | % SAND | % FINES | REMARKS                                                   |
|-------------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|----------------------------------|----------------------|-------------------------|--|----------|--------|---------|-----------------------------------------------------------|
|                   |                 |                | 6" Aggregate Base<br>FILL: Poorly graded Gravel with Clay and Sand (GP-GC),<br>light brown, slightly moist, medium dense, low plasticity,<br>fine to coarse sand, fine and coarse angular gravel up to |   |             |                                  |                      |                         |  |          |        |         | Drilling Rate 0' to<br>2.5' < 1 min                       |
| <br><br>4900      |                 |                | dia. 2.5"                                                                                                                                                                                              | X | MC          | 3-15-13<br>(28)                  | 15                   | 6.3                     |  | 50       | 39     | 11      | bulk sample 0.5-5'<br>Drilling Rate 2.5'<br>to 5' < 1 min |
|                   |                 |                |                                                                                                                                                                                                        | X | SPT         | 4-15-14<br>(29)                  | 12                   |                         |  |          |        |         | Drilling Rate 5' to<br>7.5' < 1 min                       |
|                   | <br>            |                | Silty gravel with Sand (GM), brown to orange, dry,<br>medium dense, nonplastic, fine sand, coarse angular<br>gravel                                                                                    | X | МС          | 14-15-15<br>(30)                 | 6                    |                         |  |          |        |         | rock in shoe<br>Drilling Rate 7.5'                        |
|                   | <u>10</u><br>   |                | Clayey Gravel with Sand (GC), brown, slightly moist,<br>medium dense, low plasticity, fine to coarse sand, fine and<br>coarse angular to subangular gravel                                             | X | SPT         | 7-10-10<br>(20)                  | 16                   |                         |  |          |        |         | to 10' 2 min                                              |
| 1                 |                 |                | Bottom of Hole = 11.5'<br>Boring Terminated at Planned Depth<br>Groundwater Not Encountered<br>Borehole Backfilled with Bentonite Chips                                                                |   |             |                                  |                      |                         |  |          |        |         |                                                           |

|                            | Vev                            | vFields                                               |             |                             |                      |                         |                 |         |          |        | F       | B-22-108<br>PAGE 1 OF 1 |
|----------------------------|--------------------------------|-------------------------------------------------------|-------------|-----------------------------|----------------------|-------------------------|-----------------|---------|----------|--------|---------|-------------------------|
| CLIENT                     | Nevada                         | a DOT                                                 | PROJECT     |                             | 80 - G               | olcon                   | da Sur          | nmit    |          |        |         |                         |
| PROJEC                     | CT NUME                        | SER _ 475.0499.000                                    | PROJECT     | LOCATIO                     | N <u>Hu</u>          | mbolo                   | dt Cou          | nty, Ne | evada    | 1      |         |                         |
| DATE S                     | TARTED                         | 4/12/22 <b>COMPLETED</b> 4/12/22                      | GROUND      | ELEVATIO                    | N 48                 | 20.92                   | 2 ft            | HOL     | LE SI    | ZE _   | 8-in    |                         |
| DRILLIN                    | IG CONT                        | RACTOR Cascade Drilling, CME-85                       |             | ATES ():                    |                      |                         |                 |         |          |        |         |                         |
| DRILLIN                    | NG METH                        | OD _Hollow Stem Auger                                 | LATITU      | JDE 40.9                    | 1709                 |                         |                 | LON     | GITU     | DE     | -117.   | 34754                   |
|                            | <b>D BY</b> <u>R</u><br>Autoha | Berg CHECKED BY J. Ruzicka                            | DEPTH       | I TO WATE                   | ER (FT               | BGS                     | 6) <u>no f</u>  | free wa | ater e   | ncou   | ntereo  | d                       |
|                            |                                |                                                       |             |                             |                      |                         | ATTEF           | RBERG   |          |        |         |                         |
| ELEVATION<br>(ft)<br>DEPTH | (ft)<br>GRAPHIC<br>LOG         | MATERIAL DESCRIPTION Surface Conditions: Clear Ground | SAMPLE TYPE | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) | LIQUID<br>LIMIT |         | % GRAVEL | % SAND | % FINES | REMARKS                 |
|                            | 0                              |                                                       |             |                             |                      |                         |                 | _       |          |        |         |                         |

6" Aggregate Base 4820 Silty, Clayey Sand with Gravel (SC-SM), light brown, slightly moist, medium dense, low plasticity, fine to coarse sand, fine angular gravel Drilling Rate 0' to 2.5' < 1 min 7 24 43 33 bulk sample 0.5-5' 5.5 24 9-13-10 (23) SPT 16 Drilling Rate 2.5' to 5' < 1 min 5 very dense 20-48-47 (95) 4815 MC 12 rock in shoe Drilling Rate 5' to 7.5' < 1 min dense, increased gravel 16-20-19 (39) SPT 11 Drilling Rate 7.5' to 10' < 1 min 10 medium dense, decreased gravel 10-10-17 4810 MC 15 (27) Drilling Rate 10' to 15' < 1 min 15 with cemented nodules 10-13-13 4805 SPT 10 (26)

Bottom of Hole = 16.5' Boring Terminated at Planned Depth Groundwater Not Encountered Borehole Backfilled with Bentonite Chips

### NewFields CLIENT Nevada DOT PROJECT NAME 1-80 - Golconda Summit PROJECT NUMBER 475.0499.000

DATE STARTED \_4/13/22 COMPLETED \_4/13/22

DRILLING CONTRACTOR Cascade Drilling, CME-85

DRILLING METHOD Hollow Stem Auger

LOGGED BY R. Berg CHECKED BY J. Ruzicka

PROJECT LOCATION Humboldt County, Nevada

GROUND ELEVATION \_5127.77 ft HOLE SIZE \_8-in COORDINATES ():

LATITUDE \_40.92204 \_\_\_\_\_ LONGITUDE -117.39060

**B-22-109** 

PAGE 1 OF 1

DEPTH TO WATER (FT BGS) \_ no free water encountered

NOTES Autohammer, 30-inch drop, ERi=77.8%

| ELEVATION | o DEPTH           | GRAPHIC | FOG | MATERIAL DESCRIPTION<br>Surface Conditions: Light Grasses                                                                                                           |   | SAMPLE TYPE | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) | PLASTICITY | % GRAVEL | % SAND | % FINES | REMARKS                                                 |
|-----------|-------------------|---------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|-----------------------------|----------------------|-------------------------|------------|----------|--------|---------|---------------------------------------------------------|
|           | <br>              |         |     | <b>Topsoil (SM)</b> , organics and rootlets<br><b>Silty Sand with Gravel (SM)</b> , dark brown, slightly moist,<br>medium dense, nonplastic, fine sand, fine gravel |   |             |                             |                      |                         |            | 20       | 21     | 20      | bulk sample 0-5'<br>Drilling Rate 0' to<br>2.5' < 1 min |
|           | <u>-</u><br><br>5 |         |     |                                                                                                                                                                     | X | SPT         | 5-11-8<br>(19)              | 13                   |                         |            | 30       | 51     | 39      | Drilling Rate 2.5'<br>to 5' < 1 min                     |
|           |                   |         |     | <b>Silty Sand (SM)</b> , light brown, moist, very dense, nonplastic, fine sand, fine subangular gravel, cemented                                                    | K | МС          | 19-24-38<br>(62)            | 18                   | 10.1                    |            |          |        |         | dry density =<br>107.9 pcf<br>Drilling Rate 5' to       |
| 512       | <u>0</u><br>      |         |     | dense, increased sand                                                                                                                                               | X | SPT         | 8-18-17<br>(35)             | 14                   |                         |            |          |        |         | Drilling Rate 7.5'<br>to 10' 1 min                      |
|           | - <u>-10</u><br>  |         |     | medium dense, angular to subangular gravel                                                                                                                          | X | МС          | 11-19-14<br>(33)            | 5                    |                         |            |          |        |         |                                                         |
|           |                   |         |     | Bottom of Hole = 11.5'<br>Boring Terminated at Planned Depth<br>Groundwater Not Encountered<br>Borehole Backfilled with Bentonite Chips                             |   |             |                             |                      |                         |            |          |        |         |                                                         |

|                   | N               | ev                     | vFields                                                                                                                                                                                |             |                             |                      |                         |                       |                  |          |        |         | B-22-110<br>PAGE 1 OF 1                               |
|-------------------|-----------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|----------------------|-------------------------|-----------------------|------------------|----------|--------|---------|-------------------------------------------------------|
| CLIEN             | т_ <u>N</u>     | evada                  | a DOT                                                                                                                                                                                  | PROJECT     | NAME                        | 80 - 6               | Golcor                  | nda Sui               | nmit             |          |        |         |                                                       |
| PROJE             | ECTI            | NUMB                   | ER 475.0499.000                                                                                                                                                                        | PROJECT     | LOCATIO                     | N _H                 | umbol                   | dt Cou                | nty, Ne          | evada    |        |         |                                                       |
| DATE              | STA             | RTED                   | _4/13/22 COMPLETED _4/13/22                                                                                                                                                            | GROUND      | ELEVATIC                    | <b>N</b> <u>5</u>    | 133.70                  | 6 ft                  | HOL              | E SIZ    | ZE _{  | 3-in    |                                                       |
| DRILL             | ING             | CONT                   | RACTOR Cascade Drilling, CME-85                                                                                                                                                        | COORDIN     | ATES ():                    |                      |                         |                       |                  |          |        |         |                                                       |
| DRILL             | ING I           | METH                   | OD Hollow Stem Auger                                                                                                                                                                   | LATIT       | UDE _40.9                   | 2167                 |                         |                       | LON              | GITU     | DE _   | -117.   | 39202                                                 |
| LOGG<br>NOTE:     | ED B<br>S _A    | IY <u>R.</u><br>utohar | Berg         CHECKED BY         J. Ruzicka           nmer, 30-inch drop, ERi=77.8%                                                                                                     | DEPTI       | H TO WATI                   | ER (F                | TBGS                    | <b>S)</b> <u>no</u>   | free wa          | iter er  | ncoui  | ntere   | d                                                     |
| ELEVATION<br>(ft) | o DEPTH<br>(ft) | GRAPHIC<br>LOG         | MATERIAL DESCRIPTION<br>Surface Conditions: Grasses                                                                                                                                    | SAMPLE TYPE | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) | ATTEF<br>LIM<br>TIMIT | PLASTICITY INDEX | % GRAVEL | % SAND | % FINES | REMARKS                                               |
| -                 |                 |                        | Topsoil (SM), with rootlets<br>Silty Gravel with Sand (GM), light brown, slightly moist,<br>dense, nonplastic, fine to coarse sand, fine and coarse<br>subangular gravel up to 2" dia. | _           |                             |                      |                         |                       |                  |          |        |         | bulk sample 0-5<br>Drilling Rate 0' t<br>2.5' < 1 min |
| <u>5130</u>       |                 |                        |                                                                                                                                                                                        | SPT         | 8-23-22<br>(45)             | 18                   | -                       |                       |                  |          |        |         | Drilling Rate 2.8<br>to 5' < 1 min                    |
|                   |                 |                        | <b>Silty Sand (SM)</b> , tan to light brown, slightly moist, very dense, nonplastic, fine to coarse sand, fine subrounded gravel, cemented, reaction to HCI                            | мс          | 11-29-42<br>(71)            | 18                   | -                       |                       |                  |          |        |         | Drilling Rate 5' t<br>7.5' < 1 min                    |
| <u>5125</u>       |                 |                        |                                                                                                                                                                                        | SPT         | 10-28-29<br>(57)            | 13                   | -                       |                       |                  | 8        | 54     | 38      | Drilling Rate 7.5<br>to 10' < 1 min                   |
| · -               | _10             |                        | dense                                                                                                                                                                                  | мс          | 17-23-27                    | 18                   |                         |                       |                  |          |        |         |                                                       |

Silty Gravel with Sand (GM), light brown, slightly moist, very dense, nonplastic, fine to coarse sand, fine subangular gravel up to 3/8" dia.

Clayey Gravel with Sand (GC), brown, dense, low

Bottom of Hole = 21.5' Boring Terminated at Planned Depth Groundwater Not Encountered Borehole Backfilled with Bentonite Chips

plasticity, fine to coarse sand, fine and coarse gravel up to 2" dia.

15

18

17-26-25 (51)

25-20-22 (42)

SPT

MC

Drilling Rate 10' to 15' 2 min

harder drilling Drilling Rate 15' to 20' 7 min

| RUCKCLIMBINGLANES\03-LOGS\GINT                                      | <br>5125<br> |
|---------------------------------------------------------------------|--------------|
| 00_1-80 GOLCONDA_T                                                  | <br>         |
| COLUMNS - GINT STD US LAB.GDT - 9/22/22 13:26 - S:\PROJECTS\0499.00 |              |
| NF-GEOTECH B                                                        |              |

15

20

| п                  |                 |                                         |                                                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|-----------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ۲                  | ROJECT          | NAME  -                                 | 80 - G                                                                                                                                                                                                      | Golcor                                                                                                                                                                             | ıda Suı                                                                                                                                                                                                                                                                                                                              | nmit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| P                  | ROJECT          | LOCATIO                                 | <b>Ν</b> _Ηι                                                                                                                                                                                                | umbol                                                                                                                                                                              | dt Cou                                                                                                                                                                                                                                                                                                                               | nty, Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G                  |                 | LEVATIO                                 | <b>N</b> <u>5</u>                                                                                                                                                                                           | 145.14                                                                                                                                                                             | 4 ft                                                                                                                                                                                                                                                                                                                                 | HOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ZE _8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| c                  | COORDINA        | ATES ():                                |                                                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | LATITU          | <b>DE</b> 40.9                          | 2128                                                                                                                                                                                                        |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      | LON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GITU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -117.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | DEPTH           | TO WAT                                  | ER (F                                                                                                                                                                                                       | T BGS                                                                                                                                                                              | <b>6)</b>                                                                                                                                                                                                                                                                                                                            | ree wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iter e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ncou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ntere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                 |                                         |                                                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | SAMPLE TYPE     | BLOW<br>COUNTS<br>(N VALUE)             | RECOVERY<br>(INCHES)                                                                                                                                                                                        | MOISTURE<br>CONTENT (%)                                                                                                                                                            | ATTEF<br>LIN<br>TIMIT                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | % GRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | % SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % FINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| f,                 |                 |                                         |                                                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bulk sample 0-5'<br>Drilling Rate 0' to<br>2.5' < 1 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | SPT             | 5-7-13<br>(20)                          | 18                                                                                                                                                                                                          | 7.0                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drilling Rate 2.5'<br>to 5' < 1 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | мс              | 3-12-8<br>(20)                          | 18                                                                                                                                                                                                          | -                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drilling Rate 5' to<br>7.5' < 1 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | SPT             | 9-22-22<br>(44)                         | 17                                                                                                                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drilling Rate 7.5'<br>to 10' 1 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| noist,<br>d coarse | мс              | 32-40-<br>50/5in                        | 18                                                                                                                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                 |                                         |                                                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | oist,<br>coarse | GROUND E<br>COORDINA<br>LATITU<br>DEPTH | GROUND ELEVATIO<br>COORDINATES ():<br>LATITUDE 40.9<br>DEPTH TO WATH<br>UNITO<br>SPT 5-7-13<br>(20)<br>MC 3-12-8<br>(20)<br>MC 3-12-8<br>(20)<br>SPT 9-22-22<br>(44)<br>oist,<br>Coarse MC 32-40-<br>50/5in | GROUND ELEVATION <u>5</u><br>COORDINATES ():<br>LATITUDE <u>40.92128</u><br>DEPTH TO WATER (F<br>MOTOON)<br>BONN<br>SUNNOON<br>BONN<br>BONN<br>BONN<br>BONN<br>BONN<br>BONN<br>BON | GROUND ELEVATION <u>5145.14</u><br>COORDINATES ():<br>LATITUDE <u>40.92128</u><br>DEPTH TO WATER (FT BGS<br>MOTO N) <u>BUILSIOW</u><br>SUNNOO<br><u>BUILSIOW</u><br>SPT <u>5-7-13</u> 18 7.0<br>MC <u>3-12-8</u> 18<br>MC <u>3-12-8</u> 18<br><u>SPT 9-22-22</u> 17<br>MC <u>32-40-</u> 18<br>Oist, <u>18</u><br>MC <u>32-40-</u> 18 | GROUND ELEVATION <u>5145.14 ft</u><br>COORDINATES ():<br>LATITUDE <u>40.92128</u><br>DEPTH TO WATER (FT BGS) <u>no 1</u><br>U <u>A</u> <u>SPT 1000 a</u> <u>SPT 1</u> | GROUND ELEVATION <u>5145.14 ft</u> HOL<br>COORDINATES ():<br>LATITUDE <u>40.92128</u> LON<br>DEPTH TO WATER (FT BGS) <u>no free wa</u><br>MO TO WATER (FT BGS) <u>no free wa</u><br>MO TO WATER (FT BGS) <u>10 INITS</u><br>MO TO WATER ( | GROUND ELEVATION <u>5145.14 ft</u> HOLE SI<br>COORDINATES ():<br>LATITUDE <u>40.92128</u> LONGITU<br>DEPTH TO WATER (FT BGS) <u>no free water e</u><br><u>HAL</u> <u>SUNDANN</u> <u>SUNDANN</u> <u>ATTERBERG</u> | GROUND ELEVATION <u>5145.14 ft</u> HOLE SIZE <u>COORDINATES ():</u><br>LATITUDE <u>40.92128</u> LONGITUDE _<br>DEPTH TO WATER (FT BGS) no free water encour<br><u>ATTERBERG</u> <u>IMMTS</u> <u>IMVES</u> <u>8</u><br><u>ATTERBERG</u> <u>IMMTS</u> <u>IMVES</u> <u>8</u><br><u>ATTERBERG</u> <u>IMMTS</u> <u>IMVES</u> <u>8</u><br><u>ATTERBERG</u> <u>IMMTS</u> <u>ATTERBERG</u> <u>IMMTS</u> <u>ATTERBERG</u> <u>IMMTS</u> <u>8</u><br><u>ATTERBERG</u> <u>IMMTS</u> <u>ATTERBERG</u> <u>IMMTS</u> <u>8</u><br><u>ATTERBERG</u> <u>IMMTS</u> <u>ATTERBERG</u> <u>IMMTS</u> <u>8</u><br><u>ATTERBERG</u> <u>IMMTS</u> <u>ATTERBERG</u> <u>IMMTS</u> <u>8</u><br><u>ATTERBERG</u> <u>IMMTS</u> <u>ATTERBERG</u> <u>1000000000000000000000000000000000000</u> | GROUND ELEVATION <u>5145.14 ft</u> HOLE SIZE <u>8-in</u><br>COORDINATES ():<br>LATITUDE <u>40.92128</u> LONGITUDE <u>-117</u> .<br>DEPTH TO WATER (FT BGS) <u>no free water encountered</u><br><u>ATTERBERG</u> <u>IIANTS</u> <u>ORV</u> <u>8</u><br><u>ATTERBERG</u> <u>IIANTS</u> <u>0</u><br><u>ATTERBERG</u> <u>1</u><br><u>ATTERBERG</u> <u>IIANTS</u> <u>0</u><br><u>ATTERBERG</u> <u>1</u><br><u>ATTERBERG</u> |

PAGE 1 OF 1

PROJECT NUMBER \_475.0499.000

DATE STARTED \_4/12/22 \_\_\_\_\_ COMPLETED \_4/12/22 \_\_\_\_\_

\_\_\_\_\_

DRILLING CONTRACTOR Cascade Drilling, CME-85

 DRILLING METHOD
 Hollow Stem Auger

 LOGGED BY
 R. Berg

 CHECKED BY
 J. Ruzicka

PROJECT NAME 1-80 - Golconda Summit

PROJECT LOCATION Humboldt County, Nevada

GROUND ELEVATION <u>5159.76 ft</u> HOLE SIZE <u>8-in</u> COORDINATES ():

LATITUDE \_40.92059 \_\_\_\_\_ LONGITUDE -117.39159

DEPTH TO WATER (FT BGS) \_ no free water encountered

NOTES Autohammer, 30-inch drop, ERi=77.8%

| _I/L V 2: CI O | ELEVATION<br>(ft) | o DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION<br>Surface Conditions: Light Grasses                                                                               |   | SAMPLE TYPE | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) | ATTEE<br>LIM<br>LIMIL<br>LIMIL | PLASTICITY<br>PLASTICITY<br>INDEX | % GRAVEL | % SAND | % FINES | REMARKS                                                 |
|----------------|-------------------|-----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|---|-------------|-----------------------------|----------------------|-------------------------|--------------------------------|-----------------------------------|----------|--------|---------|---------------------------------------------------------|
|                |                   |                 |                | Silty Sand (SM), brown, slightly moist, medium dense,<br>nonplastic, fine to coarse sand, fine gravel                                   |   |             |                             |                      |                         |                                |                                   |          |        |         | bulk sample 0-5'<br>Drilling Rate 0' to<br>2.5' < 1 min |
|                | <br><br>5155      |                 |                |                                                                                                                                         | X | SPT         | 7-6-6<br>(12)               | 18                   |                         |                                |                                   | 9        | 42     | 49      | Drilling Rate 2.5'<br>to 5' < 1 min                     |
|                |                   |                 |                | light brown, fine gravel up to 2" dia., cemented                                                                                        | X | МС          | 8-11-17<br>(28)             | 18                   |                         |                                |                                   |          |        |         | Drilling Rate 5' to<br>7.5' < 1 min                     |
|                |                   | <br> <br>       |                | very dense, decreased coarse gravel, no cementation                                                                                     | X | SPT         | 22-50/5in                   | 10                   |                         |                                |                                   |          |        |         | Drilling Rate 7.5'<br>to 10' < 1 min                    |
|                | 5150              | - 10            |                | dense, increased coarse gravel                                                                                                          | X | мс          | 18-21-34<br>(55)            | 18                   |                         |                                |                                   |          |        |         |                                                         |
|                |                   |                 |                | Bottom of Hole = 11.5'<br>Boring Terminated at Planned Depth<br>Groundwater Not Encountered<br>Borehole Backfilled with Bentonite Chips |   |             |                             |                      |                         |                                |                                   |          |        |         |                                                         |

|               | V             |     | ev        | vFields                                                                                                                                                            |     |        |                 |              |          |                     |              |       |          |       | B-22-113<br>PAGE 1 OF 1                                 |
|---------------|---------------|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-----------------|--------------|----------|---------------------|--------------|-------|----------|-------|---------------------------------------------------------|
| CLIE          | NT _          | Ne  | evada     | a DOT                                                                                                                                                              | PRC | JECT   | NAME            | 80 - G       | Golcor   | ida Sui             | mmit         |       |          |       |                                                         |
| PRO.          | JEC           | ΓN  | UME       | ER 475.0499.000                                                                                                                                                    | PRC | JECT   | LOCATIO         | Ν <u>Ηι</u>  | umbol    | dt Cou              | nty, Ne      | evada | 1        |       |                                                         |
| DATE          | E ST          | AR  | TED       | <u>4/12/22</u> <b>COMPLETED</b> <u>4/12/22</u>                                                                                                                     | GRC | DUND E | ELEVATIO        | N <u>5</u>   | 150.9    | 5 ft                | HOL          | E SI  | ZE _     | 8-in  |                                                         |
| DRIL          | LING          | G C | ONT       | RACTOR Cascade Drilling, CME-85                                                                                                                                    | coc | ORDIN  | ATES ():        |              |          |                     |              |       |          |       |                                                         |
| DRIL          | LING          | G N | IETH      | OD Hollow Stem Auger                                                                                                                                               | I   |        | JDE _40.9       | 2057         |          |                     |              | GITU  | DE _     | -117. | 39074                                                   |
| LOG           | GED           | B   | <u> R</u> | Berg CHECKED BY J. Ruzicka                                                                                                                                         | I   | DEPTH  | TO WATE         | ER (F        | r BGS    | <b>5)</b> <u>no</u> | free wa      | ter e | ncou     | ntere | d                                                       |
| NOT           | ES _          | Au  | toha      | mmer, 30-inch drop, ERI=77.8%                                                                                                                                      |     |        |                 | 1            | 1        |                     |              |       |          |       |                                                         |
| z             |               |     |           |                                                                                                                                                                    |     | Ы      | ~               | ~            | (%       |                     |              |       |          |       | (0                                                      |
|               | H             | 6   | ΞĘg       |                                                                                                                                                                    |     | È      | NTS             | VER<br>HES)  | NT<br>NT | 0                   | ΣĽ           | AVE   | AND<br>A | NES   | ARK:                                                    |
| EV<br>T       | JEF           |     | Ϋ́Ϋ́Α     | MATERIAL DESCRIPTION                                                                                                                                               |     | MPLI   | N VA            | NCON<br>NCON | NTE      | QUIE                | STIC<br>IDEX | GR    | % S/     | % FI  | KEM/                                                    |
|               |               |     | 5         | Surface Conditions: Light Grasses                                                                                                                                  |     | SAI    | 05              | 8~           | ≥ö       | <u>ل ت</u>          | PLA8         | %     |          | -     | Ľ                                                       |
| 5150          | -             |     |           | <b>Poorly Graded Sand with Gravel and Silt (SP)</b> , brown, slightly moist, medium dense, nonplastic, fine to coarse sand, fine subrounded gravel up to 1/2" dia. |     |        |                 |              |          |                     |              |       |          |       | bulk sample 0-5'<br>Drilling Rate 0' to<br>2.5' < 1 min |
|               | +             | -   |           |                                                                                                                                                                    | Ţ   | SPT    | 6-6-9           | 18           |          |                     |              |       |          |       |                                                         |
|               | +             | -   | 11        | Silty Sand with Gravel (SM) brown moist dense                                                                                                                      |     |        | (15)            |              | -        |                     |              |       |          |       | to 5' < 1 min                                           |
|               | 5             |     |           | nonplastic, fine to coarse sand, fine gravel, cemented,                                                                                                            |     |        | 12 24 26        |              |          |                     |              |       |          |       | day dopoity =                                           |
| _ <u>5145</u> | +             |     |           |                                                                                                                                                                    |     | МС     | (50)            | 18           | 14.7     |                     |              | 30    | 58       | 12    | 102.4 pcf<br>Drilling Rate 5' to<br>7.5' 1 min          |
|               | +             | _   |           |                                                                                                                                                                    | X   | SPT    | 7-14-17<br>(31) | 15           |          |                     |              |       |          |       | Drilling Rate 7.5'<br>to 10' < 1 min                    |
| 5140          | - 10          | -   |           | medium dense                                                                                                                                                       |     | МС     | 8-11-16<br>(27) | 12           |          |                     |              |       |          |       |                                                         |
| - ·           | <br><u>15</u> |     |           | Olevery Send with Group (CO) brown eligibility regist                                                                                                              |     | 1      |                 |              |          |                     |              |       |          |       | Drilling Rate 10' to<br>15' < 1 min                     |
| 5135          | +             |     |           | medium dense, low plasticity, fine to coarse sand, fine                                                                                                            |     | SPT    | 7-7-18<br>(25)  | 18           |          |                     |              | 18    | 61       | 21    |                                                         |
| - ·           | +             |     |           | subrounded to subangular graver                                                                                                                                    |     |        |                 |              |          |                     |              |       |          |       | Drilling Rate 15' to<br>20' 4 min                       |
|               | -<br>20       |     | ÍÍ        | Silty Sand with Gravel (SM), light brown, slightly moist,                                                                                                          |     |        |                 |              |          |                     |              |       |          |       |                                                         |
| 5130          |               |     |           | coarse angular gravel up to 2.5" dia.                                                                                                                              |     | МС     | 17-17-13        | 14           |          |                     |              |       |          |       |                                                         |
|               |               |     |           | Bottom of Hole = 21.5'<br>Boring Terminated at Planned Depth<br>Groundwater Not Encountered<br>Borehole Backfilled with Bentonite Chips                            |     |        |                 |              |          |                     |              |       |          |       |                                                         |

