GEOTECHNICAL REPORT

BRIDGE B-100 REPLACEMENT SR 115, HARRIGAN ROAD AT L-LINE CANAL

CHURCHILL COUNTY, NEVADA

APRIL 2014

MATERIALS DIVISION

STATE OF NEVADA DEPARTMENT OF TRANSPORTATION MATERIALS DIVISION GEOTECHNICAL SECTION

GEOTECHNICAL REPORT BRIDGE B-100 REPLACEMENT SR 115, HARRIGAN ROAD AT L-LINE CANAL

CHURCHILL COUNTY, NEVADA APRIL 2014 E.A. No. 73798

Prepared by:

Ashley Hurlbut, P.E. Senior Geotechnical Engineer

Reviewed by: _____

Jeffrey A. Palmer, Ph.D., P.E. Principal Geotechnical Engineer

Approved by: _____

Reid Kaiser, P.E. Chief Materials Engineer

TABLE OF CONTENTS

INTRODUCTION	1
General	1
Scope	1
PROJECT DESCRIPTION	1
GEOLOGIC CONDITIONS AND SEISMICITY	2
Local Geology	2
Faulting and Seismicity	3
FIELD INVESTIGATION	3
Soil Borings	3
Geophysical Survey	4
LABORATORY ANALYSES	5
SUBSURFACE CONDITIONS	5
Groundwater	6
SUMMARY OF ANALYSES AND GEOTECHNICAL DESIGN CRITERIA	6
Seismic Design Considerations	6
Scour Design Considerations	7
Lateral Earth Pressures and Sliding Resistance	7
Static Lateral Earth Pressure	7
Vehicular Live Load Surcharge	8
Structure Loads and Bearing Pressures	8
Settlement	8
Foundation Soil	8
Soil Bearing Resistance	8
Service Limit State	9
Strength Limit State	9
Extreme Event Limit State	10
Foundation Embedment Depth	10
Soil Liquefaction	10

CONSTRUCTION RECOMMENDATIONS	11
Removal of Existing Structure	11
Dewatering	11
Excavations	13
Utilities	13
Construction Platform	13
Geotextile	14
GEOTECHNICAL REPORT LIMITATIONS	14
REFERENCES	15

APPENDICES

APPENDIX A: MAPS

Site Location Map

Boring Location Map

APPENDIX B: SUBSURFACE EXPLORATION DATA

Key to Boring Logs

Boring Logs

Geophysical (ReMi) Survey Data

APPENDIX C: LABORATORY TEST RESULTS

Summary of Results

Particle Size Distribution Reports

Direct Shear Test Reports

INTRODUCTION

General

The Nevada Department of Transportation (NDOT) plans to replace the substandard Harrigan Road Bridge (Bridge B-100) on State Route 115/Harrigan Road over the L-Line Canal in Fallon, Churchill County, Nevada. The Site Location Map can be found in Appendix A.

Bridge B-100 is located on SR 115 which has a north-south orientation and crosses over the west-to-east running L-Line Canal. The canal is approximately 10 feet deep and is an earthen channel. SR 118/Wildes Road, a paved road, runs along the south bank of the canal, and Wood Drive, a gravel road, runs along the north bank of the canal. Several overhead and underground utilities run through the project area. The Boring Location Map in Appendix A shows an aerial photograph of the project site.

Scope

A geotechnical investigation was conducted to determine the subsurface soil and groundwater conditions at the project site. The scope of the investigation included research of available background information including geologic literature, geotechnical field exploration, laboratory testing, and analysis of field and laboratory data. The purpose of this geotechnical report is to summarize and evaluate the findings of the geotechnical investigation and to present geotechnical design criteria and construction recommendations for the new structure foundation.

PROJECT DESCRIPTION

Planned construction will consist of replacing the existing Harrigan Road Bridge over the L-Line Canal with a new structure. The existing bridge was constructed under NDOT Contract 73 in 1923 and widened under Contract 351 in 1934. The existing structure is a 2-span reinforced concrete girder bridge with vertical abutment walls with wingwalls and a center pier, all founded on spread footings. NDOT Contract 73 as-built plans indicate that the bottoms of footing elevations are 3947.5 feet for the abutments and wingwalls and 3947.0 for the center pier.

The bridge has a Sufficiency Rating of 48.2. The Sufficiency Rating is a numerical indicator of the bridge's sufficiency to remain in service, and is measured on a scale from 0 to 100. Bridges

with a Sufficiency Rating less than 50 are considered to be structurally deficient or functionally obsolete. The National Bridge Inventory (NBI) Item 113 code for the existing bridge is 3 which means that the bridge is scour critical, and the bridge foundations have been determined to be unstable for assessed or calculated scour conditions.

The planned replacement structure is a cast-in-place, 2-cell reinforced concrete box (RCB) culvert with affixed wingwalls. The RCB will be approximately 11 feet high, 43 feet wide and 41 feet long. The foundation grade of the RCB is estimated to be at an elevation of approximately 3951 feet. Current plans also include a two-directional travel way, concrete barrier rails, and scour countermeasures which are designed to resist scour within the service life of the proposed structure.

Several in-channel flow control structures exist along the L-Line Canal. These structures provide grade control and allow for diversions. There is an abandoned concrete weir about 100 feet downstream of Bridge B-100. The maximum canal operational flow is 300 cubic feet per second. Construction of the new structure is proposed to take place from December 2014 to March 2015. During this time the Truckee Carson Irrigation District (TCID) can redirect the water flow in the canal.

GEOLOGIC CONDITIONS AND SEISMICITY

Local Geology

Churchill County is located in the western portion of the Great Basin geomorphic province. The Great