PAGE 1 OF 1

|--|

PROJECT NUMBER \_475.0499.000

DATE STARTED 4/12/22 COMPLETED 4/12/22

DRILLING CONTRACTOR Cascade Drilling, CME-85

DRILLING METHOD \_Hollow Stem Auger

LOGGED BY R. Berg CHECKED BY J. Ruzicka

PROJECT NAME 1-80 - Golconda Summit

LATITUDE \_40.92095

PROJECT LOCATION Humboldt County, Nevada

GROUND ELEVATION <u>5142.71 ft</u> HOLE SIZE <u>8-in</u> COORDINATES ():

\_\_\_\_\_ LONGITUDE -117.38969

DEPTH TO WATER (FT BGS) \_ no free water encountered

**NOTES** Autohammer, 30-inch drop, ERi=77.8%

| ELEVATION (ft) | o DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION<br>Surface Conditions: Clear Ground                          |   | SAMPLE TYPE | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) |  | % GRAVEL | % SAND | % FINES | REMARKS                                                 |
|----------------|-----------------|----------------|-----------------------------------------------------------------------------------|---|-------------|-----------------------------|----------------------|-------------------------|--|----------|--------|---------|---------------------------------------------------------|
|                |                 |                | Sandy Silt (ML), brown, slightly moist, stiff, nonplastic, fine sand, fine gravel |   |             |                             |                      |                         |  |          |        |         | bulk sample 0-5'<br>Drilling Rate 0' to<br>2.5' < 1 min |
| 5140           |                 |                |                                                                                   | X | SPT         | 4-5-5<br>(10)               | 16                   |                         |  | 13       | 32     | 55      | Drilling Rate 2.5'<br>to 5' < 1 min                     |
|                |                 |                | very stiff, cemented, reaction to HCI                                             | K | МС          | 11-13-16<br>(29)            | 18                   | 8.4                     |  |          |        |         | dry density =<br>101.2 pcf<br>Drilling Rate 5' to       |
| 5135           | -<br><br>       |                | hard, with gravel to 3/8" dia.                                                    | X | SPT         | 10-15-20<br>(35)            | 18                   |                         |  |          |        |         | 7.5' < 1 min<br>Drilling Rate 7.5'<br>to 10' < 1 min    |
|                | 10              |                | with gravel to 1.5" dia.                                                          | X | МС          | 18-21-30<br>(51)            | 18                   |                         |  |          |        |         |                                                         |

Boring Terminated at Planned Depth Groundwater Not Encountered Borehole Backfilled with Bentonite Chips

#### **RC-22-001** NewFields PAGE 1 OF 2 CLIENT Nevada DOT PROJECT NAME 1-80 - Golconda Summit PROJECT NUMBER 475.0499.000 PROJECT LOCATION Humboldt County, Nevada DATE STARTED \_4/14/22 COMPLETED \_4/14/22 GROUND ELEVATION \_4904.48 ft HOLE SIZE \_8-in DRILLING CONTRACTOR Cascade Drilling, CME-85 COORDINATES (): DRILLING METHOD Hollow Stem Auger LATITUDE 40.92930 LONGITUDE -117.41483 LOGGED BY R. Berg CHECKED BY J. Ruzicka DEPTH TO WATER (FT BGS) \_ no free water encountered NOTES Autohammer, 30-inch drop, ERi=77.8% ATTERBERG E TYPE OW JNTS JNTS JNTER HES) TTNRE STURE STURE SAND SAND ATION ft) PTH ft) dPHIC 0G MATERIAL DESCRIPTION

| ELEVATION | DEPTH                                                                                       | 0 (ff)                    | GRAPHIC<br>LOG | MATERIAL DESCRIPTION<br>Surface Conditions: Clear Ground                                                                                        |          | SAMPLE TYP  | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (% | LIMIT |    | % GRAVEL | % SAND | % FINES | REMARKS                                                                                        |
|-----------|---------------------------------------------------------------------------------------------|---------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-----------------------------|----------------------|------------------------|-------|----|----------|--------|---------|------------------------------------------------------------------------------------------------|
|           |                                                                                             |                           |                | Clayey Sand (SC), orange to brown, dry, very dense, low<br>plasticity, fine to coarse sand, fine angular gravel, likely<br>decomposed           | X        | SPT         | 33-50/5in                   | 11                   |                        | 29    | 11 | 8        | 49     | 43      | bulk sample 0-5'<br>Drilling Rate 0' to<br>2.5' < 1 min<br>Drilling Rate 2.5'<br>to 5' < 1 min |
|           |                                                                                             | -                         |                | <b>PHYLLITIC SHALE</b> , weak, highly to completely<br>weathered, recovered as silt with sand, yellow, dry, hard,<br>nonplastic                 |          | МС          | 9-70                        | 12                   |                        |       |    |          |        |         | Drilling Rate 5' to<br>7.5' < 1 min                                                            |
| 489       | 5                                                                                           | <br><br>10                |                | <b>PHYLLITIC SHALE</b> , weak, highly to completely<br>weathered, recovered as sandy clay to clayey sand, dry,<br>low plasticity, fine sand     | X        | SPT         | 17-50                       | 12                   |                        |       |    |          |        |         | Drilling Rate 7.5'<br>to 10' < 1 min                                                           |
|           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                              |                           |                | with coarse quartzite gravel                                                                                                                    |          | MC          | 45-70/4in                   | 10                   |                        |       |    |          |        |         | Drilling Rate 10' to<br>15' 2 min                                                              |
| 488       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -                         |                | <b>PHYLLITIC SHALE</b> , weak, highly to completely<br>weathered, recovered as clayey sand, orange and white,<br>dry, low plasticity, fine sand | T T      | SPT<br>9 GB | 22-50/5in                   | 11                   |                        |       |    | 4        | 48     | 48      | Drilling Rate 15' to<br>20' 3 min                                                              |
| 488       |                                                                                             | <u>20</u><br>             |                | highly weathered, slightly oxidized                                                                                                             | <b>1</b> | MC<br>> GB  | 13-70                       | 12                   |                        |       |    |          |        |         | Drilling Rate 20' to<br>25' 3 min                                                              |
|           |                                                                                             | 25                        |                | <b>PHYLLITIC SHALE</b> , weak, highly to completely<br>weathered, recovered as silt with sand, yellow, dry,<br>nonplastic, fine sand            | ens      | SPT<br>GB   | 24-44-<br>50/3in            | 15                   |                        |       |    |          |        |         | Drilling Rate 25' to<br>30' 2 min                                                              |
| 487       |                                                                                             | <u>30</u><br>-<br>-<br>35 |                |                                                                                                                                                 | en s     | MC<br>GB    | 15-50                       | 12                   |                        |       |    |          |        |         | Drilling Rate 30' to<br>35' 3 min                                                              |

### NewFields CLIENT Nevada DOT PROJECT NAME 1-80 - Golconda Summit

| PRO                 | IECT           | NUME                        | ER 475.0499.000                                                                                         | PRO                                      | JECT        | LOCATIO                     | N <u>H</u> u         | umbol                   | dt Cou | nty, Ne                      | evada    | l      |         |                                   |
|---------------------|----------------|-----------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|-----------------------------|----------------------|-------------------------|--------|------------------------------|----------|--------|---------|-----------------------------------|
| ELEVATION<br>(ft)   | (ft)<br>35     | GRAPHIC<br>LOG              | MATERIAL DESCRIPTION                                                                                    |                                          | SAMPLE TYPE | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) |        | PLASTICITY<br>INDEX<br>INDEX | % GRAVEL | % SAND | % FINES | REMARKS                           |
|                     |                |                             | PHYLLITIC SHALE, weak, highly to completely<br>weathered, recovered as sandy day to clavey sand         |                                          | SPT         | 18-50/5in                   | 11                   |                         |        |                              |          |        |         |                                   |
| 4865                | <br><br><br>   |                             | white-yellow, dry, low plasticity, fine sand                                                            | en e                                     | GB          |                             |                      |                         |        |                              |          |        |         | Drilling Rate 35' to<br>40' 5 min |
|                     |                | <b>X</b>                    | with oxidized lenses containing manganese oxide stringer                                                |                                          | МС          | 44-70                       | 12                   |                         |        |                              |          |        |         |                                   |
| <br><br><u>4860</u> | <br><br><br>45 |                             |                                                                                                         | en,                                      | GB          |                             |                      |                         |        |                              |          |        |         | Drilling Rate 40' to<br>45' 5 min |
|                     |                |                             | PHYLLITIC SHALE, weak, highly to completely<br>weathered, recovered as clavey sand, orange to white, dr |                                          | SPT         | 26-44-<br>50/4in            | 16                   |                         |        |                              |          |        |         |                                   |
| 4855                | <br> <br> <br> |                             | nonplastic with slightly plastic lenses, fine sand, with fine oxidized gravel lenses                    | en e | GB          |                             |                      |                         |        |                              |          |        |         | Drilling Rate 45' to<br>50' 5 min |
|                     | _50            | $\langle / \rangle \rangle$ | Pottom of Halo $= 50.2^{\circ}$                                                                         |                                          | мс          | 50/4in                      | 3                    |                         |        |                              |          |        |         | hammer bouncing<br>rock in shoe   |

Bottom of Hole = 50.3' Boring Terminated at Planned Depth Groundwater Not Encountered Borehole Backfilled with Bentonite Chips

ELEVATION (ft)

#### RC-22-001

PAGE 2 OF 2

PAGE 1 OF 1

CLIENT Nevada DOT

PROJECT NUMBER 475.0499.000

DATE STARTED \_4/19/22 COMPLETED \_4/22/22

DRILLING CONTRACTOR Cascade Drilling, CME-85

DRILLING METHOD Hollow Stem Auger

LOGGED BY R. Berg CHECKED BY J. Ruzicka

LATITUDE \_\_\_\_\_\_ LONGITUDE \_\_\_\_\_117.41365 DEPTH TO WATER (FT BGS) \_\_\_\_\_

COORDINATES ():

PROJECT NAME 1-80 - Golconda Summit

PROJECT LOCATION Humboldt County, Nevada

GROUND ELEVATION \_4921.69 ft HOLE SIZE \_8-in/4-in

NOTES Autohammer, 30-inch drop, ERi=86.4%

ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) GRAVEL SAND FINES REMARKS DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION INDEX % % % Surface Conditions: Clear Ground 0 CALCAREOUS QUARTZITE, weak, highly to completely weathered, recovered as silty gravel with sand, light brown, Drilling Rate 0' to 2.5' 9 min 4920 dry, very dense, nonplastic, fine to coarse sand, fine and coarse mechanically fractured subangular to angular gravel to 2.5" dia SPT 17-50/0in 4 Drilling Rate 2.5' to 4.5' 8 min Practical refusal encountered, switched to HQ core at 4.5', see log RC-22-002 R for rock log

NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 9/22/22 13:26 - S:/PROJECTS/0499.000 1-80 GOLCONDA TRUCKCLIMBINGLANES/03-LOGS/GINTV-80 GOLCONDA SUMMIT REV2. GPJ

|            | Ν              | e        | M           | /F     | 1      | el   | d          | S                         |                                                             |                                               |             |        |          |            | P     | AGE         | 1 O         | - 2      |
|------------|----------------|----------|-------------|--------|--------|------|------------|---------------------------|-------------------------------------------------------------|-----------------------------------------------|-------------|--------|----------|------------|-------|-------------|-------------|----------|
| CLIE       | NT _1          | leva     | ida I       | тос    |        |      |            |                           |                                                             | PROJECT NAME Go                               | lconda Sur  | nmit   |          |            |       |             |             |          |
| PRO.       | JECT           | NUN      | <b>IBE</b>  | R _4   | 475.   | 0499 | 9.00       | 0                         |                                                             | PROJECT LOCATION Hum                          | boldt Coun  | ty, Ne | vada     |            |       |             |             |          |
| DATE       | E STA          | RTE      | D _         | 4/19   | )/22   |      |            | C                         | OMPLETED _4/22/22                                           | GROUND ELEVATION 492                          | 1.69 ft     | HOL    | E SIZ    | <b>E</b> 4 | -in   |             |             |          |
| DRIL       | LING           | COI      | NTR         | АСТ    | OR     | Ca   | sca        | de Dril                   | ling, CME-85                                                | COORDINATES ():                               |             |        |          |            |       |             |             |          |
| DRIL       | LING           | ME       | ГНО         | D _ł   | HQ (   | Core |            |                           |                                                             | LATITUDE _ 40.92917                           |             | LONG   | GITU     | DE         | 117.4 | 1365        |             |          |
| LOG        | GED I          | BY _     | R.B         | erg    |        |      |            | C                         | HECKED BY J. Ruzicka                                        | DEPTH TO WATER (FT E                          | 3GS) _no fr | ee wa  | ter er   | ncoun      | tered |             |             |          |
|            | ES             |          |             |        |        |      |            |                           |                                                             |                                               |             |        |          |            |       |             |             |          |
|            |                |          | H           |        |        | Q    | 0          |                           |                                                             |                                               | E           | EL     | [        |            |       | VUIT        | Y LOO       | 3        |
| ē          | Ξ              | ġ        | QT          | (%     | (%)    | RIN  | ES         | Ч<br>Ч<br>С<br>Н<br>С     |                                                             |                                               | RA (        | ∐      |          |            | U     | ШК          | S<br>S<br>S |          |
| (ff)       | EP (#          | Z        | Ē           | U<br>U | g      | 벁    | NDN<br>NDN | LOO                       | MATERIAL DES                                                | SCRIPTION                                     |             | I RI   | ЦЧ       | ₫          | CIN   | <b>L</b> TU | I I I       |          |
|            |                | ۲        | S           | R      | ۲<br>۳ | .ΕΑ  | HAF        | ц<br>Ц                    |                                                             |                                               |             | ATE    |          |            | PA    | ШЦ          | DUG         | Ž        |
|            | 0              |          |             |        |        | 5    |            |                           | Surface details:                                            |                                               | l E         | \$     |          |            |       | ₹           | R<br>N<br>N |          |
|            |                |          |             |        |        |      |            |                           | Refer to Soil log for 0 - 4.5'                              |                                               |             |        |          |            |       |             |             |          |
| 4920       |                |          |             |        |        |      |            |                           |                                                             |                                               |             | -      | -        |            |       |             |             |          |
|            | <br>- <u>5</u> | 1        | 1.5         | 94     | 0      | sw   | R3         |                           | CALCAREOUS QUARTZITE, liq<br>medium grained, slightly weath | ht brown, coarse to<br>ered, medium strong to | 5           | -      | -        |            |       |             |             |          |
| 4915       | [ ]            | 2        | 0.5         | 100    | 83     | SW   | R4         |                           | strong, moderately to intensely                             | fractured, reaction to HCI                    |             |        |          |            |       |             |             |          |
|            |                | 4        | 1           | 92     | 0      | sw   | R4         | $\langle \rangle \rangle$ | intensely fractured 7.0 to 8.0 fe                           | et, manganese oxide                           | 2           | -      | J        | 45         | мс    | т           | SR          | Са       |
| ;<br>      |                |          |             |        |        |      |            |                           | stringers<br>8.0 to 12.5 feet Unconfined Co                 | mpressive Strength = 110                      |             | 1 -    |          |            |       |             |             | Í        |
|            | 10             | 5        | 2           | 100    | 100    | MW   | R5         | $\mathbb{K}$              | MPa                                                         | ) foot                                        |             | -      | J        | 60         | мс    | т           | SR          | Ca       |
|            | 10             |          | 4 5         |        |        | 0.14 | DC         | >>>                       | intensely fractured 10.0 to 11.5                            | feet                                          | 13          |        | 1        |            |       |             |             |          |
| 4910       |                | 0        | 1.5         | 44     | 0      | 500  | Ro         |                           |                                                             |                                               |             | -      | J        | 10         | с     | 0           | SR          | Са       |
| 1          |                | 7        | 1           | 92     | 92     | SW   | R5         | $\langle \! / \! \rangle$ | moderately fractured 11.5 to 12                             | .5 feet                                       |             | -      | J        | 0          | C     | Т           | SR          | Ca       |
|            |                |          |             |        |        |      |            | $\gg$                     | moderately fractured 12.5 to 15                             | .3 feet                                       |             |        | -<br>    | 45         | C     | т           | SR          | Ca       |
| - ·        |                | 8        | 2.83        | 99     | 93     | SW   | R3         | $\mathbb{K}$              |                                                             |                                               |             | -      | Ĵ        | 45         | č     | Ť           | SR          | Ca       |
|            |                | L        |             | 100    |        |      | _          | $\langle / \rangle$       |                                                             |                                               | 14          | -      |          | 45         | MC    | <br>  T     | SR          | Ca<br>Ca |
| 4005       | + -            | 9        | 0.5<br>h 92 | 100    | 100    | SW   | R3<br>R3   | $\bigotimes$              | intensely fractured 15.3 to 15.8                            | feet                                          |             | -      | -        |            |       |             |             |          |
| 4905       | + -            | 11       | 0.75        | 67     | 0      | MW   | R3         | $\mathbb{K}$              | intensely fractured 16 8 to 25 5                            | feet                                          |             | -      | -        |            |       |             |             |          |
|            | + -            |          |             |        |        |      |            | >>>                       |                                                             |                                               |             | 1 -    | J        | 45         | MC    | Т           | SR          | Са       |
|            | + -            | 12       | 2.5         | 100    | 0      | sw   | R3         |                           |                                                             |                                               | 10          | -      |          |            |       |             |             |          |
|            | 20             |          |             |        |        |      |            | $\mathbb{K}$              |                                                             |                                               |             |        |          |            |       |             |             |          |
|            | + -            | 13       | 2           | 100    | 46     | sw   | R4         | >>>                       |                                                             |                                               | 14          | -      |          |            |       |             |             |          |
| 4900       | L _            |          | _           |        |        |      |            | X                         |                                                             |                                               |             |        |          |            |       |             |             |          |
|            | L _            |          |             |        |        |      |            | $\langle / \rangle$       |                                                             |                                               |             | _      |          |            |       |             |             |          |
| <u>-</u> - | Ł.             | 14       | 2.5         | 90     | 0      | MW   | R3         | $\gg$                     |                                                             |                                               |             | _      |          |            |       |             |             |          |
| <u> </u>   | 25             |          |             |        |        |      |            |                           |                                                             |                                               | 20          |        |          |            |       |             |             |          |
| L -        |                | 15       | 0 75        | 100    | 97     | sw   | R4         | $\langle \rangle \rangle$ | 25.5 to 27.0 feet Unconfined C                              | ompressive Strength - 0/                      |             |        | J        | 45         | С     | Т           | SR          | Са       |
| 4895       |                |          |             |        |        | 0    |            |                           | MPa                                                         | Shiplessive Strength – 94                     |             | -      |          | 45         |       | T<br>T      | SR          | Ca<br>Ca |
|            |                |          |             |        |        |      |            | K                         | moderately fractured 25.5 to 30                             | .3 feet                                       |             |        | Ĵ        | 45         | c     | Ť           | SR          | Ca       |
|            |                | 16       | 2 02        | 100    | 100    | ew.  | ы          | >>>                       |                                                             |                                               |             | -      | V        | 30         | С     | Т           | С           | Са       |
| L          |                |          | 0.00        | 100    |        |      | 1.14       | $\otimes$                 |                                                             |                                               | 8           | -      | - V<br>J | 30         |       |             | C<br>SR     | Ca<br>Ca |
| [          | 30             | <u> </u> |             |        | -      |      |            | $\langle \! / \! \rangle$ | intensely frequenced 20.2 to 20.0                           | foot                                          |             | -      | Ĵ        | 45         | č     | ŏ           | SR          | Ca       |
| 4890       |                | 17       | 1.17        | 57     | 0      | sw   | R4         |                           | mensely fractured 30.3 to 32.8                              | IEEL                                          |             | -      | -        |            |       |             |             |          |
|            |                | 18       | 1.25        | 100    | 0      | sw   | R3         | $\otimes$                 |                                                             |                                               | 6           |        | 1        |            |       |             |             |          |
| F -        |                | 19       | 0.75        | 100    | 100    | sw   | R3         | $\langle \rangle \rangle$ | moderately fractured 32.8 to 37                             | .0 feet                                       |             | -      | J        | 45         | MC    | Т           | SR          | Ca       |
|            | 1 -            | 20       | 3 5         | 95     | 29     | sw   | R4         |                           |                                                             |                                               |             | -      | J        | 45         | С     | Т           | SR          | Ca       |
| F -        | 35             | 120      | 0.0         |        | 20     | 5.11 |            | $\mathbb{K}//\mathbb{A}$  |                                                             |                                               |             |        |          |            |       |             |             |          |

### RC-22-002-R

#### RC-22-002-R

PAGE 2 OF 2

CLIENT Nevada DOT

PROJECT NAME 1-80 - Golconda Summit

PROJECT LOCATION Humboldt County, Nevada

PROJECT NUMBER \_475.0499.000

|                   |               |            | -                 |         |         | (1)        |          |                |                                                                                                                                                              | ш                     |            | [           | DISCO          | ONTI           | TIU         | Y LOO          | 3              |
|-------------------|---------------|------------|-------------------|---------|---------|------------|----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|-------------|----------------|----------------|-------------|----------------|----------------|
| ELEVATION<br>(ft) | (H)<br>35     | RUN NO.    | RUN LENGTH        | REC (%) | RQD (%) | WEATHERING | HARDNESS | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                                         | DRILLING RAT<br>(MIN) | WATER LEVE | ТҮРЕ        | DIP            | SPACING        | APERTURE    | ROUGHNESS      | INFILL         |
| <br>4885          |               | 20         | 3.5               | 95      | 29      | sw         | R4       |                | CALCAREOUS QUARTZITE, light brown, coarse to medium grained, slightly weathered, medium strong to strong, moderately to intensely fractured, reaction to HCI | 17                    | _          | J           | 60<br>90       | C<br>C         | T<br>T      | SR<br>SR       | No<br>Cl       |
|                   |               | 21         | 1.5               | 100     | 89      | SW         | R4       |                | ( <i>continued</i> )<br>37.0 to 38.5 feet Unconfined Compressive Strength = 67<br>MPa                                                                        | 6                     | _          | J<br>V<br>V | 30<br>45<br>45 | C<br>C<br>C    | T<br>T<br>T | SR<br>SR<br>SR | Cl<br>Ca<br>Ca |
|                   | 40            | <u>2</u> 2 | <u>0.5</u><br>1.5 | 100     | 0       | MW         | R3       |                | intensely fractured 37.0 to 38.5                                                                                                                             | 20                    |            |             |                |                |             |                |                |
| 4880              |               | 24         | 1.5               | 100     | 94      | sw         | R4       |                | 40.5 to 42.0 feet Unconfined Compressive Strength = 79<br>MPa<br>mederately fractured 40.5 to 42.0 feet                                                      | 15                    | -          |             |                |                |             |                |                |
|                   |               | 25         | 1.5               | 100     | 0       | MW         | R3       |                | intensely fractured 42.0 to 50.0 feet                                                                                                                        | 15                    | _          |             |                |                |             |                |                |
|                   |               | 26         | 1                 | 83      | 0       | SW         | R3       |                |                                                                                                                                                              |                       | -          | J           | 75             | vc             | -           | SR             | No             |
| 4875              | <u>45</u><br> | 27         | 2.5               | 100     | 57      | MW         | R3       |                |                                                                                                                                                              | 9                     |            | J           | 45             | VC             | т           | SR             | CI             |
|                   | <br><br>50    | 28         | 3                 | 97      | 22      | MW         | R3       |                |                                                                                                                                                              | 11                    | -          | J<br>J<br>J | 45<br>45<br>45 | VC<br>VC<br>VC | T<br>T<br>T | SR<br>SR<br>SR | CI<br>CI<br>CI |
|                   |               |            |                   |         |         |            | -        |                | Bottom of Hole = 50.0'                                                                                                                                       |                       |            | J           | 45<br>30       | VC             | Τ           | SR             | CI             |

Bottom of Hole = 50.0' Boring Terminated at Planned Depth Borehole Backfilled with Bentonites Chips

PAGE 1 OF 1

CLIENT Nevada DOT

PROJECT NUMBER \_475.0499.000

DATE STARTED \_4/22/22 \_\_\_\_\_ COMPLETED \_4/23/22 \_\_\_\_\_

DRILLING CONTRACTOR Cascade Drilling, CME-85 COORDINATES ():

DRILLING METHOD Hollow Stem Auger

LOGGED BY R. Berg CHECKED BY J. Ruzicka

DEPTH TO WATER (FT BGS)

PROJECT NAME 1-80 - Golconda Summit

PROJECT LOCATION Humboldt County, Nevada

GROUND ELEVATION 4933.35 ft HOLE SIZE 8-in/4-in

LATITUDE \_40.92899 \_\_\_\_\_ LONGITUDE -117.41282

NOTES Autohammer, 30-inch drop, ERi=86.4%

| ELEVATION<br>(ft)<br>O DEPTH | CRAPHIC<br>LOG | MATERIAL DESCRIPTION<br>Surface Conditions: Clear Ground                                                                                                                                                                                                                                                                                                                    | SAMPLE TYPE | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) | ATTEF<br>LIM<br>LIMIT | PLASTICITY | % GRAVEL | % SAND | % FINES | REMARKS                                                                                                          |
|------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|----------------------|-------------------------|-----------------------|------------|----------|--------|---------|------------------------------------------------------------------------------------------------------------------|
| <br><br>4930 -               |                | Silty Sand with Gravel (SM), tan brown, slightly moist,<br>nonplastic, fine to coarse sand, fine angular gravel to 3/8"<br>dia.<br>Silty Gravel with Sand (GM), light brown, dry, very dense,<br>low plasticity, fine to coarse sand, fine and coarse gravel to<br>3" dia.<br>Practical refusal encountered, switched to HQ core at 4',<br>see log RC-22-003_R for rock log | SPT         | 8-50/5in                    | 6                    |                         |                       |            |          |        |         | Drilling Rate 0' to<br>2.5' 2 min<br>rig chatter, hard<br>drilling at 3.5'<br>Drilling Rate 2.5'<br>to 4' 15 min |

\_\_\_\_\_

\_\_\_\_\_

NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 9/22/22 13:26 - S:/PROJECTS/0499.000\_1-80 GOLCONDA\_TRUCKCIMBINGLANES/03-LOGS/GINTN-80 GOLCONDA SUMMIT\_REV2.GPJ

|          | Ν           | e        | M           | /F   | i        | el      | d    | S                                         |                                                                    |                                                        |                   |         |        |          | P        | AGE         | 1 0        | F 2      |
|----------|-------------|----------|-------------|------|----------|---------|------|-------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|-------------------|---------|--------|----------|----------|-------------|------------|----------|
| CLIE     | <u>1</u> TN | Veva     | ida I       | DOT  | -        |         |      |                                           |                                                                    | PROJECT NAME 1-80 - Gol                                | conda Sun         | nmit    |        |          |          |             |            |          |
| PRO      | JECT        | NUN      | ИВЕ         | R _  | 475.     | 0499    | 9.00 | 0                                         |                                                                    | PROJECT LOCATION Hum                                   | boldt Coun        | ty, Nev | /ada   |          |          |             |            |          |
| DATE     | E STA       | RTE      | D _         | 4/22 | 2/22     |         |      | c                                         | OMPLETED _4/23/22                                                  | GROUND ELEVATION 4933                                  | 3.35 ft           | HOL     | e siz  | E _4     | -in      |             |            |          |
|          | LING        | COI      | NTR         | ACT  | OR       | Ca      | sca  | de Dril                                   | ling, CME-85                                                       | COORDINATES ():                                        |                   |         |        |          |          |             |            |          |
| DRIL     | LING        | ME       | ГНО         | D _  | HQ       | Core    | •    |                                           |                                                                    | LATITUDE _40.92899                                     |                   | LONG    | SITUE  | DE       | 117.4    | 1282        |            |          |
| LOG      | GED I       | 3Y _     | R.B         | lerg |          |         |      | c                                         | HECKED BY J. Ruzicka                                               | DEPTH TO WATER (FT B                                   | <b>GS)</b> _no fr | ee wat  | er en  | coun     | tered    |             |            |          |
|          |             |          |             |      |          |         |      |                                           |                                                                    |                                                        | ш                 |         | [      | DISC     |          |             | Y LO       | <br>3    |
| N        | -           | .        | GTH         | ()   | ()       | SING    | SS   | <u>ں</u>                                  |                                                                    |                                                        | ATI               | EVEL    |        | _        |          | ш           | SS         |          |
| (F)      | EPTF        | Ž        | Р<br>И<br>Ц | 60   |          | Ψ       | NC   | HH<br>OG                                  | MATERIAL DE                                                        | SCRIPTION                                              |                   | R LE    | щ      | <u>م</u> | UNG N    | <b>I</b> UR | Ŭ<br>Z     | F        |
| EV<br>EV |             | RU<br>N  | Z           | RE   | R<br>Q   | EAT     | IARI | GR/                                       |                                                                    |                                                        |                   | ATEI    | Ţ      | ⊟        | PAC      | ĒŖ          | ļδ         | IL I     |
|          | 0           |          | <u>م</u>    |      |          | M       | T    |                                           | Surface details:                                                   |                                                        | DR                | M       |        |          | N<br>N   | AP          | ROL        |          |
|          |             |          |             |      |          |         |      |                                           | Refer to Soil log for 0 - 4'                                       |                                                        |                   |         |        |          |          |             |            |          |
|          |             |          |             |      |          |         |      |                                           |                                                                    |                                                        |                   | -       |        |          |          |             |            |          |
|          |             |          |             |      |          |         |      |                                           |                                                                    |                                                        |                   | -       |        |          |          |             |            |          |
| 4930     |             |          |             |      |          |         |      |                                           |                                                                    |                                                        |                   |         |        |          |          |             |            |          |
| - ·      | 5           | 1        | 1           | 100  | 0        | нw      | R4   |                                           | CALCAREOUS QUARTZITE, li<br>grained, slightly to moderately        | ght grey to brown, fine<br>weathered, medium strong to |                   |         |        |          |          |             |            |          |
| - ·      | 1           | 2        | 1.5         | 100  | 50       | нw      | R4   |                                           | strong, moderately to intensely                                    | r fractured, reaction to HCl,                          | 13                | _       | J      | 45       | С        | 0           | SR         | No       |
| F .      | 1 -         | 3        | 0.5         | 100  | 0        | нw      | R4   | >>>                                       | moderately fractured 5 to 6.5 fe                                   | eet                                                    |                   |         | J      | 45<br>90 | C<br>C   | 0           | SR<br>  SR | CI<br>CI |
| 4925     | -           | 4        | 2           | 96   | 33       | sw      | R5   | X                                         | intensely fractured 6.5 to 7 fee<br>7.0 to 12.0 feet Unconfined Co | t<br>mpressive Strenath = 132                          |                   | _       |        |          |          |             |            |          |
| 1020     | 1 -         |          | _           |      |          |         |      | $\langle \rangle \rangle$                 | MPa                                                                | 1 3 1                                                  |                   | _       | J      | 45       | VC       | 0           | SR         | Root     |
|          | 10          |          |             |      |          |         |      | >>>                                       | intensely fractured 7.5 to 9.0 fe                                  | et                                                     | 16                |         | J      | 45       |          | 0           | SR         | Root     |
|          | 1.          | 5        | 3           | 100  | 100      | sw      | R5   |                                           | dark grey to brown<br>slightly fractured 9.0 to 33.0 fe            | et                                                     |                   | _       | J      | 45       | INC      | 0           | SR         | Ca       |
|          | -           |          |             |      |          |         |      |                                           |                                                                    |                                                        |                   |         |        |          |          | _           |            |          |
| 4920     | -           |          |             |      |          |         |      | >>>                                       |                                                                    |                                                        |                   | _       | J      | 0        | VC       | 0           | SR         | CI       |
| 1020     | -<br>       | 6        | 4           | 100  | 65       | sw      | R4   | X                                         |                                                                    |                                                        | 17                | _       | J      | 0        | VC<br>VC | 0           | R<br>R     | No<br>No |
| ľ.       | _15         | Ľ        |             |      |          | <b></b> |      |                                           |                                                                    |                                                        |                   |         | J      | 45       | VC       | 0           | R          | Fe       |
| ľ '      | -           |          |             |      |          |         |      | >>>                                       |                                                                    |                                                        |                   |         |        | 15       | C        | 0           | P          | C2       |
| ľ.       | 1 -         | 7        | 1.75        | 100  | 100      | sw      | R4   |                                           |                                                                    |                                                        | 15                | _       | J      | 43       |          |             |            | Ca       |
| 4915     | -           | _        |             |      |          |         |      | K                                         |                                                                    |                                                        |                   | - 1     |        |          |          |             |            |          |
|          | 1 -         |          |             |      |          |         |      | $\gg$                                     |                                                                    |                                                        |                   |         | J      | 30       | с        | о           | SR         | Са       |
| Γ.       | 20          |          | F           | 100  | 00       | 0.14    | D4   | X                                         |                                                                    |                                                        | 26                |         | -      |          |          |             |            |          |
| · ۲      | 1 -         | ð        | 5           |      | 98       | 500     | K4   |                                           |                                                                    |                                                        | 20                |         |        |          |          |             |            |          |
| -        | -<br>       |          |             |      |          |         |      | >>>                                       |                                                                    |                                                        |                   | _       |        |          |          |             |            |          |
| 4910     | -           | <u> </u> |             |      |          |         | -    |                                           |                                                                    |                                                        |                   | - 1     |        |          |          |             |            |          |
|          | 1 -         |          |             |      |          |         |      | $\mathbb{K}$                              |                                                                    |                                                        |                   | _       | V      | 45       | С        | С           | -          | Ca       |
| [ `      | 25          | L        | F           | 07   | 02       | C/V     | D٨   | $\gg$                                     |                                                                    |                                                        | 27                | _       |        |          |          | _           |            |          |
|          | 1 -         | 9        | 5           | 91   | 93       | 300     | 17.4 |                                           |                                                                    |                                                        | 31                |         | J      | 45<br>45 | VC<br>VC | 0<br>C      | SR         | Ca<br>Ca |
| [        | ] -         |          |             |      |          |         |      | $\mathbb{K}$                              |                                                                    |                                                        |                   | _       | J      | 45       | с        | о           | SR         | Ca       |
| 4905     | ]           | ╞        |             |      |          | -       | -    |                                           | 27.8 to 33.0 feet Unconfined C                                     | ompressive Strenath = 120                              |                   | _       | J      | 45       | С        | 0           | SR         | Ca,C     |
|          | ]           |          |             |      |          |         |      |                                           | MPa<br>roots poted in fractures                                    |                                                        |                   | _       | J      | 90       | VC       | 0           | SR         | Ca       |
| Ľ        | _30         |          | 5 OF        |      | 70       | N 43 A  | 0    | $\mathbb{K}$                              |                                                                    |                                                        | 0.0               | _       | J      | 45       | VC       | 0           | SR         | Ca       |
| Ļ        |             |          | p.25        | 192  | 18       |         | K5   |                                           |                                                                    |                                                        | 23                | -       | J      | 45       | VC       | 0           | SR         | Ca       |
|          |             | -        |             |      |          |         |      | )<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |                                                                    |                                                        |                   | -       | J      | 45       | VC       | 0           | SR         | No       |
| 4900     |             |          |             |      | <u> </u> | -       |      | $\mathbb{K}$                              | TIJEE highly altered tan to ligh                                   | at brown with green lavering                           |                   | -       | V<br>V | 45<br>45 | VC<br>VC | 0           | SR<br>  R  | Ca<br>No |
|          |             | 11       | 2           | 92   | 25       | мw      | R3   |                                           | aphanitic, moderately weather                                      | ed, medium strong,                                     |                   | -       | J      | 45       | VC       | 0           | SR         | No       |
| <u>.</u> | 35          |          |             |      |          | 1       |      | $\sim$                                    | moderately to intensely fracture                                   | ed, with clast inclusions and                          |                   |         | J      | 40       |          |             | SR         | Ua.      |

#### (Continued Next Page)

RC-22-003-R

### RC-22-003-R PAGE 2 OF 2

CLIENT Nevada DOT

PROJECT NAME 1-80 - Golconda Summit

| PR        | JEC                                                                                         | NU                | NBE        | κ       | +/5.    | 0498       | 9.00     | 0              |                                                                                                                                                                                               |                       | ty, nev    | /ada                                                                                        |                            |                                                                                              |             |                            |                               |
|-----------|---------------------------------------------------------------------------------------------|-------------------|------------|---------|---------|------------|----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|---------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------|-------------|----------------------------|-------------------------------|
|           |                                                                                             |                   | -          |         |         | (1)        |          |                |                                                                                                                                                                                               | щ                     | _          | Γ                                                                                           | DISCO                      |                                                                                              |             | Y LOO                      | 3                             |
| ELEVATION | (+)<br>DEPTH<br>32                                                                          | RUN NO.           | RUN LENGTH | REC (%) | RQD (%) | WEATHERING | HARDNESS | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                                                                          | DRILLING RAT<br>(MIN) | WATER LEVE | ТҮРЕ                                                                                        | DIP                        | SPACING                                                                                      | APERTURE    | ROUGHNESS                  | INFILL                        |
|           |                                                                                             | 12                | 3          | 100     | 83      | MW         | R5       |                | secondary mineralization of iron and pyrite<br>CALCAREOUS QUARTZITE, grey, fine grained, slightly to<br>moderately weathered, medium strong to strong, slightly<br>fractured, reaction to HCI | 27                    |            | しししし                                                                                        | 45<br>45<br>45<br>45<br>45 | ≤≤< <p>&lt;<p>&lt;<p>&lt;<p>&lt;<p>&lt;<p>&lt;<p>&lt;<p>&lt;</p></p></p></p></p></p></p></p> | 00000       | SR<br>SR<br>SR<br>SR<br>SR | Ca<br>Ca<br>Ca<br>No<br>Ca,O) |
|           | <u>5</u><br>-<br>-<br>40                                                                    |                   | _          | 0.5     | 0.5     |            |          |                | 35.0 to 38.0 feet Unconfined Compressive Strength = 144<br>MPa                                                                                                                                |                       | -          | J<br>J<br>J                                                                                 | 45<br>30<br>30<br>30       | VC<br>VC<br>VC<br>VC                                                                         | 0000        | SR<br>SR<br>SR<br>SR       | Ca<br>Ca<br>Ca                |
| 489       |                                                                                             | -                 | 5          | 95      | 95      | SW         | R5       |                | 42.0 to 45.0 feet Unconfined Compressive Strength = 150<br>MPa                                                                                                                                | 34                    | -          | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L | 45<br>45<br>45<br>30<br>45 |                                                                                              | 00000       | SR<br>SR<br>SR<br>SR<br>SR | Ca<br>Ca<br>Ca<br>No<br>Ca    |
| GINIVROC  | 45                                                                                          | - 14              | 2          | 100     | 100     | sw         | R5       |                |                                                                                                                                                                                               | 30                    | _          | V<br>V<br>V                                                                                 | 45<br>45<br>45             | VC<br>VC<br>VC                                                                               | С<br>С<br>С | -<br>-<br>-                | Ca<br>Ca<br>Ca                |
| 03-LOGS(  |                                                                                             | - 15              | 2          | 75      | 33      | мw         | R3       |                | SANDSTONE, fine grained, moderately weathered,<br>medium strong, moderately to intensely fractured, with<br>calcium carbonate inclusions                                                      |                       | _          | V<br>V                                                                                      | 15<br>45                   | VC<br>VC                                                                                     | C<br>C      | -                          | Ca<br>Ca                      |
| BINGLANES | 5 -                                                                                         | 16                | 3          | 0       | 0       | cw         | R0       |                | Drilling return fluids indicate material highly to completely<br>weathered, cuttings observed as dominately yellow fine<br>sandy silt to silty sand.                                          | 11                    | -          |                                                                                             |                            |                                                                                              |             |                            |                               |
|           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>17<br>- | 5          | 0       | 0       | cw         | R0       |                |                                                                                                                                                                                               | 25                    |            |                                                                                             |                            |                                                                                              |             |                            |                               |

Bottom of Hole = 55.0' Boring Terminated at Planned Depth Borehole Backfilled with Bentonites Chips

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/22/22 13:03 - S:\PROJECTS\0499.000\_I-80

|          | N           | ev                                     | vFields                                                                                                                                                                                                                                            |                 |                   |                    |        |                      |             |          |          | R        | C-22-004<br>PAGE 1 OF 2             |
|----------|-------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|--------------------|--------|----------------------|-------------|----------|----------|----------|-------------------------------------|
| CLIE     | <u>1</u> TN | Nevada                                 | a DOT                                                                                                                                                                                                                                              | PROJEC          | T NAME <u> </u> - | 80 - 0             | Solcor | ida Su               | mmit        |          |          |          |                                     |
| PRO      | JECT        | NUME                                   | ER 475.0499.000                                                                                                                                                                                                                                    | PROJEC          |                   | N _H               | umbol  | dt Cou               | unty, Ne    | evada    | 1        |          |                                     |
| DATI     | E STA       | RTED                                   | _4/13/22 COMPLETED _4/13/22                                                                                                                                                                                                                        | GROUND          | ELEVATIO          | <b>DN</b> <u>5</u> | 100.7  | 1 ft                 | но          | LE SI    | ZE _     | 8-in     |                                     |
| DRIL     | LING        | CONT                                   | RACTOR Cascade Drilling, CME-85                                                                                                                                                                                                                    | COORDI          | NATES ():         |                    |        |                      |             |          |          |          |                                     |
| DRIL     | LING        | METH                                   | OD Hollow Stem Auger                                                                                                                                                                                                                               | LATI            | <b>UDE</b> 40.9   | 2195               |        |                      | LON         | GITU     | DE       | -117     | 38634                               |
| LOG      | GED         | BY R                                   | Berg CHECKED BY J Ruzicka                                                                                                                                                                                                                          | DEPT            |                   | FR (F              | T BGS  | s) no                | free wa     | ater e   |          | ntere    | d                                   |
| NOT      | ES A        | Autoha                                 | mmer, 30-inch drop, ERi=77.8%                                                                                                                                                                                                                      | DEIT            |                   |                    |        | <i>,</i> <u>-110</u> | 100 W       |          | 11000    |          | <u>u</u>                            |
|          |             |                                        |                                                                                                                                                                                                                                                    |                 |                   |                    |        | ATTE                 | RBERG       | ì        |          |          |                                     |
| Z        |             | 0                                      |                                                                                                                                                                                                                                                    | /PE             | ()<br>()          | 2                  | щ%     | LIN                  | <u>/ITS</u> |          |          | 0        | Ŋ                                   |
| TIC ATIC | E HI        | Ξg                                     | MATERIAL DESCRIPTION                                                                                                                                                                                                                               | Ĺ               |                   | NES<br>HES         | ΪĽ     | ο.                   | Ľ×          | AVE      | AND      | NE       | ARK                                 |
|          | DEI         | LC                                     | WATENAE DESCRIPTION                                                                                                                                                                                                                                | APL             | ZOL<br>ZOL        |                    | OIS    | UII<br>MIT           | DEC         | BR<br>BR | % S      | × FI     | EW                                  |
| Ē        |             |                                        | Surface Conditions: Clear Ground                                                                                                                                                                                                                   | SAI             | 05                | R )                | ≥ö     | <u>_</u> _           | LAS         | %        |          |          | œ                                   |
| 5100     | 0           |                                        | 6" Aggregate Base                                                                                                                                                                                                                                  |                 |                   |                    |        |                      | -           |          |          |          |                                     |
|          | + -         |                                        | FILL: Clayey Sand with Gravel (SC), dark brown, slightly                                                                                                                                                                                           |                 |                   |                    |        |                      |             |          |          |          | Drilling Rate 0' to                 |
|          | + -         |                                        | moist, loose, low plasticity, fine to coarse sand, fine and<br>coarse subrounded gravel to 2" dia.                                                                                                                                                 |                 |                   |                    |        |                      |             |          |          |          | 2.5' < 1 min                        |
| -        | + -         | $\otimes$                              |                                                                                                                                                                                                                                                    |                 | 4-3-2             | 4                  | 1      |                      |             |          |          |          |                                     |
| -        | + -         |                                        |                                                                                                                                                                                                                                                    |                 | (5)               | -                  | -      |                      |             |          |          |          | Drilling Rate 2.5'<br>to 5' < 1 min |
|          | 5           |                                        |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          | -                                   |
| 5095     | ╡           |                                        | medium plasticity, medium dense                                                                                                                                                                                                                    | мс              | 6-5-10            | 16                 | 10.4   | 36                   | 19          | 33       | 40       | 27       | dry density = 94.9                  |
|          | ÷           |                                        |                                                                                                                                                                                                                                                    |                 | (10)              |                    |        |                      |             |          |          |          | Drilling Rate 5' to                 |
| L .      | -           |                                        |                                                                                                                                                                                                                                                    |                 | 2 6 10            |                    | -      |                      |             |          |          |          | 7.5' 1 min                          |
| L .      | _           |                                        |                                                                                                                                                                                                                                                    | SP <sup>-</sup> | (16)              | 12                 |        |                      |             | 19       | 44       | 37       | Drilling Rate 7.5'                  |
|          | 10          |                                        |                                                                                                                                                                                                                                                    |                 |                   |                    | 1      |                      |             |          |          |          | to 10' < 1 min                      |
| 5090     | 10          |                                        | increased sand content                                                                                                                                                                                                                             |                 | 3-8-16            | 14                 |        |                      |             |          |          |          | na alc in alta a                    |
|          | 7 -         |                                        |                                                                                                                                                                                                                                                    |                 | (24)              | 14                 |        |                      |             |          |          |          | TOCK IT SHOE                        |
|          |             |                                        | QUARTZITE AND LIMESTONE, very weak, completely<br>to highly weathered, recovered as silty gravel with sand,<br>light brown to tan brown, slightly moist, nonplastic, fine to<br>coarse sand, fine and coarse subrounded gravel, reaction<br>to HCL |                 |                   |                    |        |                      |             |          |          |          | Drilling Rate 10' to<br>15' 4 min   |
| 5085     | 15          | $\langle \rangle \rangle$              |                                                                                                                                                                                                                                                    |                 | 7 20 50/5in       | 11                 | -      |                      |             |          |          |          |                                     |
| _0000    | + -         |                                        |                                                                                                                                                                                                                                                    |                 | 20-30/311         |                    | -      |                      |             |          |          |          |                                     |
|          | + -         |                                        |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          | Drilling Rate 15' to                |
|          | + -         |                                        |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          | 20' 6 min                           |
|          | + -         |                                        |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          | nard drilling at 18                 |
|          | 20          | K                                      |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          |                                     |
| 5080     | + -         | $\gg$                                  | QUARTZITE AND LIMESTONE, very weak, highly<br>weathered, recovered as silty gravel with sand, light brown                                                                                                                                          | МС              | 16-70/5in         | 5                  |        |                      |             |          |          |          | rock in shoe                        |
| - ·      | Ł.          |                                        | slightly moist, nonplastic, fine to coarse sand, fine and                                                                                                                                                                                          | '               |                   |                    |        |                      |             |          |          |          |                                     |
| L .      | _           | $\langle \rangle \rangle$              | coarse angular gravel, reaction to not                                                                                                                                                                                                             |                 |                   |                    |        |                      |             |          |          |          | Drilling Rate 20' to<br>25' 6 min   |
| L .      |             |                                        |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          |                                     |
| L.       | 25          | $\mathbb{K}$                           |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          |                                     |
| 5075     |             | >>>>                                   | QUARTZITE AND LIMESTONE, weak, highly to                                                                                                                                                                                                           | SP-             | 50/3in            | 0                  |        |                      |             |          |          |          | hammer bouncing                     |
|          |             | - XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | moderately weathered, recovered as poorly graded gravel<br>with sand and silt, grev, slightly moist nonplastic, fine sand                                                                                                                          |                 |                   |                    |        |                      |             |          |          |          |                                     |
|          |             | $\langle \rangle \rangle$              | coarse gravel to 3"                                                                                                                                                                                                                                | ´               |                   |                    |        |                      |             |          |          |          | Drilling Rate 25' to                |
|          |             |                                        |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          | 30' 10 min                          |
|          | 1           |                                        |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          |                                     |
|          | 30          | $\langle \rangle \rangle$              |                                                                                                                                                                                                                                                    |                 | -                 |                    | -      |                      |             | <u> </u> | <u> </u> | <u> </u> | 4                                   |
| 5070     | + -         |                                        |                                                                                                                                                                                                                                                    | SP <sup>-</sup> | (96)              | 14                 |        |                      |             | 59       | 31       | 10       |                                     |
| ╞        | + -         |                                        |                                                                                                                                                                                                                                                    |                 | ()                | +                  | 1      |                      |             |          | -        |          |                                     |
| ╞        | ┨           |                                        |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          | 35' 9 min                           |
| <u> </u> | -           | $\mathbb{N}$                           |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          |                                     |
| L.       | 35          | $\mathbb{X}$                           |                                                                                                                                                                                                                                                    |                 |                   |                    |        |                      |             |          |          |          |                                     |

| RC-22-00 | 4 |
|----------|---|
|----------|---|

PAGE 2 OF 2

|                                                                                                           | CLIE                | <u>NT</u>       | levada         | DOT                                                                                                                                                                                                       | PROJ        | ЕСТ         |                                    | 80 - G               | Golcor                  | ida Sui | nmit                                     |          |        |         |                                                   |
|-----------------------------------------------------------------------------------------------------------|---------------------|-----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------------------------------|----------------------|-------------------------|---------|------------------------------------------|----------|--------|---------|---------------------------------------------------|
|                                                                                                           | PROJ                | IECT            | NUMB           | ER 475.0499.000                                                                                                                                                                                           | PROJ        | ЕСТ         | LOCATIO                            | Ν <u>Ηι</u>          | umbol                   | dt Cou  | nty, Ne                                  | vada     | i      |         |                                                   |
|                                                                                                           | ELEVATION<br>(ft)   | 2 DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                                                                                      |             | SAMPLE LTPE | BLOW<br>COUNTS<br>(N VALUE)        | RECOVERY<br>(INCHES) | MOISTURE<br>CONTENT (%) |         | PLASTICITY SI SI<br>INDEX SI SI<br>INDEX | % GRAVEL | % SAND | % FINES | REMARKS                                           |
| REV2.GPJ                                                                                                  | 5065                | <br><br><br>40  |                | QUARTZITE AND LIMESTONE, weak, highly to<br>moderately weathered, recovered as poorly graded gravel<br>with sand and silt, grey, slightly moist, nonplastic, fine sanc<br>coarse gravel to 3" (continued) | ı, <b>M</b> | MC          | 10-8-16<br>(24)                    | 3                    |                         |         |                                          |          |        |         | rock in shoe<br>Drilling Rate 35' to<br>40' 6 min |
| I-80 GOLCONDA SUMMIT                                                                                      | <u>5060</u><br><br> |                 |                | <b>QUARTZITE AND LIMESTONE</b> , weak, highly weathered, recovered as clayey gravel with sand, slightly moist, low plasticity, fine to coarse sand, fine and coarse gravel, reaction to HCI               |             | SPT<br>MC   | 7-6-14<br>(20)<br>10-18-24<br>(42) | 0 7                  |                         |         |                                          |          |        |         | Drilling Rate 40' to<br>45' 3 min                 |
| NGLANES/03-LOGS/GINT/                                                                                     | <u>5055</u><br><br> |                 |                |                                                                                                                                                                                                           |             | MC          | 7-24-40<br>(64)                    | 0                    |                         |         |                                          |          |        |         | Drilling Rate 45' to<br>50' 4 min                 |
| IF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 9/22/22 13:26 - S.PROJECTS/0499.000_1-80 GOLCONDA_TRUCKCLIM |                     | 4               |                | Bottom of Hole = 50.9'<br>Boring Terminated at Planned Depth<br>Groundwater Not Encountered<br>Borehole Backfilled with Bentonite Chips                                                                   |             |             | 23-70/311                          |                      |                         |         |                                          |          |        |         |                                                   |

#### RC-22-004A NewFields PAGE 1 OF 2 CLIENT Nevada DOT PROJECT NAME 1-80 - Golconda Summit **PROJECT NUMBER** 475.0499.000 PROJECT LOCATION Humboldt County, Nevada DATE STARTED 4/18/22 **COMPLETED** <u>4/18/22</u> GROUND ELEVATION 5100.71 ft HOLE SIZE 8-in DRILLING CONTRACTOR Cascade Drilling, CME-85 COORDINATES (): DRILLING METHOD Hollow Stem Auger LATITUDE \_40.92196 \_ LONGITUDE -117.38633 LOGGED BY R. Berg CHECKED BY J. Ruzicka DEPTH TO WATER (FT BGS) \_no free water encountered NOTES Autohammer, 30-inch drop, ERi=86.4% ATTERBERG SAMPLE TYPE MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) GRAVEL SAND REMARKS FINES DEPTH (ft) **PLASTICIT** LIQUID MATERIAL DESCRIPTION INDEX REV2.GPJ % % % Surface Conditions: Clear Ground 0 GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 9/22/22 13:26 - S:/PROJECTS/0499.000 1-80 GOLCONDA TRUCKCLIMBINGLANES/03-LOGS/GINTY-80 GOLCONDA SUMMIT 6" Aggregate Base 5100 FILL: Clayey Gravel with Sand (GC), brown, slightly Drilling Rate 0' to m GB 2.5<sup>°</sup> < 1 min moist, loose, low plasticity, fine to coarse sand, fine gravel 4-3-2 SPT 18 (5) Drilling Rate 2.5' to 5' < 1 min m GB 5 5095 very dense, fine and coarse subangular to subrounded 15-23-23 MC 14 Drilling Rate 5' to 7.5' < 1 min gravel to 2.5" dia. (46) increased sand content, medium dense 10-12-16 12 SPT Drilling Rate 7.5' to 10' < 1 min (28) 10 <u>509</u>0 very dense 15-38-35 12 MC (73)Drilling Rate 10' to 15' 2 min QUARTZITE AND LIMESTONE, very weak, highly weathered, recovered as silty gravel with sand, light grey to brown, slightly moist, nonplastic, fine to coarse sand, fine 15 angular to subangular gravel to 3/8", reaction to HCI, slight 5085 20-45-36 cementation SPT 12 (81) Drilling Rate 15' to 20' 3 min SM2 GB 5080 fine and coarse gravel 33-70/5in MC 5 Drilling Rate 20' to 25<sup>''</sup> < 1 min 25 QUARTZITE AND LIMESTONE, weak, highly weathered, 5075 7-14-20 MC 12 recovered as silty gravel with sand, light grey, slightly (34) moist, nonplastic, weakly cemented, oxidized matrix material Drilling Rate 25' to 30' < 1 min 30

5-9-13

(22)

10

Drilling Rate 30' to 35' 3 min

SPT

sm) GB

<u>507</u>0

ĥ

#### RC-22-004A NewFields PROJECT NAME \_ I-80 - Golconda Summit CLIENT Nevada DOT PROJECT NUMBER 475.0499.000 PROJECT LOCATION Humboldt County, Nevada

PAGE 2 OF 2

| ELEVATION<br>(ff)                                                                                          | G DEPTH                             | (11)<br>35 | GRAPHIC<br>LOG |                                                                   |                                                                   | MA                                                                      | ATERI.                                       | AL DE                                                   | SCRIF                                                 | PTION                                        |                                   |                         |      | SAMPLE TYPE | BLOW<br>COUNTS<br>(N VALUE) | RECOVERY | MOISTURE<br>CONTENT (%) | ATTE<br>LII<br>DINIL<br>LIWIL | BERS<br>INDEX<br>INDEX | % GRAVEL | % SAND | % FINES | REMARKS                           |
|------------------------------------------------------------------------------------------------------------|-------------------------------------|------------|----------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|-----------------------------------|-------------------------|------|-------------|-----------------------------|----------|-------------------------|-------------------------------|------------------------|----------|--------|---------|-----------------------------------|
| 5065<br>-<br>-                                                                                             |                                     |            |                | QUA<br>recov<br>mois<br>mate                                      | RTZI1<br>vered<br>t, non<br>rial <i>(c</i>                        | E ANI<br>as silty<br>plastic<br>ontinu                                  | D LIME<br>y grave<br>, weak<br><i>ed)</i>    | STON<br>With<br>ly cerr                                 | NE, we<br>sand,<br>nented                             | ak, hig<br>light gr<br>, oxidiz              | hly wea<br>rey, slig<br>zed mati  | ithered,<br>htly<br>rix | en s | GB          | <u>70/4in</u>               | 0        |                         |                               |                        |          |        |         | Drilling Rate 35' to<br>40' 5 min |
|                                                                                                            | - <u>4</u><br>)<br><br><br>         |            |                | fine                                                              | and c                                                             | barse                                                                   | subrou                                       | inded                                                   | gravel                                                | to 1.5"                                      | ' dia.                            |                         | X    | SPT         | 7-7-10<br>(17)              | 7        | -                       |                               |                        |          |        |         | Drilling Rate 40' to<br>45' 7 min |
| 18-103-LOGS/GINTV-                                                                                         | - <u>4</u><br>5<br>-<br>-<br>-<br>- |            |                | fine                                                              | and c                                                             | barse                                                                   | suban                                        | gular t                                                 | o angu                                                | ılar gra                                     | avel to 2                         | 2.5" dia.               |      | MC          | 16-70/5ii                   | n 10     | _                       |                               |                        |          |        |         | Hole terminated at<br>3:45pm      |
| NF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 9/22/22 13:26 - S.\PROJECTS/0499.00080 GOLCONDA_TRUCKCLIMBIN |                                     |            |                | QUA<br>weath<br>and s<br>grave<br>Botto<br>Borin<br>Borin<br>Bore | RT2II<br>hered<br>lilt, bri-<br>m of I<br>g Ter<br>ndwa<br>hole E | E ANI<br>recov<br>wwn, s<br>8"<br>dole =<br>minate<br>er Nol<br>ackfill | 50.5'<br>50.5'<br>d at P<br>Encoo<br>ed with | STON<br>is poo<br>moist,<br>alannee<br>untere<br>n Bent | VE, ver<br>rly gra<br>nonpi<br>d Dept<br>d<br>onite ( | y weak<br>ded gra<br>astic, fi<br>h<br>Chips | κ, highly<br>avel witi<br>ine ang | h sand<br>ular          |      | SPT         | 50                          | 5        |                         |                               |                        |          |        |         |                                   |

| -        | Ν         | ev                   | vFields                                                                                                                        |       |       |                |              |             |              |               |        |             | R      | C-22-005<br>PAGE 1 OF 2           |
|----------|-----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------------|--------------|-------------|--------------|---------------|--------|-------------|--------|-----------------------------------|
| CLIE     | NT _!     | Vevada               | a DOT                                                                                                                          | PRO   | JECT  | NAME <u> -</u> | 80 - 0       | Golcor      | ida Su       | mmit          |        |             |        |                                   |
| PRO      | JECT      | NUMB                 | ER _475.0499.000                                                                                                               | PRO   | JECT  | LOCATIO        | N <u>H</u> u | umbol       | dt Cou       | inty, Ne      | evada  | a           |        |                                   |
| DAT      | E STA     | RTED                 | 4/15/22 COMPLETED 4/18/22                                                                                                      | GRC   | UND   | ELEVATIO       | N <u>5</u>   | 088.28      | 3 ft         | _ HOI         | LE SI  | <b>ZE</b> _ | 8-in/4 | -in                               |
| DRIL     | LING      | CONT                 | RACTOR Cascade Drilling, CME-85                                                                                                | coc   | RDIN  | ATES ():       |              |             |              |               |        |             |        |                                   |
| DRIL     | LING      | METH                 | OD Hollow Stem Auger                                                                                                           | L     |       | JDE _40.9      | 2161         |             |              |               | GITU   | IDE _       | -117.  | 38644                             |
| LOG      | GED I     | <b>3Y</b> <u>R</u> . | Berg CHECKED BY J. Ruzicka                                                                                                     | 0     | DEPTH | I TO WATI      | ER (F        | T BGS       | <b>5)</b> no | free wa       | ater e | ncou        | ntere  | d                                 |
| NOT      | ES A      | utohai               | mmer, 30-inch drop, ERI=77.8%                                                                                                  |       |       | 1              |              | 1           |              |               |        |             |        |                                   |
|          |           |                      |                                                                                                                                |       | Щ     |                | ~            | (%          |              | RBERG<br>11TS |        |             |        |                                   |
| ÍOE (    | Ξ,        | UHC<br>HC            |                                                                                                                                |       | Σ     | LUE)           | /ER          |             | _            | ≿             | AVEL   | QN          | LES    | RKS                               |
| L A E    | EP<br>(#) | LO                   | MATERIAL DESCRIPTION                                                                                                           |       | IP LE | BLO            | NCT<br>NC    | OIST<br>VTE | MIT          | TICI<br>NEX   | GR/    | % SA        | 6 FIN  | EMA                               |
| EL       |           | G                    | Surface Conditions: Clear Ground                                                                                               |       | SAN   | οg             |              | ХÖ          |              | INI           | %      | 0           |        | R                                 |
| 2        | 0         | ××××                 | FILL: Clavey Gravel with Sand (GC) brown slightly moist                                                                        |       |       |                |              |             |              | <u>а</u>      |        |             |        |                                   |
|          |           |                      | to moist, low plasticity, fine to coarse sand, fine gravel                                                                     |       |       | -              |              |             |              |               |        |             |        | Drilling Rate 0' to               |
|          |           |                      | <b>Clayey Sand with Gravel (SC)</b> , brown, slightly moist, very dense, high plasticity, fine to coarse sand, fine and coarse | din 1 | GB    |                |              |             |              |               |        |             |        | 2.5 < 1 min                       |
| 5085     |           |                      | angular to subangular gravel to 2.5"                                                                                           | X     | SPT   | 3-6-11         | 16           |             | 54           | 31            | 26     | 42          | 32     | Drilling Rate 2.5'                |
|          |           |                      |                                                                                                                                | sm.   | GB    | (17)           |              | 1           |              |               | 29     | 35          | 36     | to 5' < 1 min                     |
| -        | - 5       |                      |                                                                                                                                |       |       | 18-37-22       | 10           | 1           |              |               |        |             |        |                                   |
|          |           |                      |                                                                                                                                |       | мс    | (59)           | 12           |             |              |               |        |             |        | Drilling Rate 5' to<br>7 5' 1 min |
| <u> </u> |           |                      |                                                                                                                                |       |       |                |              |             |              |               |        |             |        |                                   |
| 5080     |           |                      | QUARTZITE AND LIMESTONE, weak, highly weathered,                                                                               | T     | SPT   | 15-20-22       | 14           |             |              |               |        |             |        | Drilling Rate 7.5                 |
|          |           | >>>                  | recovered as poorly graded gravel with sand and silt, light<br>brown to white, dry, nonplastic, fine to coarse sand, fine      |       | N     | (/             |              |             |              |               |        |             |        | to 10' 1 min                      |
| -        | - 10_     | X                    | subrounded and subangular gravel to 3/8"                                                                                       |       | МС    | 53-70/4in      | 8            | 1           |              |               |        |             |        |                                   |
| -        |           |                      | moderately weathered, recovered as poorly graded gravel                                                                        |       |       |                |              | 1           |              |               |        |             |        |                                   |
| -        |           | >>>                  | with sand and silt, brown, slightly moist, fine to coarse sand, fine and coarse subangular gravel to 2" dia.                   |       |       |                |              |             |              |               |        |             |        | Drilling Rate 10' to              |
| 5075     |           |                      |                                                                                                                                | V     | GB    |                |              |             |              |               | 60     | 32          | 8      | 15 4 11111                        |
| -        | <br>15    | KK                   |                                                                                                                                |       |       |                |              |             |              |               |        |             |        |                                   |
| -        | -         | $\swarrow$           | TUFF, very weak, completely weathered, recovered as                                                                            | Ţ     | SPT   | 10-20-         | 17           |             |              |               |        |             |        |                                   |
| ı–       |           |                      | low plasticity, fine to coarse sand, fine and coarse                                                                           | ,     | 01 1  | 50/5in         |              |             |              |               |        |             |        |                                   |
| +        |           |                      | subrounded gravel, reaction to HCI, slight cementation                                                                         |       |       |                |              |             |              |               |        |             |        | Drilling Rate 15' to<br>20' 3 min |
| _5070    |           |                      |                                                                                                                                |       |       |                |              |             |              |               |        |             |        | 20 0 1111                         |
| -        | 20        |                      |                                                                                                                                |       |       |                |              |             |              |               |        |             |        |                                   |
| -        |           |                      | QUARTZITE AND LIMESTONE, very weak, highly<br>weathered with completely weathered clasts, recovered as                         |       | MC    | 70/4in         | 0            |             |              |               |        |             |        |                                   |
| -        |           |                      | silty gravel with sand, light brown, slightly moist, nonplastic                                                                | ,     |       |                |              |             |              |               |        |             |        |                                   |
| 5065     | 1         |                      | oxidized                                                                                                                       | m     | GB    |                |              |             |              |               |        |             |        | Drilling Rate 20' to<br>25' 3 min |
|          | 1         |                      |                                                                                                                                |       |       |                |              |             |              |               |        |             |        |                                   |
| -        | 25        |                      |                                                                                                                                |       |       |                |              |             |              |               |        |             |        |                                   |
| F        | 1 -       | $\gg$                |                                                                                                                                | X     | SPT   | 17-37-36       | 14           | 3.9         |              |               |        |             |        |                                   |
| Γ        | 1 -       | $\otimes$            |                                                                                                                                |       | N     | (              |              | -           |              |               |        |             |        | Drilling Rate 251 to              |
| 5060     | ] -       |                      |                                                                                                                                |       |       |                |              |             |              |               |        |             |        | 30' 3 min                         |
|          | ] -       |                      |                                                                                                                                |       |       |                |              |             |              |               |        |             |        |                                   |
|          | 30        | $\otimes$            |                                                                                                                                |       |       |                |              | -           |              |               |        |             |        |                                   |
|          |           | $\bigotimes$         |                                                                                                                                |       | MC    | 29-70/5in      | 9            | -           |              |               |        |             |        |                                   |
|          |           |                      |                                                                                                                                |       |       |                |              |             |              |               |        |             |        | Drilling Rate 30' to              |
| 5055     |           |                      |                                                                                                                                |       |       |                |              |             |              |               |        |             |        | 35' 4 min                         |
|          |           | $\bigotimes$         |                                                                                                                                |       |       |                |              |             |              |               |        |             |        |                                   |
| -        | 35        | $\boxtimes$          |                                                                                                                                |       |       |                |              |             |              |               |        | 1           |        |                                   |

#### NewFields PAGE 2 OF 2 CLIENT Nevada DOT PROJECT NAME 1-80 - Golconda Summit PROJECT NUMBER \_475.0499.000 PROJECT LOCATION Humboldt County, Nevada ATTERBERG RECOVERY (INCHES) MOISTURE CONTENT (%) LIMITS SAMPLE TYPE ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) REMARKS % GRAVEI % SAND FINES DEPTH (ft) PLASTICITY INDEX LIQUID MATERIAL DESCRIPTION % 35 QUARTZITE AND LIMESTONE, very weak, highly SPT SPT 50/5in 5 weathered, recovered as clayey sand with gravel, brown, slightly moist, low plasticity, fine to coarse sand, fine subrounded to subangular gravel with 3/8" Drilling Rate 35' to 40' 3 min m GB 30 37 33 5050 NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 9/22/22 13:26 - S/PROJECTS/0499.000 1-80 GOLCONDA\_TRUCKCIMBINGLANES/03-LOGS/GINT/-80 GOLCONDA SUMMIT\_REV2.GFJ MC 44-70/1in 7 Drilling Rate 40' to 45' 7 min 5045 45 40-38-QUARTZITE AND LIMESTONE, very weak, highly to SPT 12 X 50/1in completely weathered, recovered as clayey gravel with sand, brown, slightly moist, low plasticity, fine to coarse Drilling Rate 45' to 49' 15 min sand, fine and coarse subangular to subrounded gravel m GB 5040 Practical refusal encountered, switched to HQ core at 49', see log RC-22-005\_R for rock log

RC-22-005

|                | Ν             | e       | W          | /F      | i       | el         | d        | S              |                                   |                        |                       |            |       | R      | C-2     | : <b>2-0</b><br>age | 1 OI      | - <b>R</b><br>F 2 |
|----------------|---------------|---------|------------|---------|---------|------------|----------|----------------|-----------------------------------|------------------------|-----------------------|------------|-------|--------|---------|---------------------|-----------|-------------------|
| CLIE           | NT 1          | Neva    | ida [      | тос     | -       |            |          |                |                                   | PROJECT NAME 1-80 - Go | olconda Sun           | nmit       |       |        |         |                     |           |                   |
| PRO            | JECT          | NUN     | ИВЕ        | R 4     | 475.    | .049       | 9.00     | 0              |                                   | PROJECT LOCATION Hun   | nboldt Coun           | ty, Nev    | vada  |        |         |                     |           |                   |
| DATI           | E STA         | RTE     | D          |         | 5/22    |            |          | С              | <b>COMPLETED</b> _4/18/22         | GROUND ELEVATION 508   | 8.28 ft               | HOL        | E SIZ | Έ 4·   | -in     |                     |           |                   |
| DRIL           | LING          | CON     |            | АСТ     | OR      | Ca         | asca     | de Dri         | lling, CME-85                     | COORDINATES ():        |                       |            |       |        |         |                     |           |                   |
|                | LING          | ME      | ГНО        | Dł      | HQ (    | Core       | 3        |                |                                   | LATITUDE 40.92161      |                       | LONG       | SITUE | )E -   | 117 3   | 8644                |           |                   |
|                | GED I         | BY      | R.B        | era     |         |            |          | С              | HECKED BY J. Ruzicka              | DEPTH TO WATER (FT     | BGS) no fr            | ee wat     | er en | coun   | tered   |                     |           |                   |
|                | ES _          |         |            |         |         |            |          |                |                                   |                        | <u></u>               | 00 114     |       | loculi |         |                     |           |                   |
|                |               |         | -          |         |         | 0          | Γ        |                |                                   |                        | Щ                     |            | [     | DISCO  | ЭNTI    | ידוטא               | Y LOO     | Ģ                 |
|                | DEPTH<br>(ft) | RUN NO. | RUN LENGTH | REC (%) | RQD (%) | WEATHERING | HARDNESS | GRAPHIC<br>LOG | MATERIAL DE<br>Surface details:   | SCRIPTION              | DRILLING RAT<br>(MIN) | WATER LEVE | ТҮРЕ  | DIP    | SPACING | APERTURE            | ROUGHNESS | INFILL            |
|                | -             |         |            |         |         |            |          |                | Refer to Soil log for 0 - 49 feet | 1                      |                       |            |       |        |         |                     |           |                   |
|                |               |         |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
| 5 -<br>2  5085 | -             |         |            |         |         |            |          |                |                                   |                        |                       | _          |       |        |         |                     |           |                   |
|                | ]             | -       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
|                | 5             | +       |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
|                |               | -       |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
|                |               | -       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
| 5080           |               | -       |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
|                |               | -       |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
|                | <u>10</u>     | +       |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
| -              |               | 1       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
| =<br>{ -       |               | 1       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
| 5075           |               | 1       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
|                | 15            | 1       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
|                | -             | T       |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
|                |               | 1       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
| 5070           | -[ ]          |         |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
|                | 1             |         |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
|                | 20            | $\perp$ |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
|                | 1 -           | 4       |            |         |         |            |          |                |                                   |                        |                       | _          |       |        |         |                     |           |                   |
|                | ]             | -       |            |         |         |            |          |                |                                   |                        |                       | _          |       |        |         |                     |           |                   |
| 5065           |               | -       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
|                |               | -       |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
| ξĻ.            | 25            | +       |            |         |         |            |          |                |                                   |                        |                       |            |       |        |         |                     |           |                   |
| 3              |               | -       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
|                |               | -       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
| 5060           | + -           | -       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
| <u> </u>       |               | 1       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
| Ž -            |               | +       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
| ž-             |               | 1       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
|                |               | 1       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
| 5055           | + -           | 1       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |
| Ž.             | 35            | 1       |            |         |         |            |          |                |                                   |                        |                       | -          |       |        |         |                     |           |                   |

#### RC-22-005-R

PAGE 2 OF 2

CLIENT Nevada DOT

PROJECT NAME 1-80 - Golconda Summit

**PROJECT NUMBER** 475.0499.000 PROJECT LOCATION Humboldt County, Nevada DISCONTINUITY LOG DRILLING RATE (MIN) WEATHERING **RUN LENGTH** WATER LEVEL ELEVATION (ft) HARDNESS GRAPHIC LOG ROUGHNESS RQD (%) REC (%) RUN NO. APERTURE DEPTH (ft) NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/22/22 13:03 - S/PROJECTS/0499 000 1-80 GOLCONDA TRUCKCLIMBINGLANES/03-LOGS/GINTIROCK LOGS/1-80 GOLCONDA SUMMIT ROCK LOGS REV1.GPJ SPACING TYPE INFILL MATERIAL DESCRIPTION ЫР 35 Refer to Soil log for 0 - 49 feet (continued) 5050 40 5045 45 5040 QUARTZITE AND LIMESTONE, brown white and green, U 2 1.2 42 42 SW R3 3 50 slightly weathered, medium strong, reaction to HCI QUARTZITE AND LIMESTONE, brown, very weak to weak, highly to completely weathered, recovered as clayey gravel with sand, slightly moist, low plasticity, fine to coarse sand, fine and coarse subangular to subrounded gravel 0 CW R1 3 4.8 3 3 5035 55 4 5 0 0 CW R1 2 5030 60 Bottom of Hole = 60.0' Boring Terminated at Planned Depth Borehole Backfilled with Bentonites Chips

|            | N                            | ev                        | vFields                                                                                                                                               |                                                                  |                                          |                  |                       |        |                     |         |        |      | R          | C-22-006<br>PAGE 1 OF 2             |  |  |
|------------|------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------|------------------|-----------------------|--------|---------------------|---------|--------|------|------------|-------------------------------------|--|--|
| CLIE       | <u>NT _1</u>                 | Vevada                    | a DOT                                                                                                                                                 | PROJ                                                             | JECT                                     | NAME             | 80 - 6                | Golcor | nda Su              | mmit    |        |      |            |                                     |  |  |
| PRO        | PROJECT NUMBER _475.0499.000 |                           |                                                                                                                                                       |                                                                  | PROJECT LOCATION Humboldt County, Nevada |                  |                       |        |                     |         |        |      |            |                                     |  |  |
| DATI       | E STA                        | RTED                      | 4/14/22 COMPLETED 4/14/22                                                                                                                             | _ GROUND ELEVATION _5162.15 ft HOLE SIZE _8-in                   |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
| DRIL       | LING                         | CONT                      | RACTOR Cascade Drilling, CME-85                                                                                                                       | COORDINATES ():<br>LATITUDE <u>40.92118</u> LONGITUDE -117.39481 |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
| DRIL       | LING                         | METH                      | OD _Hollow Stem Auger                                                                                                                                 |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
| LOG        | GED I                        | BY <u>R</u>               | . Berg CHECKED BY _J. Ruzicka                                                                                                                         | D                                                                | ЕРТН                                     |                  | ER (F                 | T BGS  | <b>S)</b> _no       | free wa | ater e | ncou | ntere      | d                                   |  |  |
| NOT        | ES _A                        | utoha                     | mmer, 30-inch drop, ERi=77.8%                                                                                                                         |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
| z          |                              |                           |                                                                                                                                                       |                                                                  | Щ                                        |                  | ~                     | (%     | ATTERBERG<br>LIMITS |         |        |      |            | ()                                  |  |  |
|            | Η,                           | UHC<br>DHC                |                                                                                                                                                       |                                                                  | F                                        | LUE STA          | /ER                   |        |                     | ≿       | AVEI   | QN   | <b>NES</b> | RKS<br>SXR                          |  |  |
| EVA<br>(ft | EP<br>EP                     | LO                        | MATERIAL DESCRIPTION                                                                                                                                  |                                                                  | ЪГЕ                                      | BLC              | 0<br>2<br>0<br>2<br>0 | NIST   |                     | UHC N   | GR     | % SA | 6 FIN      | W                                   |  |  |
|            |                              | 0                         | Surface Conditions: Grasses                                                                                                                           |                                                                  | SAN                                      | 02               | R –                   | ĭ₹Ö    |                     | INI     | %      | 0    | 0          | R                                   |  |  |
|            | 0                            |                           | Silty Sand (SM), brown, dry, low plasticity, fine sand,                                                                                               |                                                                  |                                          |                  |                       |        |                     |         |        |      |            | Drilling Rate 0' to                 |  |  |
| 5160       |                              | p of                      | Silty Gravel with Sand (GM), light brown, dry to slightly moist dense nonplastic fine to coarse sand fine and                                         |                                                                  |                                          |                  |                       |        |                     |         |        |      |            | 2.5' < 1 min                        |  |  |
| L.         |                              | 000                       | angular gravel to 2.5" dia., reaction to HCI                                                                                                          |                                                                  | ерт                                      | 18-12-19         | 12                    |        |                     |         | 35     | 33   | 32         |                                     |  |  |
|            |                              | Pape                      |                                                                                                                                                       |                                                                  |                                          | (31)             | 15                    | -      |                     |         |        |      |            | Drilling Rate 2.5'<br>to 5' < 1 min |  |  |
|            | 5                            |                           | OLIARTZITE AND LIMESTONE very weak highly to                                                                                                          |                                                                  |                                          | 00.45.40         |                       | -      |                     |         |        |      |            |                                     |  |  |
| _<br>5155  |                              |                           | completely weathered, recovered as silty gravel with sand,<br>light brown, dry, nonplastic, fine to coarse sand, fine and<br>coarse subangular gravel |                                                                  | MC                                       | (94)             | 17                    |        |                     |         |        |      |            | Drilling Rate 5' to<br>7.5' < 1 min |  |  |
|            |                              |                           |                                                                                                                                                       | X                                                                | SPT                                      | 13-21-48<br>(69) | 12                    | 5.3    |                     |         | 48     | 37   | 15         | Drilling Rate 7.5                   |  |  |
|            | 10                           | $\langle \rangle \rangle$ |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            | to 10' < 1 min                      |  |  |
|            |                              | ))))                      | weak                                                                                                                                                  | Ν                                                                | MC                                       | 16-40-           | 16                    |        |                     |         |        |      |            |                                     |  |  |
| - 5150     |                              |                           |                                                                                                                                                       |                                                                  |                                          | 70/4111          |                       |        |                     |         |        |      |            |                                     |  |  |
| 0100       |                              | $\mathbb{X}$              |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            | Drilling Rate 10' to<br>15' 3 min   |  |  |
|            | -                            |                           |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
|            | 15                           |                           |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
| <br>       |                              | $\mathbb{Z}$              | QUARTZITE AND LIMESTONE, weak, highly weathered,                                                                                                      |                                                                  | SPT                                      | 16-44-           | 17                    |        |                     |         |        |      |            |                                     |  |  |
| 5145       |                              |                           | slightly moist, low plasticity, fine and coarse sand, fine and                                                                                        | '' <b>–</b>                                                      |                                          | 50/510           |                       | -      |                     |         |        |      |            |                                     |  |  |
| 0140       |                              |                           | coarse angular gravel                                                                                                                                 |                                                                  |                                          |                  |                       |        |                     |         |        |      |            | Drilling Rate 15' to<br>20' 1 min   |  |  |
|            |                              |                           | QUARTZITE AND LIMESTONE, very weak, highly weathered, cuttings logged as poorly graded gravel, plive                                                  |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
|            | 20                           |                           | grey, dry, fine sand, coarse gravel                                                                                                                   |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
|            |                              |                           |                                                                                                                                                       |                                                                  | MC                                       | 25-70/4in        | 0                     |        |                     |         |        |      |            | hammer bouncing                     |  |  |
| -          | 1                            |                           |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
| 0140       |                              |                           |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            | Drilling Rate 20' to<br>25' 5 min   |  |  |
|            |                              |                           |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
|            | 25                           | $\mathbb{X}$              |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
|            |                              |                           | QUARTZITE AND LIMESTONE, weak, highly weathered,                                                                                                      |                                                                  | SPT                                      | 21-50/1in        | 5                     | -      |                     |         |        |      |            | rock in shoe                        |  |  |
| 5135       | [ ]                          | $\otimes$                 | nonplastic, fine sand, fine gravel to 3/8" dia.                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
| 0          | [ ]                          | $\langle \rangle \rangle$ |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            | Drilling Rate 25' to<br>30' 3 min   |  |  |
|            |                              | $\gg$                     |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
|            | 30                           | $\mathbb{K}$              |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
| _ ·        |                              | $\bigtriangledown$        | QUARTZITE AND LIMESTONE, weak, highly to                                                                                                              |                                                                  | MC                                       | 70/4in           | 4                     |        |                     |         |        |      |            | rock in shoe                        |  |  |
| 5130       | 1                            | $\mathbb{N}$              | with sand and sill, reddish brown, dry, fine to coarse sand,                                                                                          |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
|            | [ ]                          | $\otimes$                 | ime and coarse angular gravel to 3" dia.                                                                                                              |                                                                  |                                          |                  |                       |        |                     |         |        |      |            | Drilling Rate 30' to<br>35' 4 min   |  |  |
| F '        | 1                            | $\langle \rangle \rangle$ |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |
| i i        | 35                           | $\mathbb{N}$              |                                                                                                                                                       |                                                                  |                                          |                  |                       |        |                     |         |        |      |            |                                     |  |  |

#### RC-22-006

PAGE 2 OF 2

| CLIENT | Nevada DO | т     |
|--------|-----------|-------|
|        |           | 475.0 |

PROJECT NAME \_ I-80 - Golconda Summit

| PROJECT NUMBER _475.0499.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROJECT LOCATION Humboldt County, Nevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH<br>NOTECH | REMARKS<br>REMARKS<br>(N VALUE)<br>(N VALUE) |
| QUARTZITE AND LIMESTONE, weak, highly to<br>moderately weathered, recovered as poorly graded grave<br>with sand and silt, reddish brown, dry, fine to coarse sand<br>fine and coarse angular gravel to 3" dia. (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALSPT 50/5in 0<br>I<br>I,<br>Drilling Rate 35' to<br>40' 6 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 40         QUARTZITE AND LIMESTONE, weak, highly weathered recovered as poorly graded gravel with sand, light brown dry, fine sand, fine and coarse gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MC 38-70/0in 4<br>Drilling Rate 40' to<br>45' 6 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{c} - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - \\ - & - & - & - & - & - \\ - & - & - & - & - & - \\ - & - & - & - & - & - \\ - & - & - & - & - & - & - \\ - & - & - & - & - & - & - \\ - & - & - & - & - & - & - \\ - & - & - & - & - & - & - & - \\ - & - & - & - & - & - & - & - & - & - \\ - & - & - & - & - & - & - & - & - & - &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ► SPT 50/5in 5<br>Drilling Rate 45' to<br>50' 6 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bottom of Hole = 50.4'<br>Boring Terminated at Planned Depth<br>Groundwater Not Encountered<br>Borehole Backfilled with Bentonite Chips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MC 70/5in 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

B-2 Drill Rig Hammer Calibration Report
## **SPT CAL**

| SPT HAMMER                             | Prepared for;                                             |
|----------------------------------------|-----------------------------------------------------------|
| ENERGY<br>MEASUREMENTS                 | Cascade Drilling<br>7773 W Seldon Ln,<br>Peoria. AZ 85345 |
| Prepared by;                           | Phone: (623) 935-0124                                     |
| SPT CAL                                |                                                           |
| 5512 Belem Dr<br>Chino Hills, CA 91709 | Date: 02/26/22                                            |
|                                        | Project Title: Cascade Peoria                             |
| 909-730-2161                           | P.O. Number: 897387                                       |
| bc@sptcal.com                          | AH1D Auto Hammer                                          |

Testing was performed on February 26, 2022 in Peoria, AZ

### Energy Transfer Ratio = 86.4 @ 48.5 blows per minute

Hammer Energy Measurements performed per ASTM D4633 using an approved and calibrated SPT Analyzer from Pile Dynamics, Inc. meeting the criteria of ASTM D4633-05 and per the process defined in ASTM D4633-05, The process and equipment requirements followed per ASTM D4633-05 meet the criteria of ASTM D4633-16.

## **PRESENTATION OF SPT ANALYZER TEST DATA**

#### 1. Introduction

This report presents the results of SPT Hammer Energy Measurements recorded with an SPT Analyzer from Pile Dynamics carried out on February 26, 2022 in Las Vegas, NV

### 2. Field Equipment and Procedures

The drill used was a CME 85. It has a serial number of 323536. The operator was Sop of Cascade Drilling.

This Auto Hammer was loose and suspended with a cable. It has a serial number of AH1D. It uses a 140 lb. weight dropped 30" on to an anvil above the bore hole. AWJ drill rod connects the anvil to a split spoon type soil sampler inside an 8" o.d. hollow stem auger at the designated sample depth. After a seeding blow the sampler is driven 18". The number of blows required to penetrate the last 12" is referred to as the "N value", which is related to soil strength.

The first recording was taken at 2.5' below ground surface and then every 2.5' to final recording at 12.5'.



### 3. Instrumentation

An SPT Analyzer from Pile Dynamics was used to record and the process the data. The raw data was stored directly in the SPT Analyzer computer with subsequent analysis in the office with PDA-W and PDIPlot software. The measurements and analysis were conducted in general accordance with ASTM D4945 and ASTM D6066 test standards.

The SPT Analyzer is fully compliant with the minimum digital sampling frequency requirements of ASTM D4633-05 (50 kHz) and EN ISO 22476-3:2005 (100 kHz), as well as with the low pass filter, (cutoff frequency of 5000 Hz instead of 3000 Hz) requirements of ASTM D4633-05. All equipment and analysis also conform to ASTM D6066.



A 2' instrumented section of AWJ rod, with two sets of accelerometers and strain transducers mounted on opposite sides of the drill rod, was placed below the anvil. It measured strain and acceleration of every hammer blow. The SPT Analyzer then calculates the amount of energy transferred to the rod by force and velocity measurements.

#### 4. **Observations**

The drill and sample equipment looked to be well operated and maintained.

#### 5. Results

Results from the SPT Hammer Energy Measurements are summarized below. It shows the Energy Transfer Ratio (ETR) at each sampling depth. ETR is the ratio of the measured maximum transferred energy to rated energy of the hammer which is the product of the weight of the hammer times the height of the fall. 140 lb x  $30^{\circ}$  = 4200 lb-in = 0.350 kip-ft.

#### 6. **Recommendations**

Recalibration of the auto hammer is recommended annually. Recalibration is also recommended for change of operator, engine modifications and repair, hydraulic system modifications and repair, auto hammer adjustments and repair and anything else that may affect speed, function and weight of the auto-hammer

#### Energy Transfer Ratio = 86.4 @ 48.5 blows per minute

| Depth   | ETR% | BPM  |
|---------|------|------|
| 2.5     | 85.1 | 49.5 |
| 5       | 86.7 | 48.8 |
| 7.5     | 85.8 | 48.6 |
| 10      | 86.9 | 49.3 |
| 12.5    | 87.7 | 46.2 |
| Average | 86.4 | 48.5 |

N60=(ETR/60)N

The reported average value is a weighted average based on the number of blows at each sample interval.

If you have any questions please do not hesitate to call or email.

Thank you,

Brian Serl Calibration Engineer <u>SPT CAL</u> 909-730-2161 <u>bc@sptcal.com</u> B-3 Rock Core Photographs















3 5 4 5 6 7 8 9 10 11 **12** 13 14 15 **1**7 17 2 I-80 Collard Bering RC-22-005 5/18/22 Box: 1 Sha Runs: 3 Depth: 45-60

# Appendix C Geophysical Survey Data



August 31, 2022 NewFields Project No. 475.0499.000

Jacobs 260 Michelson Drive, Suite 500 Irvine, California 92612

### Attention: Mr. Ravee Raveendra, P.E. Principal, Geotechnical Engineer

### Re: Geophysical Survey Results, Rev. 1 I-80 Golconda Summit Truck Climbing Lanes Project Humboldt County, Nevada

This revised memo presents the results of the geophysical surveys performed for the I-80 Golconda Summit, Truck Climbing Lanes Project in Humboldt County, Nevada.

### **1. GEOPHYSICAL SURVEYS**

Geophysical surveys consisting of refraction microtremor (ReMi), and seismic refraction were performed at three locations along the project alignment; Line 1 and 3 within areas of cut slopes and Line 2 within the area of the proposed bridge structure. Seismic refraction was performed at all three survey locations, while ReMi was only performed along Lines 1 and 2. The approximate locations of the surveys are shown on the site plans in Attachment A as provided to us by Jacobs.

Data acquisition for the surveys was performed by NewFields staff with the data interpretation being performed by Dr. Satish Pullammanappallil of SUBTERRASEIS. The following sections present details regarding the data collections and analysis for the two different geophysical surveys.

### 1.1. Refraction Microtremor (ReMi) Surveys

The ReMi method provides an effective and efficient means to acquire general, one-dimensional, information about large volumes of the subsurface with one equipment setup. This method is used to estimate shear wave velocity profiles and provide site-specific Vs<sub>30</sub> soil classification data. ReMi surveys consisted of a 24-channel system with 4.5 Hz geophones spaced 10 feet apart, for a total line length of 230 feet. Broadband ambient site noise was used as a surface wave energy



source, as well as a ten-pound sledgehammer struck against a polyethylene plate. For the active records, the energy source was offset 10 ft from both ends of the survey line. A sampling time and interval of 30 seconds and 2 milliseconds, respectively, was used for each record.

A dispersion curve consisting of the lower bound of the spectral energy shear wave velocity versus frequency trend is manually selected from the shear wave plot. An interpreted vertical S- wave profile is then obtained by fitting multiple layers and S-wave velocities to match the selected dispersion curve. The ReMi survey results are presented in Attachment B.

### **1.2. Seismic Refraction Surveys**

Refraction surveys were performed to obtain seismic P-wave velocities to aid in assessing the rippability of shallow rock. Refraction surveys were performed using a 24-channel seismograph system with 4.5 Hz geophones spaced 10 feet apart. Data was acquired midpoint between Geophone 1 and 2 at 30-foot spacings down the line (i.e., between phones 4 and 5, 7 and 8, etc.). The energy source consisted of a ten-pound sledgehammer struck against a polyethylene plate. Readings were recorded every 0.125 milliseconds for a duration of 0.5 seconds along each line. Relative elevations between geophones were measured using a tape measure, string line and a line level. Elevations shown on the plots are relative to an elevation of 100-feet taken at Geophone No. 1.

The seismic refraction survey results are presented in Attachment C.

### 2. LIMITATIONS

The information contained in this memo is based on non-intrusive geophysical testing at the locations indicated on the site plans. It is possible that variation in the subsurface conditions may exist between the locations surveyed. This memo has been prepared solely for the use of Jacobs and their client for design of the I-80 Golconda Summit Truck Climbing Lanes project. Our services were performed using generally accepted geotechnical engineering practice common to the area at the time of this report. No other warranties, either expressed or implied, are included or intended.



If you have any questions or require additional information, please contact the undersigned.

Sincerely,

**NewFields Mining Design & Technical Services** 

Henry Walsh, E.I. Engineer Intern

HW/JR/ng

LIST OF ATTACHMENTS:

Attachment A – Site Plans Attachment B – ReMi Survey Results Attachment C – Seismic Refraction Results

Addressee: Electronic

**Reviewed by:** 

Jesse Ruzicka, P.E. Senior Engineer



## ATTACHMENT A Site Plans



#### W7Y46100\_gt109.dgn SHEET NO.

COUNTY

|                   | NEVADA              | SPI-080-3(340)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HUMBOLDT               | GT9    |
|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 4      |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | t      |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Ŋ      |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     | Illin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |        |
| 44                | IIIIII              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim$ $\land$ $\land$ |        |
|                   | ГГГ                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | August 11111           |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ))));- |
| 49                | 50'                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 444    |
| J F<br>IN         | PLACE               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0964                   | +      |
|                   |                     | o.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |        |
|                   |                     | 1930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |        |
| Z                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
| $\mathbf{\Sigma}$ | $\overline{}$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4920                   |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O.O.                   |        |
| 3                 | 25                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A top                  |        |
| one               | e 24                | Geophysics Line 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MI MU                  |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     | 49204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SHE                    |        |
| Z                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
| ho                | no 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. 12                 |        |
|                   |                     | 5 03 <sub>6 4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - M                    |        |
| $\mathcal{H}$     |                     | Cui Cui Cui Cito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |        |
| ))                | $\langle M \rangle$ | Geophone 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 /                    |        |
| the state         | WHAT                | 7//////2222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |        |
| $\mathcal{I}$     |                     | Contraction of the second of t | 1                      |        |
|                   |                     | () () () () () () () () () () () () () (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /                      |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
| _                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E OF NEVADA            |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     | -80 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JULCONDA SUMMIT        |        |
|                   |                     | BORING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LOCATION               | ۱ ۱    |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLAN                   |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |
|                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |

STATE

PROJECT NO.



W7Y46100\_gt113.dgn

| STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROJECT NO.       | COUNTY            | SHEET<br>NO. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|--------------|
| NEVADA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPI-080-3(340)    | HUMBOLDT          | GT13         |
| For the second s | SPI-080-3(340)    | HUMBOLDT          | GT13         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STA<br>DEPARTMENT | OF TRANSPORTATION |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-80 - (          | JULCONDA SUMMIT   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RORING            |                   | J            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DURINU            | PLAN              | N            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |              |



W7Y46100\_gt114.dgn



W7Y46100\_gt115.dgn



## ATTACHMENT B ReMi Survey Results





**Frequency-Slowness Image with Dispersion Modeling Picks** 





Line 1, Segment 1: Vs Model





**Frequency-Slowness Image with Dispersion Modeling Picks** 





Line 1, Segment 2: Vs Model





**Frequency-Slowness Image with Dispersion Modeling Picks** 





Line 1, Segment 3: Vs Model

## Line 1, Segment 4









Line 1, Segment 4: Vs Model





Frequency-Slowness Image with Dispersion Modeling Picks





Line 3: Vs Model



# ATTACHMENT C Seismic Refraction Survey Results

Seismic Refraction - Line 1 Segment 1



P-wave Velocity, ft/s

Seismic Refraction - Line 1 Segment 2



P-wave Velocity, ft/s

Seismic Refraction - Line 1 Segment 3



P-wave Velocity, ft/s


P-wave Velocity, ft/s

Seismic Refraction - Line 2



P-wave Velocity, ft/s

Seismic Refraction - Line 3



P-wave Velocity, ft/s

Appendix D Laboratory Test Results



### **MOISTURE CONTENT**

(ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

| Client:                                                                                  | Jacobs               |           |           | Location: See Below |           |    |  |
|------------------------------------------------------------------------------------------|----------------------|-----------|-----------|---------------------|-----------|----|--|
| Project Title:                                                                           | I-80 Golconda Summit |           |           | Elevation:          | See Below |    |  |
| Project Number:                                                                          | 475.0499.000         |           |           | Test Date:          | 5/11/2022 |    |  |
| Project Engineer:                                                                        | Jesse Ruzicka        |           |           | Tested By:          | ZM        |    |  |
| Field Sample ID:                                                                         | See Below            |           |           | Checked By:         | JW        |    |  |
|                                                                                          |                      |           |           |                     |           |    |  |
| Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H) |                      |           |           |                     |           |    |  |
| Sample No.                                                                               |                      | 22-087-14 | 22-087-16 | 22-087-26           | 22-087-28 |    |  |
| Location                                                                                 |                      | B-22-108  | B-22-107  | B-22-111            | RC-22-006 |    |  |
| Depth                                                                                    |                      | 0-5'      | 0-5'      | 2.5-4'              | 7.5-9'    |    |  |
| Soil Description                                                                         |                      |           |           |                     |           |    |  |
| (USCS)                                                                                   |                      |           |           |                     |           |    |  |
| Trial No.                                                                                |                      | 1         | 2         | 3                   | 4         | 5  |  |
| Tare No.                                                                                 |                      |           |           |                     |           |    |  |
| Tare + Wet Soil                                                                          | А                    | 877.4     | 1079.6    | 998.4               | 854.6     |    |  |
| Tare + Dry Soil                                                                          | В                    | 838.4     | 1023.5    | 941.6               | 818.3     |    |  |
| Tare                                                                                     | С                    | 131.8     | 133.3     | 133.5               | 133.2     |    |  |
| Wt. of Water                                                                             | D= A-B               | 39        | 56.1      | 56.8                | 36.3      |    |  |
| Dry Soil, Ws                                                                             | E= B-C               | 706.6     | 890.2     | 808.1               | 685.1     |    |  |
| Moisture Content, (%)                                                                    | (D/E) x100           | 5.5%      | 6.3%      | 7.0%                | 5.3%      |    |  |
| Sample No.                                                                               |                      |           |           |                     |           |    |  |
| Location                                                                                 |                      |           |           |                     |           |    |  |
| Depth                                                                                    |                      |           |           |                     |           |    |  |
| Soil Description                                                                         |                      |           |           |                     |           |    |  |
| (USCS)                                                                                   |                      |           |           |                     |           |    |  |
| Trial No.                                                                                |                      | 6         | 7         | 8                   | 9         | 10 |  |
| Tare No.                                                                                 |                      |           |           |                     |           |    |  |
| Tare + Wet Soil                                                                          | А                    |           |           |                     |           |    |  |
| Tare + Dry Soil                                                                          | В                    |           |           |                     |           |    |  |
| Tare                                                                                     | С                    |           |           |                     |           |    |  |
| Wt. of Water                                                                             | D= A-B               |           |           |                     |           |    |  |
| Dry Soil, Ws                                                                             | E= B-C               |           |           |                     |           |    |  |
| Moisture Content, (%)                                                                    | (D/E) x100           |           |           |                     |           |    |  |

Remarks:

# **NewFields** NATURAL DENSITY (ASTM 2937)

LABORATORY WORKSHEET

| Client:                                                                   |                           | Jacobs               |           |             | Location: See Below  |           |  |
|---------------------------------------------------------------------------|---------------------------|----------------------|-----------|-------------|----------------------|-----------|--|
| Project Title:                                                            | I-80 0                    | I-80 Golconda Summit |           |             | Elevation: See Below |           |  |
| Project Number:                                                           | 4                         | 475.0499.000         |           |             | 5/11/2022            |           |  |
| Project Engineer:                                                         | J                         | Jesse Ruzicka        |           |             | QH                   |           |  |
| Field Sample ID:                                                          |                           | See Below            |           | Checked By: | ٦/                   | JW        |  |
| Laboratory Sample ID:                                                     |                           | 22-087               |           |             |                      |           |  |
|                                                                           |                           |                      |           |             |                      |           |  |
|                                                                           |                           |                      |           |             |                      |           |  |
| Drying conditions. Bo deg C / 110 deg C Miethod: Oven (O) / Microwave (M) |                           |                      |           |             |                      | IVI)      |  |
| Trail No.                                                                 |                           | 1                    | 2         | 3           | 4                    | 5         |  |
| Sample No.                                                                |                           | 22-087-01            | 22-087-03 | 22-087-06   | 22-087-07            | 22-087-08 |  |
| Location                                                                  |                           | B-22-101             | B-22-102  | B-22-103    | B-22-103             | B-22-104  |  |
| Depth                                                                     |                           | 5-6.5'               | 6-6.5'    | 5-6.5'      | 10-11.5'             | 5-6.5'    |  |
| Soil Description                                                          |                           |                      |           |             |                      |           |  |
| (USCS)                                                                    |                           |                      |           |             |                      |           |  |
| Soil + Liner Wt., g.                                                      | Α                         | 1001.7               | 1118.6    | 1016.3      | 1136.5               | 1075.7    |  |
| Liner Wt., g.                                                             | В                         | 248.6                | 234.8     | 255.5       | 258.1                | 236.1     |  |
| Soil Wt., g.                                                              | C= A-B                    | 753.1                | 883.8     | 760.8       | 878.4                | 839.6     |  |
| Liner Length, in.                                                         | D <sub>1</sub>            | 5.997                | 6.012     | 5.987       | 5.992                | 6.012     |  |
| Sample Length, in.                                                        | D <sub>2</sub>            | 5.637                | 6.012     | 5.987       | 5.992                | 6.012     |  |
| Liner Diameter, in.                                                       | E                         | 2.405                | 2.425     | 2.402       | 2.412                | 2.432     |  |
| Liner Area, in <sup>2</sup>                                               | F= (E <sup>2</sup> /4)*pi | 4.54                 | 4.62      | 4.53        | 4.57                 | 4.65      |  |
| Sample Volume, in <sup>3</sup>                                            | G= D <sub>2</sub> *F      | 25.61                | 27.77     | 27.13       | 27.38                | 27.93     |  |
| Sample Wet Density, pcf                                                   | H= (C/G)*3.81             | 112.0                | 121.3     | 106.8       | 122.2                | 114.5     |  |
| Sample Dry Density, pcf                                                   | H/(1+(N/100))             | 98.2                 | 118.9     | 96.6        | 112.9                | 100.8     |  |
| Tare No.                                                                  |                           |                      |           |             |                      |           |  |
| Tare + Wet Soil                                                           | I                         | 886.8                | 883       | 892.5       | 1009.8               | 971.3     |  |
| Tare + Dry Soil                                                           | J                         | 794.0                | 868.3     | 819.7       | 942.5                | 870.3     |  |
| Tare                                                                      | к                         | 134.1                | 134       | 132.2       | 132.2                | 131.7     |  |
| Wt. of Water                                                              | L= I-J                    | 92.8                 | 14.7      | 72.8        | 67.3                 | 101.0     |  |
| Dry Soil, Ws                                                              | M=-J-K                    | 659.9                | 734.3     | 687.5       | 810.3                | 738.6     |  |
| Moisture Content, (%)                                                     | N= (L/M) x100             | 14.1%                | 2.0%      | 10.6%       | 8.3%                 | 13.7%     |  |
| Remarks:                                                                  |                           |                      |           |             |                      |           |  |
|                                                                           |                           |                      |           |             |                      |           |  |
|                                                                           |                           |                      |           |             |                      |           |  |
|                                                                           |                           |                      |           |             |                      |           |  |
|                                                                           |                           |                      |           |             |                      |           |  |

# **NewFields** NATURAL DENSITY (ASTM 2937)

NF Form #16

LABORATORY WORKSHEET

| Client                                                               |                                         | lacobs        |           |           | Location: See Below  |           |  |
|----------------------------------------------------------------------|-----------------------------------------|---------------|-----------|-----------|----------------------|-----------|--|
| Project Title:                                                       |                                         | Jacobs        |           |           | Flevation: See Below |           |  |
| Project Number:                                                      | 4                                       | 475.0499.000  |           |           | 5/11/2022            |           |  |
| Project Engineer:                                                    | J                                       | Jesse Ruzicka |           |           | QH                   |           |  |
| Field Sample ID:                                                     |                                         | See Below     |           |           | JW                   |           |  |
| Laboratory Sample ID:                                                |                                         | 22-087        |           |           |                      |           |  |
|                                                                      |                                         |               |           |           |                      |           |  |
| Drying Condition                                                     | 0 deg C Method: Oven (O) / Microwave (I |               |           | 1)        |                      |           |  |
| Trail No.                                                            |                                         | 6             | 7         | 8         | 9                    | 10        |  |
| Sample No.                                                           |                                         | 22-087-09     | 22-087-13 | 22-087-20 | 22-087-25            | 22-087-35 |  |
| Location                                                             |                                         | B-22-113      | B-22-114  | RC-22-004 | B-22-109             | RC-22-005 |  |
| Depth                                                                |                                         | 5-6.5'        | 5-6.5'    | 5-6.5'    | 5-6.5'               | 25-26.5'  |  |
| Soil Description                                                     |                                         |               |           |           |                      | **        |  |
| (USCS)                                                               |                                         |               |           |           |                      |           |  |
| Soil + Liner Wt., g.                                                 | A                                       | 1088.8        | 1041.2    | 1011.4    | 1112.0               |           |  |
| Liner Wt., g.                                                        | В                                       | 231.6         | 252.0     | 251.2     | 254.8                |           |  |
| Soil Wt., g.                                                         | C= A-B                                  | 857.2         | 789.2     | 760.2     | 857.2                |           |  |
| Liner Length, in.                                                    | D <sub>1</sub>                          | 6.012         | 5.992     | 6.009     | 5.988                |           |  |
| Sample Length, in.                                                   | D <sub>2</sub>                          | 6.012         | 5.992     | 6.009     | 5.988                |           |  |
| Liner Diameter, in.                                                  | E                                       | 2.427         | 2.414     | 2.420     | 2.418                |           |  |
| Liner Area, in <sup>2</sup>                                          | F= (D <sub>2</sub> <sup>2</sup> /4)*pi  | 4.63          | 4.58      | 4.60      | 4.59                 |           |  |
| Sample Volume, in <sup>3</sup>                                       | G= D <sub>2</sub> *F                    | 27.81         | 27.42     | 27.64     | 27.50                |           |  |
| Sample Wet Density, pcf                                              | H= (C/G)*3.81                           | 117.4         | 109.6     | 104.8     | 118.8                |           |  |
| Sample Dry Density, pcf                                              | H/(1+(N/100))                           | 102.4         | 101.2     | 94.9      | 107.9                |           |  |
| Tare No.                                                             |                                         |               |           |           |                      |           |  |
| Tare + Wet Soil                                                      | 1                                       | 987.4         | 921.2     | 891.2     | 988.1                | 929.2     |  |
| Tare + Dry Soil                                                      | J                                       | 877.9         | 860.4     | 819.8     | 909.9                | 899.7     |  |
| Tare                                                                 | к                                       | 131.8         | 132.4     | 131.2     | 133.2                | 133.8     |  |
| Wt. of Water                                                         | L= I-J                                  | 109.5         | 60.8      | 71.4      | 78.2                 | 29.5      |  |
| Dry Soil, Ws                                                         | M=-J-K                                  | 746.1         | 728.0     | 688.6     | 776.7                | 765.9     |  |
| Moisture Content, (%)                                                | N= (L/M) x100                           | 14.7%         | 8.4%      | 10.4%     | 10.1%                | 3.9%      |  |
| <b>Remarks:</b> ** Bagged sample. Unable to perform natural density. |                                         |               |           |           |                      |           |  |



Tested By: ZM/AR



Tested By: ZM/AR



Tested By: AR/ZM



Tested By: ZM/AR



Tested By: ZM/AR



Tested By: ZM



Tested By: ZM/EG



Tested By: ZM/EG



Tested By: ZM/EG



Tested By: ZM



Tested By: ZM/QH



Tested By: EG/QH











Tested By: <u>QH</u>


























|     |                                              |             | Test Resu                | ults                          |                        |     | Material De | scription |  |
|-----|----------------------------------------------|-------------|--------------------------|-------------------------------|------------------------|-----|-------------|-----------|--|
| R-v | R-value at 300 psi exudation pressure = 31   |             |                          |                               | Brown clavey sand      |     |             |           |  |
| Exp | o. pressure at                               | 300 psi exu | dation pres              | ssure = 1.67 psi              |                        |     |             |           |  |
| Pro | <b>Project No.:</b> 1541                     |             |                          | Test                          | ed by: A. DIXC         | DN  |             |           |  |
| Pro | Project: I-80 GOLCONDA PROJECT, 475-0499-000 |             |                          | Che                           | Checked by: M. PONTONI |     |             |           |  |
| Loc | cation: RC-22-0                              | 001         |                          |                               |                        | Rem | narks:      |           |  |
| San | nple Number:                                 | 36448       | <b>Depth:</b> 0-5        | ,                             |                        |     |             |           |  |
| Dat | Date: 5/27/2022                              |             |                          |                               |                        |     |             |           |  |
|     |                                              | CME         | CONST<br>MATER<br>ENGINI | RUCTION<br>IALS<br>EERS, INC. |                        |     |             | PLATE     |  |



PLATE \_











#### **EXPANSION INDEX OF SOILS**

(ASTM D4829 - 21)

| Project Name:      | I-80 GOLCONDA PROJECT, 475-0499-000 | Project No.:   | 1541       |
|--------------------|-------------------------------------|----------------|------------|
| Client:            | NEWFIELDS                           | Laboratory No: | 36448      |
| Source:            | RC-22-001 15'-20'                   | Date Tested:   | 5/24/2022  |
| Date Sampled/Cast: | 5/20/2022                           | Tested By:     | M. PONTONI |

|                   | SPECIMEN PREPARATION |                          |                  |  |  |  |  |
|-------------------|----------------------|--------------------------|------------------|--|--|--|--|
| Oven or Air Dried | Oven Dried           | % Retained on #4 Sieve:  | 96%              |  |  |  |  |
| Wet Weight (g):   | 122.5                | Specific Gravity:        | 2.75 (ESTIMATED) |  |  |  |  |
| Dry Weight (g):   | 114.2                | Unit Weight Water (pcf): | 62.4             |  |  |  |  |
| Moisture Content: | 7.3%                 | Weight of Ring (g):      | 199.76           |  |  |  |  |

|                          | СОМРА | CTION RESULTS          |       |
|--------------------------|-------|------------------------|-------|
| Compacted Weight (g):    | 436.7 | Compacted Weight (lb): | 0.963 |
| Noist Unit Weight (pcf): | 132.1 | Dry Unit Weight (pcf): | 123.1 |

| EXPANSION RESULTS                                                                    |                                          |                           |                                                      |  |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------|---------------------------|------------------------------------------------------|--|--|--|--|
| Initial Dial Reading (in.):                                                          | 0.000                                    | Final Dial Reading (in.): | 0.032                                                |  |  |  |  |
|                                                                                      | CAI                                      | LCULATIONS                |                                                      |  |  |  |  |
| S = (w * G <sub>s</sub> * $\alpha_d$ ) / (G <sub>s</sub> * $\alpha_w$ ) - $\alpha_d$ | EI = (D <sub>1</sub> -D <sub>2</sub> )/H | H <sub>1</sub> * 1000     |                                                      |  |  |  |  |
| w = moisture content                                                                 | $\Delta H$ = Change                      | in Height                 | S <sub>meas</sub> = determined percent of saturation |  |  |  |  |
| G <sub>s</sub> = specific gravity                                                    | H <sub>1</sub> = Initial He              | ight                      | $EI_{50}$ = estimate of the expansion index          |  |  |  |  |
| $\alpha_w$ = unit weight of water (pcf)                                              | D <sub>1</sub> = Initial dia             | l reading                 |                                                      |  |  |  |  |
| $\alpha_d$ = dry unit weight (pcf)                                                   | D <sub>2</sub> = final dial              | reading                   |                                                      |  |  |  |  |

S: 50.9%

32

EI:

# CLASSIFICATION TABLE Expansion Index 0 -20 21 - 50 51 - 90 91 - 130 > 130 Potential Expansion Very Low Low Medium High Very High

Form No. QCP-1.14



| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT<br>LOCATIO<br>DATE TES<br>TECHNIC | -<br>NO.<br>N<br>STED<br>IAN                         | Newfield<br>2347-022<br>I-80 Gold<br>475.0499<br>Nevada,<br>06/14/22<br>HN | s<br>2<br>conda Summit<br>9.000<br>USA | BC<br>DI<br>SA<br>D/<br>RC | DRING NO.<br>EPTH<br>AMPLE NO.<br>ATE SAMPLED<br>DCK TYPE        | RC-<br>8.0-<br><br><br>                          | -22-002-R<br>-12.5                               |
|---------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|----------------------------|------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                                                                           |                                                      |                                                                            | Test Pa                                | arameters                  |                                                                  |                                                  |                                                  |
|                                                                           | Load Rate (lb/<br>Load Rate (N/                      | (min): 3000<br>(min): 1334                                                 | )<br>5                                 |                            |                                                                  |                                                  |                                                  |
|                                                                           |                                                      | Raw Data                                                                   | Files: 1.txt, 0                        |                            |                                                                  |                                                  |                                                  |
|                                                                           |                                                      |                                                                            | Dens                                   | ity Data                   |                                                                  |                                                  |                                                  |
|                                                                           | Mass of Roc<br>Initial Diamete<br>Initial Heigh      | k (g): 919.<br>r (in): 2.38<br>t (in): 4.99                                | 6<br>8<br>3                            | Initial '                  | al Wet Density (<br>Wet Density (kg/                             | pcf):<br>′m³):                                   | 156.7<br>2509                                    |
|                                                                           |                                                      |                                                                            | Test                                   | Results                    |                                                                  |                                                  |                                                  |
| Comp<br>Compre                                                            | Peak Load<br>pressive Strength<br>essive Strength (N | (lbs): 7153<br>(psi): 1597<br>/IPa): 110                                   | 8<br>3                                 | Heig<br>Yo                 | Failure T<br>ht to Diameter R<br>Poisson's R<br>pung's Modulus ( | ype: Fi<br>atio:<br>atio:<br>psi):               | racture / Shear<br>2.09:1<br>0.141<br>7.93 x10^6 |
|                                                                           |                                                      |                                                                            | Strain vs                              | s. Stress                  |                                                                  |                                                  |                                                  |
|                                                                           | 0.0002                                               |                                                                            | I                                      |                            |                                                                  |                                                  |                                                  |
|                                                                           |                                                      |                                                                            |                                        |                            |                                                                  |                                                  |                                                  |
|                                                                           | 0.0001                                               |                                                                            |                                        |                            |                                                                  | 7                                                |                                                  |
|                                                                           | 0.0000                                               |                                                                            |                                        |                            |                                                                  |                                                  |                                                  |
|                                                                           | -0.0001                                              |                                                                            |                                        |                            |                                                                  |                                                  | Axial Strain                                     |
| Ē                                                                         | -0.0002                                              |                                                                            |                                        |                            |                                                                  |                                                  | Radial Strain                                    |
| n (in/i                                                                   | -0.0004                                              |                                                                            |                                        |                            |                                                                  |                                                  | Best Fit Axial                                   |
| Strai                                                                     | -0.0005                                              |                                                                            |                                        |                            |                                                                  |                                                  | Best Fit Radial                                  |
|                                                                           | -0.0006                                              |                                                                            |                                        |                            | 1999.99 19 19 19 19 19 19 19 19 19 19 19 19 1                    |                                                  |                                                  |
|                                                                           | -0.0007                                              |                                                                            |                                        |                            |                                                                  | •                                                |                                                  |
|                                                                           | -0.0008                                              | 1000.0                                                                     | 2000 0 2000                            |                            |                                                                  | 600                                              |                                                  |
| -1                                                                        | 000.0 0.0                                            | 1000.0                                                                     | Axial Stress (ps                       | i)                         |                                                                  | 000                                              | 0.0                                              |
| NOTES:                                                                    |                                                      |                                                                            |                                        |                            |                                                                  |                                                  |                                                  |
| Data entry<br>Checked t<br>File name                                      | r by:<br>by:<br>:                                    | HN<br>DL<br>2347022                                                        | RockTx ASTM                            | 7012 B an                  | D<br>D_0.xlsm                                                    | Date: 06/ <sup>,</sup><br>Date: 06/ <sup>,</sup> | 14/22<br>15/22                                   |



| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION<br>DATE TESTED<br>TECHNICIAN | NewfieldsBORING NO.RC-22-002-R2347-022DEPTH8.0-12.5I-80 Golconda SummitSAMPLE NO475.0499.000DATE SAMPLEDNevada, USAROCK TYPE06/14/22HN |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      | Before Test                                                                                                                            |
| NOTES                                                                                |                                                                                                                                        |
| NOTES                                                                                |                                                                                                                                        |
| Picture File:<br>File name:                                                          | 1.JPG<br>2347022RockTx ASTM 7012 B and D_0.xlsm                                                                                        |



Γ

# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION | Newfields<br>2347-022<br>I-80 Golconda Summit<br>475.0499.000<br>Nevada, USA | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE | RC-22-002-R<br>8.0-12.5<br><br><br> |
|---------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------|
| DATE TESTED                                             | 06/14/22<br>HN                                                               |                                                                |                                     |
|                                                         |                                                                              | After Test                                                     |                                     |
| NOTES                                                   |                                                                              |                                                                |                                     |
| NOTES                                                   |                                                                              |                                                                |                                     |
| Picture File:<br>File name:                             | 1a.JPG<br>2347022RockTx ASTM 7                                               | 7012 B and D_0.xlsm                                            |                                     |







# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION<br>DATE TESTED<br>TECHNICIAN | Newfields<br>2347-022<br>I-80 Golconda Sur<br>475.0499.000<br>Nevada, USA<br>06/15/22<br>HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nmit                | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE                                                      | RC-22-003-R<br>35.0-38.0<br><br><br> |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                   | efore Test                                                                                                          |                                      |
|                                                                                      | A CONTRACTOR OF |                     | REST BORMONIA<br>BANNELS NO. RC-22-023<br>BRETTN 33-38.0<br>BRETTN 33-38.0<br>USA ROCK RAMPLE NO. Run 3<br>USA ROCK |                                      |
| NOTES                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                     |                                      |
| Picture File:<br>File name:                                                          | 7.JPG<br>2347022RockT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x ASTM 7012 B and D | _6.xlsm                                                                                                             |                                      |



ſ

# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT                      | Newfields              | BC                      | ORING NO.                             | RC-22-003-R |
|-----------------------------|------------------------|-------------------------|---------------------------------------|-------------|
| JOB NO.                     | 2347-022               | DE<br>mmit S/           |                                       | 35.0-38.0   |
|                             | 1-80 Golconda Su       | mmit SA                 | AMPLE NO.<br>ATE SAMDI ED             |             |
| I OCATION                   | Nevada USA             | R(                      |                                       |             |
| DATE TESTED                 | 06/15/22               |                         |                                       |             |
| TECHNICIAN                  | HN                     |                         |                                       |             |
|                             |                        | Afte                    | er Test                               |             |
| NOTES                       |                        |                         | A A A A A A A A A A A A A A A A A A A |             |
|                             |                        |                         |                                       |             |
| <b> </b>                    |                        |                         |                                       |             |
| Picture File:<br>File name: | 7a.JPG<br>2347022RockT | x ASTM 7012 B and D_6.; | xlsm                                  |             |



| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT<br>LOCATION<br>DATE TES<br>TECHNICI. | NO.<br>N<br>TED<br>AN                                             | Newfields<br>2347-022<br>I-80 Golconda Su<br>475.0499.000<br>Nevada, USA<br>06/15/22<br>HN | E<br>E<br>mmit S<br>F<br>F | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE | RC-2<br>42.0-<br><br><br>                 | 22-003-R<br>-45.0                                |
|------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|
|                                                                              |                                                                   |                                                                                            | Test Parameters            | S                                                              |                                           |                                                  |
|                                                                              | Load Rate (lb/min)<br>Load Rate (N/min)                           | : 3000<br>: 13345                                                                          |                            |                                                                |                                           |                                                  |
|                                                                              |                                                                   | Raw Data Files: 8.txt                                                                      | t, 0                       |                                                                |                                           |                                                  |
|                                                                              | Manager                                                           | 4000 7                                                                                     | Density Data               |                                                                | (                                         | 407.0                                            |
|                                                                              | Mass of Rock (g)<br>Initial Diameter (in)<br>Initial Height (in)  | : 1003.7<br>: 2.386<br>: 5.116                                                             | In<br>Initia               | itial Wet Density<br>I Wet Density (ko                         | (pcf):<br>g/m³):                          | 167.2<br>2678                                    |
|                                                                              |                                                                   | _                                                                                          | Test Results               |                                                                |                                           |                                                  |
| Comp<br>Compre                                                               | Peak Load (lbs)<br>ressive Strength (psi)<br>ssive Strength (MPa) | : 97170<br>: 21732<br>: 150                                                                | Hei<br>Y                   | Failure<br>ght to Diameter I<br>Poisson's I<br>⁄oung's Modulus | Type: Fra<br>Ratio:<br>Ratio:<br>(psi): 1 | acture / Shear<br>2.14:1<br>0.212<br>I4.09 x10^6 |
|                                                                              |                                                                   |                                                                                            | Strain vs. Stress          |                                                                |                                           |                                                  |
|                                                                              | 0.0002                                                            |                                                                                            |                            |                                                                |                                           |                                                  |
|                                                                              | 0.0001                                                            |                                                                                            |                            |                                                                |                                           |                                                  |
|                                                                              | 0.0000                                                            |                                                                                            |                            |                                                                |                                           | Axial Strain                                     |
| Ē                                                                            | -0.0001                                                           |                                                                                            |                            |                                                                |                                           | Radial Strain                                    |
| 'ain (in/ii                                                                  | -0.0003                                                           |                                                                                            |                            | •••••                                                          |                                           | Best Fit Axial                                   |
| Sti                                                                          | -0.0004                                                           |                                                                                            |                            |                                                                | ••••                                      | = = = • Best Fit Radiai                          |
|                                                                              | -0.0005                                                           |                                                                                            |                            |                                                                |                                           |                                                  |
| -10                                                                          | - <del>0.0006</del>                                               | 1000.0 2000.0 <b>Axial</b>                                                                 | 3000.0<br>Stress (psi)     | 4000.0 5000.0                                                  | 6000.                                     | .0                                               |
| NOTES:                                                                       |                                                                   |                                                                                            |                            |                                                                |                                           |                                                  |
| Data entry<br>Checked b<br>File name:                                        | by:<br>y:                                                         | HN<br>DL<br>2347022RockT                                                                   | x ASTM 7012 B a            | nd D_7.xlsm                                                    | Date: 06/19<br>Date: 06/19                | 5/22<br>5/22                                     |



# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION<br>DATE TESTED | Newfields<br>2347-022<br>I-80 Golconda Summit<br>475.0499.000<br>Nevada, USA<br>06/15/22 | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RC-22-003-R<br>42.0-45.0<br><br> |  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| TECHNICIAN                                                             | HN                                                                                       | Bafora Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |  |
|                                                                        |                                                                                          | ANGINEERS<br>ANGINEERS<br>ANGINEERS<br>ANGINEERS<br>ANGINEERS<br>ANGINEERS<br>BORNG NO.<br>BORNG NO. |                                  |  |
| NOTES                                                                  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |  |
| Picture File:<br>File name:                                            | 8.JPG<br>2347022RockTx ASTM 70                                                           | 012 B and D_7.xlsm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |  |



ſ

# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION<br>DATE TESTED | Newfields<br>2347-022<br>I-80 Golconda Summit<br>475.0499.000<br>Nevada, USA<br>06/15/22 | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE             | RC-22-003-R<br>42.0-45.0<br><br><br> |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|
| TECHNICIAN                                                             | HN                                                                                       |                                                                            |                                      |
|                                                                        |                                                                                          | After Test                                                                 |                                      |
|                                                                        | S.S.S.S.S.                                                                               | s.2 s.3 s.4<br>s.4<br>s.4<br>s.4<br>s.4<br>s.4<br>s.4<br>s.4<br>s.4<br>s.4 |                                      |
| NOTES                                                                  |                                                                                          |                                                                            |                                      |
|                                                                        |                                                                                          |                                                                            |                                      |
| Picture File:<br>File name:                                            | 8a.JPG<br>2347022RockTx ASTM 7012                                                        | 2 B and D_7.xlsm                                                           |                                      |







Г

# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION<br>DATE TESTED<br>TECHNICIAN | Newfields<br>2347-022<br>I-80 Golconda Summit<br>475.0499.000<br>Nevada, USA<br>06/14/22<br>HN | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RC-22-002-R<br>25.5-27.0<br><br> |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                      |                                                                                                | Before Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |
| NOTES                                                                                |                                                                                                | NO NEWFORS BORNO NO. RC-22-002<br>RET MO GENERAS DEPTH 25-5-7<br>RET MO GENERAS BORNO NO. RC-22-002<br>STORM 1-55 SAUGU EST DEPTH 25-5-7<br>RET MO GENERAS BORNO REST REST DEPTH 25-7<br>RET MO GENERAS BORNO REST REST REST REST REST REST REST REST |                                  |
| NOTES                                                                                |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| Picture File:<br>File name:                                                          | 2.JPG<br>2347022RockTx AST                                                                     | M 7012 B and D_1.xlsm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |



# Unconfined Compressive Strength ASTM D7012 Method D

| After Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S.1       S.2       S.3       S.4         S.2       S.3       S.4       S.4         S.2       S.3       S.4       S.5         S.2       S.3       S.5       S.5         S.2       S.3       S.5       S.5         S.3       S.5       S.5       S.5         S.3       S.5       S.5       S.5         S.3       S.5       S.5       S.5         S.3       S.5       S.5       S.5         S.5       S |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | After Test         Image: Distance         Image: Distance |







# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION<br>DATE TESTED<br>TECHNICIAN | Newfields<br>2347-022<br>I-80 Golconda Sun<br>475.0499.000<br>Nevada, USA<br>06/14/22<br>HN | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RC-22-002-R<br>37.0-38.5<br><br><br> |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                      |                                                                                             | Before Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| NOTES                                                                                |                                                                                             | CLEMT       Navisels       CLEMT       A       RECENT         XONA       XIII ANA       XIII ANA       CLEMT       XIII ANA         MOLECT NO.       XIII ANA       XIII ANA       CLEMT       XIII ANA         MOLECT NO.       XIII ANA       XIII ANA       CLEMT       XIII ANA         MOLECT NO.       XIII ANA       XIII ANA       CLEMT       XIII ANA         MOLECT NO.       XIII ANA       CLEMT       XIIII ANA         MOLECT NO.       XIIII ANA       XIIII ANA       XIIII ANA         MOLECT NO.       XIIII ANA       XIIII ANA       XIIII ANA |                                      |
| NUTES                                                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| Picture File:<br>File name:                                                          | 3.JPG<br>2347022RockT>                                                                      | ASTM 7012 B and D_2.xlsm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |



ſ

# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION<br>DATE TESTED<br>TECHNICIAN | Newfields<br>2347-022<br>I-80 Golconda Su<br>475.0499.000<br>Nevada, USA<br>06/14/22<br>HN | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLE<br>ROCK TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RC-22-002-R<br>37.0-38.5<br><br>D<br> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                      |                                                                                            | After Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|                                                                                      |                                                                                            | Markell           Markell <td< th=""><th></th></td<> |                                       |
| NOTES                                                                                |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| Picture File:<br>File name:                                                          | 3a.JPG<br>2347022RockT                                                                     | x ASTM 7012 B and D_2.xlsm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |



| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT<br>LOCATION<br>DATE TES<br>TECHNICI. | NO.<br>N<br>ITED<br>AN                                               | Newfields<br>2347-022<br>I-80 Golconda<br>475.0499.000<br>Nevada, USA<br>06/14/22<br>HN | ı Summit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BC<br>DE<br>SA<br>DA<br>RC | Dring No.<br>PTH<br>MPLE NO.<br>ATE SAMPLE<br>DCK TYPE | F<br>4<br><br>ED<br>                            | RC-22-002-R<br>.0.5-42.0<br>-<br>-                  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|
|                                                                              |                                                                      |                                                                                         | Test Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ameters                    |                                                        |                                                 |                                                     |
|                                                                              | Load Rate (Ib/min):<br>Load Rate (N/min):                            | 3000<br>13345                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                                                 |                                                     |
|                                                                              | Ra                                                                   | aw Data Files:                                                                          | 4.txt, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                        |                                                 |                                                     |
|                                                                              |                                                                      | 010.0                                                                                   | Densit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y Data                     |                                                        |                                                 | 150.0                                               |
|                                                                              | Mass of Rock (g):<br>Initial Diameter (in):<br>Initial Height (in):  | 913.3<br>2.379<br>5.095                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial \                  | al Wet Densi<br>Wet Density (                          | ty (pcf):<br>(kg/m³):                           | 153.6<br>2461                                       |
|                                                                              |                                                                      |                                                                                         | Test R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | esults                     |                                                        |                                                 |                                                     |
| Comp<br>Compre                                                               | Peak Load (lbs):<br>ressive Strength (psi):<br>ssive Strength (MPa): | 51036<br>11481<br>79                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heigh<br>Yo                | Failur<br>nt to Diamete<br>Poisson's<br>ung's Modulu   | e Type: F<br>er Ratio:<br>s Ratio:<br>us (psi): | Fracture / Bedding<br>2.14:1<br>0.174<br>8.66 x10^6 |
|                                                                              |                                                                      |                                                                                         | Strain vs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stress                     |                                                        |                                                 |                                                     |
| 0.0002                                                                       | 1                                                                    |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 1                                                      |                                                 |                                                     |
|                                                                              |                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                                                 |                                                     |
| 0.0001                                                                       |                                                                      |                                                                                         | And the second s |                            |                                                        |                                                 |                                                     |
| 0.0000                                                                       |                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                                                 |                                                     |
| -0.0001                                                                      | and a second                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                                                 | Axial Strain                                        |
| -0.0002                                                                      |                                                                      | <b>~</b> ~                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                                                 | Radial Strain                                       |
| (uj -0.0003                                                                  |                                                                      |                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                        |                                                 | Best Fit Axial                                      |
| -0.0004                                                                      |                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                                                 |                                                     |
| -0.0005                                                                      |                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                                                 | Best Fit Radial                                     |
| -0.0006                                                                      |                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 204                        |                                                        |                                                 |                                                     |
| -0.0007                                                                      |                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                                                 | _                                                   |
| _                                                                            |                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                                                 |                                                     |
| -0.0008<br>(                                                                 | 0.0 1000.0 2                                                         | 2000.0 300<br>A                                                                         | 00.0 4000.0<br>xial Stress (psi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                         |                                                        | 0.0                                             | 7000.0                                              |
| NOTES:                                                                       |                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                                                 |                                                     |
| Data entry<br>Checked b                                                      | by:<br>y:                                                            | HN<br>DL                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 012 8                      |                                                        | Date: 0<br>Date: 0                              | 6/14/22<br>6/15/22                                  |
| rile name:                                                                   |                                                                      | 2341022RC                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UIZ B and                  | אוא_3.xism                                             |                                                 |                                                     |



Г

# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION | Newfields<br>2347-022<br>I-80 Golconda Sumr<br>475.0499.000<br>Nevada, USA | BORING NO.<br>DEPTH<br>nit SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RC-22-002-R<br>40.5-42.0<br><br><br> |
|---------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| TECHNICIAN                                              | 06/14/22<br>HN                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
|                                                         |                                                                            | Before Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
|                                                         |                                                                            | CLENT NO. ATS 0455.000<br>ROJECT NO. ATS 0455.000<br>NEWER, USA BOOM<br>NEWER, U |                                      |
| NOTES                                                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| Picture File:<br>File name:                             | 4.JPG<br>2347022RockTx /                                                   | ASTM 7012 B and D_3.xlsm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |



# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION<br>DATE TESTED | Newfields<br>2347-022<br>I-80 Golconda Summit<br>475.0499.000<br>Nevada, USA<br>06/14/22 | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RC-22-002-R<br>40.5-42.0<br><br> |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| TECHNICIAN                                                             | HN                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
|                                                                        |                                                                                          | After Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |
|                                                                        | S.S.J.                                                                                   | S.2       S.3       S.4         S.3       S.4       S.3         S.3       S.4       S |                                  |
| NOTES                                                                  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
|                                                                        |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
| Picture File:<br>File name:                                            | 4a.JPG<br>2347022RockTx ASTM 70                                                          | 12 B and D_3.xlsm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |







# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION<br>DATE TESTED<br>TECHNICIAN | Newfields<br>2347-022<br>I-80 Golconda Summ<br>475.0499.000<br>Nevada, USA<br>06/15/22<br>HN | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE                                                                                                  | RC-22-003-R<br>7.0-12.0<br><br> |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                                                                      |                                                                                              | Before Test                                                                                                                                                     |                                 |
|                                                                                      |                                                                                              | CLENT Nowfields<br>PROJECT MARGING AT5.0499.000<br>LOCATION BY:MAR.USA BORING NO. REAL<br>SAMPLE NO. BY:MARG.USA BORING NO. REAL<br>DEPTH SAMPLE NO.<br>TEST UN |                                 |
| NOTES                                                                                |                                                                                              |                                                                                                                                                                 |                                 |
| Picture File:<br>File name:                                                          | 5.JPG<br>2347022RockTx A                                                                     | STM 7012 B and D_4.xlsm                                                                                                                                         |                                 |



# Unconfined Compressive Strength ASTM D7012 Method D

| 2347-022<br>I-80 Golconda Sur<br>475.0499.000<br>Nevada, USA<br>06/15/22<br>HN | DEPTH<br>nmit SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE                          | 7.0-12.0<br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                | After Test                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5a.JPG                                                                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                | 2347-022<br>I-80 Golconda Sun<br>475.0499.000<br>Nevada, USA<br>06/15/22<br>HN | 2347-022       DEPTH         140 Golconda Summit       SAMPLE NO.         475.0499.000       DATE SAMPLED         Nevada, USA       DATE SAMPLED         06/15/22       DEPTH         180       SAMPLE NO.         07/15/22       DEPTH         180       SAMPLE NO.         180       DEPTH         180       SAMPLE NO.         180       SAMPLE NO.         180       DEPTH         180       DEPTH |



| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT<br>LOCATION<br>DATE TES<br>TECHNICI. | NO.<br>N<br>TED<br>AN                                      | Newfields<br>2347-022<br>I-80 Golconda Sur<br>475.0499.000<br>Nevada, USA<br>06/15/22<br>HN | BC<br>DI<br>mmit SA<br>D/<br>RC                                                                                                    | DRING NO.<br>EPTH<br>AMPLE NO.<br>ATE SAMPLED<br>DCK TYPE | RC-22-003-R<br>27.8-33.0<br><br><br> |                                 |
|------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|---------------------------------|
|                                                                              |                                                            |                                                                                             | Test Parameters                                                                                                                    |                                                           |                                      |                                 |
|                                                                              | Load Rate (lb/mi<br>Load Rate (N/mi                        | n): 3000<br>n): 13345                                                                       |                                                                                                                                    |                                                           |                                      |                                 |
|                                                                              |                                                            | Raw Data Files: 6.txt                                                                       | t, 0                                                                                                                               |                                                           |                                      |                                 |
|                                                                              |                                                            |                                                                                             | Density Data                                                                                                                       |                                                           |                                      |                                 |
|                                                                              | Mass of Rock (<br>Initial Diameter (i<br>Initial Height (i | g): 1004.2<br>n): 2.387<br>n): 5.241                                                        | Initial Wet Density (pcf): 163.1<br>Initial Wet Density (kg/m <sup>3</sup> ): 2613                                                 |                                                           |                                      |                                 |
|                                                                              |                                                            |                                                                                             | Test Results                                                                                                                       |                                                           |                                      |                                 |
| Comp<br>Compre                                                               | Peak Load (lb<br>ressive Strength (p<br>ssive Strength (MP | s): 77614<br>si): 17344<br>a): 120                                                          | Failure Type: Fracture / Shear<br>Height to Diameter Ratio: 2.20:1<br>Poisson's Ratio: 0.184<br>Young's Modulus (psi): 10.64 x10^6 |                                                           | near<br>^6                           |                                 |
|                                                                              |                                                            |                                                                                             | Strain vs. Stress                                                                                                                  |                                                           |                                      |                                 |
|                                                                              | 0.0002                                                     |                                                                                             |                                                                                                                                    |                                                           |                                      |                                 |
|                                                                              | 0.0001                                                     |                                                                                             |                                                                                                                                    |                                                           |                                      |                                 |
|                                                                              | 0.0000                                                     |                                                                                             |                                                                                                                                    |                                                           | A:                                   | xial Strain                     |
| (ui,                                                                         | -0.0001                                                    | -                                                                                           |                                                                                                                                    |                                                           | R                                    | adial Strain                    |
| štrain (in/                                                                  | -0.0003                                                    |                                                                                             |                                                                                                                                    |                                                           | Br                                   | est Fit Axial<br>est Fit Radial |
| 0,                                                                           | -0.0004                                                    |                                                                                             |                                                                                                                                    |                                                           |                                      |                                 |
|                                                                              | -0.0005                                                    |                                                                                             |                                                                                                                                    |                                                           | ~                                    |                                 |
| -10                                                                          | - <u></u>                                                  | 1000.0 2000.0<br>Axial S                                                                    | 3000.0 40<br>Stress (psi)                                                                                                          | 000.0 5000.0                                              | 6000.0                               |                                 |
| NOTES:                                                                       |                                                            |                                                                                             |                                                                                                                                    |                                                           |                                      |                                 |
| Data entry<br>Checked b<br>File name:                                        | by:<br>y:                                                  | HN<br>DL<br>RockT                                                                           | x ASTM 7012 B an                                                                                                                   | Da<br>Da<br>d D_5.xlsm                                    | ate: 06/15/22<br>ate: 06/15/22       |                                 |



| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION<br>DATE TESTED<br>TECHNICIAN | Newfields<br>2347-022<br>I-80 Golconda Sur<br>475.0499.000<br>Nevada, USA<br>06/15/22<br>HN | nmit                                                            | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE | RC-22-003-R<br>27.8-33.0<br><br><br> |  |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------|--|
|                                                                                      |                                                                                             | E                                                               | Before Test                                                    |                                      |  |
| NOTES                                                                                |                                                                                             | CLEANT New<br>JOB NO.<br>PROJECT HER DISCOMP<br>LOCATION NOVAGE | ала<br>ала<br>ала<br>ала<br>ала<br>ала<br>ала<br>ала           |                                      |  |
| NOTES                                                                                |                                                                                             |                                                                 |                                                                |                                      |  |
| Picture File:<br>File name:                                                          | 6.JPG<br>2347022RockT                                                                       | x ASTM 7012 B and D                                             | )_5.xlsm                                                       |                                      |  |



Г

# Unconfined Compressive Strength ASTM D7012 Method D

| CLIENT<br>JOB NO.<br>PROJECT<br>PROJECT NO.<br>LOCATION | Newfields<br>2347-022<br>I-80 Golconda Su<br>475.0499.000<br>Nevada, USA | mmit                | BORING NO.<br>DEPTH<br>SAMPLE NO.<br>DATE SAMPLED<br>ROCK TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RC-22-003-R<br>27.8-33.0<br><br>         |
|---------------------------------------------------------|--------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| DATE TESTED<br>TECHNICIAN                               | 06/15/22<br>HN                                                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                                                         |                                                                          |                     | After Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
|                                                         |                                                                          | S. S. S. S.         | Revealed<br>Tradesta<br>Statassa<br>Revealed to<br>Statassa<br>Revealed to<br>Revealed to<br>Reveal | N= 22-483<br>27 4-33<br>W0 73<br>UC 28 5 |
| NOTES                                                   |                                                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| Picture File:<br>File name:                             | 6a.JPG<br>2347022RockT                                                   | x ASTM 7012 B and D | _5.xlsm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |



**Chemical Testing Results** 



11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 05/18/2022 Date Submitted 05/12/2022

> > 8

٩,

To: Kerry Magner Newfields MDTS 2227 N. 5th St. Elko, NV 89801

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager

The reported analysis was requested for the following location: Location : 475.0499.000 Site ID : B-22-101 0-5. Thank you for your business.

\* For future reference to this analysis please use SUN # 87355-181706. EVALUATION FOR SOIL CORROSION

| Soil pH           | 8.33           |          |
|-------------------|----------------|----------|
| Minimum Resistivi | ty 1.61 ohm-cm | (x1000)  |
| Chloride          | 36.4 ppm       | 00.00364 |
| Sulfate           | 40.7ppm        | 00.00407 |
| Redox Potential   | No Test        |          |
| Sulfides          | No Test        |          |

METHODS

pH AASHTO T289, Min.Resistivity AASHTO T288 Mod.(Sm.Cell) Sulfate AASHTO T290, Chloride AASHTO T291 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5



11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 05/18/2022 Date Submitted 05/12/2022

> > જ

ç,

To: Kerry Magner Newfields MDTS 2227 N. 5th St. Elko, NV 89801

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 475.0499.000 Site ID : B-22-103 0-5. Thank you for your business.

\* For future reference to this analysis please use SUN # 87355-181707.

EVALUATION FOR SOIL CORROSION

| Soil pH           | 8.80            |          |
|-------------------|-----------------|----------|
| Minimum Resistivi | ty 10.96 ohm-cm | (x1000)  |
| Chloride          | 24.9 ppm        | 00.00249 |
| Sulfate           | 11.5ppm         | 00.00115 |
| Redox Potential   | No Test         |          |
| Sulfides          | No Test         |          |

METHODS pH AASHTO T289, Min.Resistivity AASHTO T288 Mod. (Sm. Cell) Sulfate AASHTO T290, Chloride AASHTO T291 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5



11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 05/18/2022 Date Submitted 05/12/2022

> > %

**9**8

To: Kerry Magner Newfields MDTS 2227 N. 5th St. Elko, NV 89801

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 475.0499.000 Site ID : B-22-104 0-5. Thank you for your business.

\* For future reference to this analysis please use SUN # 87355-181708. EVALUATION FOR SOIL CORROSION

| Soil pH           | 8.39    |        |          |  |
|-------------------|---------|--------|----------|--|
| Minimum Resistivi | ty 1.74 | ohm-cm | (x1000)  |  |
| Chloride          | 35.3 p  | pm     | 00.00353 |  |
| Sulfate           | 22.3p   | pm     | 00.00223 |  |
| Redox Potential   | No T    | est    |          |  |
| Sulfides          | No T    | est    |          |  |

METHODS

pH AASHTO T289, Min.Resistivity AASHTO T288 Mod. (Sm.Cell) Sulfate AASHTO T290, Chloride AASHTO T291 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5



11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 05/18/2022 Date Submitted 05/12/2022

> > શ્વ

ક

To: Kerry Magner Newfields MDTS 2227 N. 5th St. Elko, NV 89801

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager

The reported analysis was requested for the following location: Location : 475.0499.000 Site ID : B-22-114 0-5. Thank you for your business.

\* For future reference to this analysis please use SUN # 87355-181709. 

EVALUATION FOR SOIL CORROSION

| Soil pH           | 8.10           |          |
|-------------------|----------------|----------|
| Minimum Resistivi | ty 0.13 ohm-cm | (x1000)  |
| Chloride          | 403.6 ppm      | 00.04036 |
| Sulfate           | 1342.6ppm      | 00.13426 |
| Redox Potential   | No Test        |          |
| Sulfides          | No Test        |          |

METHODS

pH AASHTO T289, Min.Resistivity AASHTO T288 Mod. (Sm.Cell) Sulfate AASHTO T290, Chloride AASHTO T291 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5


11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 05/18/2022 Date Submitted 05/12/2022

To: Kerry Magner Newfields MDTS 2227 N. 5th St. Elko, NV 89801

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 475.0499.000 Site ID : B-22-108 0-5. Thank you for your business.

\* For future reference to this analysis please use SUN # 87355-181710. EVALUATION FOR SOIL CORROSION

| Soil pH      | 7.92    |          |          |          |   |
|--------------|---------|----------|----------|----------|---|
| Minimum Resi | stivity | 0.32     | ohm-cm   | (x1000)  |   |
| Chloride     | 1       | 102.7 pp | <i>T</i> | 00.01027 | 8 |
| Sulfate      | 1       | 162.0pp  | n        | 00.11620 | z |
| Redox Potent | ial     | No Te    | st       |          |   |
| Sulfides     |         | No Te:   | st       |          |   |

METHODS



11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 05/18/2022 Date Submitted 05/12/2022

To: Kerry Magner Newfields MDTS 2227 N. 5th St. Elko, NV 89801

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 475.0499.000 Site ID : RC-22-004 0-5. Thank you for your business.

\* For future reference to this analysis please use SUN # 87355-181711.

EVALUATION FOR SOIL CORROSION

Soil pH 7.98

| Minimum Resistivity | 0.32 ohm-cm | (x1000)  |   |
|---------------------|-------------|----------|---|
| Chloride            | 75.6 ppm    | 00.00756 | % |
| Sulfate             | 606.6ppm    | 00.06066 | 8 |
| Redox Potential     | No Test     |          |   |
| Sulfides            | No Test     |          |   |

METHODS



11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 05/18/2022 Date Submitted 05/12/2022

> > ℅

શ્વ

To: Kerry Magner Newfields MDTS 2227 N. 5th St. Elko, NV 89801

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 475.0499.000 Site ID : B-22-109 0-5. Thank you for your business.

\* For future reference to this analysis please use SUN # 87355-181712.

EVALUATION FOR SOIL CORROSION

| Soil pH           | 8.60           |          |
|-------------------|----------------|----------|
| Minimum Resistivi | ty 0.29 ohm-cm | (x1000)  |
| Chloride          | 257.6 ppm      | 00.02576 |
| Sulfate           | 666.3ppm       | 00.06663 |
| Redox Potential   | No Test        |          |
| Sulfides          | No Test        |          |

METHODS



11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 05/18/2022 Date Submitted 05/12/2022

To: Kerry Magner Newfields MDTS 2227 N. 5th St. Elko, NV 89801

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 475.0499.000 Site ID : RC-22-001 20-25. Thank you for your business.

\* For future reference to this analysis please use SUN # 87355-181713. EVALUATION FOR SOIL CORROSION

Soil pH 7.62

| Minimum Resistivity | 4.56 ohm-cm | (x1000)    |
|---------------------|-------------|------------|
| Chloride            | 7.1 ppm     | 00.00071 % |
| Sulfate             | 15.0ppm     | 00.00150 % |
| Redox Potential     | No Test     |            |
| Sulfides            | No Test     |            |

METHODS



11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 05/18/2022 Date Submitted 05/12/2022

> > જ

8

To: Kerry Magner Newfields MDTS 2227 N. 5th St. Elko, NV 89801

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 475.0499.000 Site ID : RC-22-005 7.5-9. Thank you for your business.

\* For future reference to this analysis please use SUN # 87355-181714.

EVALUATION FOR SOIL CORROSION

| Soil pH           | 8.49 |        |              |   |
|-------------------|------|--------|--------------|---|
| Minimum Resistivi | ty 4 | 02 ohr | n-cm (x1000) |   |
| Chloride          | 4.3  | 5 ppm  | 00.0004      | 5 |
| Sulfate           | 7.   | 3ppm   | 00.0007      | 3 |
| Redox Potential   | No   | ) Test |              |   |
| Sulfides          | N    | ) Test |              |   |

METHODS

INVOICE SUNLAND ANALYTICAL LAB 11419 Sunrise Gold Cr., Ste.10 \*\*\*\*\*\* Rancho Cordova, CA 95742 (916)852-8557 Inv.No. 107355 Newfields MDTS Date 05/18/2022 2227 N. 5th St. Terms: NET 30, 30+ 15% 89801 Elko, NV Customer P.O.# Requestor: Magner ATTENTION ACCOUNTS PAYABLE \* Please indicate Invo.# on remittance PRICE ANALYSIS SUN NOS. SAMPLE LOCATION -----\_\_\_\_\_ . . . . . . . . 144.00 B-22-101 0-5 CTP.1-AASHTO 181706 475.0499.000 B-22-103 0-5 144.00 CTP.1-AASHTO 475.0499.000 181707 144.00 B-22-104 0-5 CTP.1-AASHTO 181708 475.0499.000 B-22-114 0-5 144.00 CTP.1-AASHTO 475.0499.000 181709 CTP.1-AASHTO B-22-108 U-U RC-22-004 0-5 B-22-108 0-5 144.00 181710 475.0499.000 CTP.1-AASHTO 144.00 475.0499.000 181711 
 181713
 475.0499.000

 181714
 475.0400
144.00 CTP.1-AASHTO RC-22-001 20-25 CTP.1-AASHTO RC-22-005 7.5-9 CTP.1-AASHTO 144.00 144.00

\*\*\*\*\*\*\*\* Total \*\*\*\*\*\*\*\*

1296.00

Appendix E Bridge Structure, Trash Enclosure, and Rock Fall Debris Fence Plans



| STATE                  | PROJECT NO. | COUNTY   | SHEET<br>NO. |
|------------------------|-------------|----------|--------------|
| NEVADA NHFP-080-3(071) |             | HUMBOLDT | B1           |



## GENERAL NOTES

- UNDERCROSSING STRUCTURE SHALL BE A PREFABRICATED CONCRETE ARCH APPROVED BY NDOT. SEE SECTION 502 IN THE SPECIAL PROVISIONS FOR MANUFACTURER PRE-QUALIFICATIONS. CAST-IN-PLACE CONCRETE CONSTRUCTION SHALL BE USED FOR THE ABUTMENT STEM WALLS AND FOOTINGS AS SHOWN IN THESE PLANS.
- CONTRACTOR IS RESPONSIBLE FOR THE DESIGN OF THE UNDERCROSSING PRECAST ARCH SUPERSTRUCTURE. THE DESIGN SHALL CONFORM TO THESE PLANS, PROJECT SPECIFICATIONS AND PROJECT GEOTECHNICAL REPORT. 2.
- TEMPORARY SHORING MAY BE REQUIRED FOR STAGED CONSTRUCTION. THE CONTRACTOR SHALL PROVIDE DESIGN AND DETAILS FOR TEMPORARY SHORING. SURCHARGE LOAD FROM ADJACENT STRUCTURES SHALL BE CONSIDERED IN THE SHORING DESIGN. TEMPORARY SHORING SHALL PROVIDE POSITIVE MEANS TO PREVENT SETTLEMENT/DEFLECTION OF STRUCTURES AND ROADWAYS LOCATED ADJACENT TO THE EXCAVATION. 3.
- DESIGN SPECIFICATIONS: "AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS", 8TH EDITION WITH 2019 INTERIM REVISIONS. NDOT "STRUCTURES MANUAL", 2008 WITH REVISIONS THROUGH 2019.
- CONSTRUCTION SPECIFICATIONS: STATE OF NEVADA DEPARTMENT OF TRANSPORTATION "STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE 5. CONSTRUCTION, 2014", EXCEPT AS NOTED BELOW AND IN THE SPECIAL PROVISIONS FOR THIS CONTRACT.
- LIVE LOAD: AASHTO HL-93 LOADING. OVERLOAD DESIGN BASED ON "CALIFORNIA STANDARD PERMIT DESIGN VEHICLES" (MAXIMUM ALLOWABLE OVERLOAD P13 TRUCK WITH 48 KIP TANDEM AXLES). 6.
- SEISMIC LOADING: DESIGN PEAK GROUND ACCELERATION COEFFICIENT PGA = 0.237, DESIGN SPECTRAL ACCELERATION COEFFICIENT AT SHORT PERIODS Sds = 0.569, DESIGN SPECTRAL ACCELERATION COEFFICIENT AT 1-SECOND PERIOD Sd1 = 0.248, AND SITE CLASS C. SEISMIC EFFECTS ARE ONLY 7. CONSIDERED FOR THE DESIGN OF THE WINGWALLS, BUT NEED NOT BE CONSIDERED FOR THE ARCH, HEADWALLS, OR STEM WALLS AS PER AASHTO LRFD SECTION 3.10.
- CONCRETE: ALL CAST-IN-PLACE CONCRETE SHALL BE CLASS AA MODIFIED (MAJOR) WITH A MINIMUM COMPRESSIVE STRENGTH f'c = 4000 PSI @ 28 8. DAYS
- REINFORCING STEEL: ALL REINFORCING STEEL TO BE EXPOXY-COATED ASTM A706 GRADE 60. DIMENSIONS RELATING TO BAR SPACING ARE CENTER TO CENTER. BENDING DIMENSIONS ARE FROM OUT TO OUT OF THE BARS. THE FIRST DIGIT OF THE MARK IS THE BAR SIZE. THE NEXT TWO NUMBERS INDICATE THE FEET PORTION OF THE BAR LENGTH AND THE LAST NUMBER(S) ARE THE INCHES PORTION OF THE OVERALL BAR LENGTH. THE LENGTH OF BAR SIZES FOUR (4) AND FIVE (5), WHEN CONSIDERED BY THE BRIDGE ENGINEER AS BARS TO CONTROL TEMPERATURE, SHRINKAGE AND DISTURBUTION OF THE DAY THE DEPENDENT OF DEPENDENCE OF THE MARK IS THE FIRST DIGIT OF THE OVERALL BAR LENGTH. THE LENGTH 9. DISTRIBUTION STRESSES, MAY BE ADJUSTED BY THE CONTRACTOR UPON APPROVAL OF THE ENGINEER. BAR MARKS ENDING WITH THE LETTER "E" INDICATE THE BAR SHALL HAVE AN EPOXY COATING.
- PAINT VERTICAL PRECAST ARCH FACES, ARCH SOFFIT, STEM WALL CAPS, STEM WALLS, WINGWALLS, AND HEADWALLS. COLOR OF THE PAINT SHALL BE DUNN EDWARDS DE 6194, "NATURAL BRIDGE". STEM WALLS AND WINGWALLS SHALL BE PAINTED TO 1'-0" BELOW THE GROUND LINE. SEE SHEET LD201 10. FOR PAINTING LIMITS.
- FOUNDATIONS: SEE SHEET B6 FOR WINGWALL FOOTING BEARING RESISTANCE AND SHEET B7 FOR STEM WALL FOOTING BEARING RESISTANCE.
- BACKFILL SHALL NOT BE PLACED UNTIL ARCH UNITS ARE SECURED IN PLACE AND HAVE BEEN WATERPROOFED. BACKFILL SHALL BE BROUGHT UP IN 12. EVEN LIFTS IN A SEQUENCE SUCH THAT THE DIFFERENCE IN LEVEL OF BACKFILL ON BOTH SIDES OF THE ARCH DOES NOT EXCEED 2 FT.
- THE GEOTECHNICAL REPORT WAS PREPARED BY JACOBS ENGINEERING GROUP, INC. TITLED "REVISED FINAL GEOTECHNICAL DESIGN REPORT I-80 13. GOLCONDA SUMMIT INTERCHANGE (MP HU 32.5 TO MP HU 38.8) TRUCK CLIMBING LANES AND PARKING PROJECT" DATED JANUARY 2023.
- 14. CONSTRUCTION TYPE CODE: X224

NOTE: THE CONTRACTOR SHALL VERIFY ALL CONTROLLING FIELD DIMENSIONS BEFORE ORDERING OR FABRICATING ANY MATERIAL.

## LEGEND:

| $\sim \sim \sim \sim \sim$ |  |
|----------------------------|--|

STRUCTURE EXCAVATION

| GRANULAR | BACKFILL |
|----------|----------|
|          |          |

ROADWAY EMBANKMENT

|          | QUANTITIES                                 |       |          |  |  |  |  |
|----------|--------------------------------------------|-------|----------|--|--|--|--|
| ITEM NO. | ITEM                                       | UNIT  | QUANTITY |  |  |  |  |
| 202 0255 | REMOVAL OF REINFORCED CONCRETE BOX CULVERT | EACH  | 1.0      |  |  |  |  |
| 206 0110 | STRUCTURE EXCAVATION                       | CUYD  | 15394.5  |  |  |  |  |
| 207 0110 | GRANULAR BACKFILL                          | CUYD  | 6206.4   |  |  |  |  |
| 212 0045 | PAINTING                                   | SQYD  | 1858.3   |  |  |  |  |
| 502 0700 | CONCRETE ARCH BRIDGE                       | LINFT | 176      |  |  |  |  |
| 502 0950 | CLASS AA CONCRETE, MODIFIED (MAJOR)        | CUYD  | 1305.31  |  |  |  |  |
| 505 0120 | REINFORCING STEEL (EPOXY COATED)           | POUND | 280530   |  |  |  |  |
| 506 0820 | PEDESTRIAN RAIL, TYPE X                    | LINFT | 229      |  |  |  |  |
| 646 0180 | LIQUID MEMBRANE                            | SQYD  | 1688.0   |  |  |  |  |

## NOTES:

1. SEE NDOT STANDARD PLAN SHEET EB-4 FOR STRUCTURE EXCAVATION AND BACKFILL NOTES. 2. NO DIRECT PAYMENT FOR TEMPORARY SHORING.

| STATE  | PROJECT NO.     | COUNTY        | SHEET<br>NO. |
|--------|-----------------|---------------|--------------|
| NEVADA | NHFP-080-3(071) | HUMBOLDT      | B2           |
|        |                 |               |              |
|        |                 |               |              |
|        |                 |               |              |
|        |                 |               |              |
|        | / Ex            | isting Ground |              |

STATE OF NEVADA DEPARTMENT OF TRANSPORTATION



# GENERAL NOTES, EXCAVATION/BACKFILL PAY LIMITS, AND QUANTITIES I-3331









| STATE  | PROJECT NO.     | COUNTY   | SHEET<br>NO. |
|--------|-----------------|----------|--------------|
| NEVADA | NHFP-080-3(071) | HUMBOLDT | B6           |

|                | WINGWALL DATA TABLE |             |                |           |           |           |  |  |
|----------------|---------------------|-------------|----------------|-----------|-----------|-----------|--|--|
| J<br>ZE)       | J<br>(SPACING)      | K<br>(SIZE) | K<br>(SPACING) | E<br>(FT) | F<br>(FT) | G<br>(FT) |  |  |
| <del>‡</del> 5 | 12                  | #5          | 12             | 1.0       | 5.0       | 1.5       |  |  |
| <del>‡</del> 5 | 6                   | <b>#</b> 5  | 6              | 1.5       | 7.5       | 1.5       |  |  |
| <b>*</b> 7     | 6                   | #6          | 6              | 2.5       | 10.0      | 2.0       |  |  |
| <del>‡</del> 8 | 6                   | #7          | 6              | 3.5       | 13.0      | 2.5       |  |  |
| <del>1</del> 0 | 6                   | <b>#</b> 9  | 6              | 4.0       | 14.0      | 2.5       |  |  |
| <del>1</del> 0 | 6                   | #10         | 6              | 4.0       | 15.5      | 2.5       |  |  |
| 10             | 6                   | #10         | 6              | 6.0       | 18.0      | 2.5       |  |  |
| -10            | 6                   | -           | _              | _         | _         | -         |  |  |

\* WHERE WINGWALL BEARS ON STEM WALL FOOTING, SEE SHEET B8 FOR FOOTING THICKNESS

### WINGWALL FOOTING BEARING RESISTANCE

| e<br>t | Strength Limit State Factored Gross Nominal Bearing Resistance (ksf) ( $\phi=$ 0.55) | Extreme Event Limit State Factored Gross Nominal Bearing Resistance (ksf) ( $\phi=$ 1.0) |
|--------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|        | 16.0                                                                                 | 28.0                                                                                     |
|        | 18.0                                                                                 | 32.0                                                                                     |
|        | 17.0                                                                                 | 30.0                                                                                     |
|        | 20.0                                                                                 | 40.0                                                                                     |
|        | 26.0                                                                                 | 47.0                                                                                     |
|        | 26.0                                                                                 | 46.0                                                                                     |
|        | 26.0                                                                                 | 47.0                                                                                     |
|        | 28.0                                                                                 | 50.0                                                                                     |

\*\* SERVICE LIMIT BEARING RESISTANCE VALUES REPRESENT THE LOAD USED IN THE SETTLEMENT ANALYSIS MODELS. SETTLEMENT USING SUCH LOAD IS ESTIMATED TO BE LESS THAN 1 INCH. REFER TO GEOTECHNICAL REPORT FOR ANALYSIS.

LIVE LOAD: WINGWALLS NOT DESIGNED FOR LIVE LOAD SURCHARGE PRESSURE.

SEISMIC LOAD: DESIGN BASED ON AASHTO RESPONSE SPECTRA FOR SITE CLASS C. DESIGN PEAK GROUND ACCELERATION COEFFICIENT = 0.237, Sds = 0.569, Sd1 = 0.248. WALL DESIGN IS BASED ON A SEISMIC ACCELERATION EQUAL TO 1/2 OF THE DESIGN PGA = 0.12.

ROUGHEN CONSTRUCTION JOINT SURFACE TO 1/4 INCH AMPLITUDE

4. SEE SHEET B9 FOR DRAINAGE, FOOTING STEP, WALL OFFSET, AND JOINT DETAILS.

FOR EXCAVATION AND BACKFILL LIMITS SEE NDOT STANDARD PLAN SHEET EB-4.

SEE NDOT STANDARD SPECIFICATION SECTION 207 FOR BACKFILL COMPACTION REQUIREMENTS.

CHAMFER EXPOSED CORNERS 1" AS PER PROJECT AESTHETIC DETAILS

NOMINAL COEFFICIENT OF FRICTION BETWEEN CONCRETE FOOTING AND FOUNDATION SOIL = 0.55 SEE SHEET LD101 FOR WALL AESTHETIC TREATMENT.

STRUCTURAL DESIGN CONSIDERS A STEM ARCHITECTURAL TREATMENT OF THICKNESS UP TO 2"

STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

HEADWALL AND

WINGWALL DETAILS

SHEET 3 OF 4

I-3331





|                   | STATE                                                                                                                                                                                 | PROJECT NO.                    |                                            | COUNTY                                        | SHEET |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|-----------------------------------------------|-------|
|                   | NEVADA                                                                                                                                                                                | NHFP-080-3((                   | )71)                                       | HUMBOLDT                                      | B7    |
| E<br>©<br>DE<br>S | <u>E @ 6'' B.F.</u><br>@ 12'' F.F.<br><u>TO W7206E @ 6'' B.F.</u><br>TO W5202E @ 12'' F.F.<br><u>19- W5088E TO W5122E @ 6'' B.F.</u><br>S <u>10- W5088E TO W5122E &amp; 12'' F.F.</u> |                                |                                            |                                               |       |
|                   | 7- 4252E @<br>12" Max E.F.<br>9- 4092E @ 12"<br>Top & Bot<br>0710E<br>E.F.<br>158E @<br>lax E.F.<br>088E @ 12"<br>& Bot                                                               |                                |                                            |                                               |       |
|                   |                                                                                                                                                                                       | <u>NOTES:</u><br>1. FOR        | ''WINGWALL                                 | TYPICAL SECTION", SEE                         |       |
| T                 |                                                                                                                                                                                       | SHEE<br>2. FOR<br>EXP/<br>SHEF | T B6.<br>"FOOTING S<br>NSION JOINT<br>T B9 | TEP DETAIL" AND "WALL<br>WITH WATERSTOP", SEE | -     |
|                   |                                                                                                                                                                                       | 3. WING<br>SHO                 | WALL CAP E<br>VN FOR CLA                   | 3ARS (W4032E @ 12) NO<br>RITY.                | Т     |
|                   |                                                                                                                                                                                       | 4. FOO<br>REIN                 | TING KEY AN<br>FORCING NO                  | ND FOOTING KEY<br>T SHOWN FOR CLARITY.        |       |
|                   |                                                                                                                                                                                       | 5. FOO<br>NOT                  | TING AND ST<br>SHOWN FOF                   | EMWALL SHEAR STIRRUP<br>CLARITY.              | S     |
| TC                | D W514<br>W514(                                                                                                                                                                       | OE @ 6" B.F.<br>DE & 12" F.F.  |                                            |                                               |       |
| IE<br>E.I         | Q<br>F.                                                                                                                                                                               |                                |                                            |                                               |       |
| ot                |                                                                                                                                                                                       |                                |                                            |                                               |       |
|                   |                                                                                                                                                                                       |                                | STA<br>DEPARTMEN<br>                       | TE OF NEVADA<br>T OF TRANSPORTATION           |       |
|                   | VIE AN                                                                                                                                                                                | NGINEER -                      | HEAD                                       | WALL AND                                      | ~     |



HEADWALL AND WINGWALL DETAILS SHEET 4 OF 4 I-3331



| STATE  | PROJECT NO.     | COUNTY   | SHEET<br>NO. |
|--------|-----------------|----------|--------------|
| NEVADA | NHFP-080-3(071) | HUMBOLDT | B8           |
| -      |                 |          |              |









| STATE  | PROJECT NO.     | COUNTY   | SHEET<br>NO. |
|--------|-----------------|----------|--------------|
| NEVADA | NHFP-080-3(071) | HUMBOLDT | SD2          |

SEE SHEET SDIFOR WALL TYPICAL SECTION, SECTION A-A, SECTION B-B, AND LIMITS OF STRUCTURE EXCAVATION AND GRANULAR BACKFILL.

DESIGN SPECIFICATIONS: "AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS", 8TH EDITION, WITH 2019 INTERIM REVISIONS. INTERNATIONAL BUILDING CODE (2012). BUILDING CODE REQUIREMENT FOR MASONRY STRUCTURES (TMS 402-13/ACI 530-13/ASCE 5-13).

CONSTRUCTION SPECIFICATIONS: STATE OF NEVADA DEPARTMENT OF TRANSPORTATION "STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION," 2014, EXCEPT AS NOTED BELOW AND IN THE SPECIAL PROVISIONS OF THIS CONTRACT

CONCRETE: REINFORCED CONCRETE FOOTING SHALL BE CLASS AA MODIFIED (MINOR) WITH A 28-DAY COMPRESSIVE STRENGTH OF 4,000 PSI.

MASONRY: F'M = 1,500 PSI, FS = 24.0 KSI, N = 26.

REINFORCING STEEL: ASTM A615 GRADE 60 OR A706

DESIGN WIND LOAD: 35 PSF.

SEISMIC LOAD: ACCELERATION COEFFICIENT 0.24G.

CONCRETE FOOTING BEARING RESISTANCE: SERVICE LIMIT STATE PERMISSIBLE NET CONTACT STRESS = 4.0 KSF STRENGTH FACTORED GROSS NOMINAL BEARING RESISTANCE = 9.3 KSF EXTREME EVENT FACTORED GROSS NOMINAL BEARING RESISTANCE = 20.0 KSF

WALL AESTHETICS: BLOCKS SHALL BE INTEGRAL COLOR TO MATCH BASALITE "SANDSTONE". THE FIRST COURSE BELOW THE MORTAR CAP SHALL BE SMOOTH FACE BLOCK, THE 2 COURSES BELOW SHALL BE SPLIT FACE BLOCK, AND ALL OTHER COURSES SHALL BE SMOOTH FACE BLOCK.

11. THE MASONRY RETAINING WALL AREA MEASURED FROM THE TOP OF FOOTING.





# SPECIAL DETAILS TRASH ENCLOSURE No.2





|          | NEVADA                                                                      | NHFF | P-080-3(071)                                                 | HUMBOLDT                                                            | SD4               |
|----------|-----------------------------------------------------------------------------|------|--------------------------------------------------------------|---------------------------------------------------------------------|-------------------|
|          |                                                                             |      |                                                              |                                                                     |                   |
|          | GENERAL NOTES:                                                              |      |                                                              |                                                                     |                   |
|          |                                                                             | 1.   | ALL POSTS AND BR<br>CRANE RAIL - 10'LC                       | ACES SHALL BE 50 PC<br>)NG.                                         | UND               |
|          |                                                                             | 2.   | INSTALL LINE BRACE<br>EXCEEDING 275'.                        | S AT INTERVALS NOT                                                  |                   |
|          |                                                                             | 3.   | ALL POSTS SHALL E                                            | 3E AT 16' CENTERS.                                                  |                   |
|          |                                                                             | 4.   | POSTS AND BRACES<br>CONCRETE AS SHOW<br>MAY BE GROUTED II    | TO BE SET IN CLASS<br>/N, EXCEPT IN ROCK TH<br>N DRILL HOLE.        | AA<br>HEY         |
| b)       |                                                                             | 5.   | 2 GALVANIZED CROS<br>GALVANIZED WIRE R<br>USED TO ATTACH W   | BY CLIPS OR EQUAL /<br>OPE THIMBLE SHALL BE<br>VIRE ROPE AND EYE BA | AND 1<br>E<br>AR. |
|          |                                                                             | 6.   | CUT GROOVE IN FLA<br>ROPE AND EYE BAR                        | ANGE OF BRACES FOR                                                  | WIRE              |
|          |                                                                             | 7.   | SECURE MESH TO L<br>TIES PER POST, AND<br>1 WIRE TIE PER EVE | INE POSTS WITH 7 WIF<br>) TO EACH WIRE ROPE<br>RY 2'.               | RE<br>WITH        |
|          |                                                                             | 8.   | NATINA FINISH SHAL                                           | L BE APPLIED TO ALL                                                 | 109               |
| ''<br>cr | FENCE ELEMENTS, SEE LANDSCAPE SHEET LIU9.<br>'x 1'-6" Square<br>crete Block |      |                                                              | 2100.                                                               |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |
|          |                                                                             |      |                                                              |                                                                     |                   |

SHEET NO.

COUNTY

STATE OF NEVADA DEPARTMENT OF TRANSPORTATION

I-80 - GOLCONDA SUMMIT



STATE

PROJECT NO.

# ROCK FALL PROTECTION DEBRIS FENCE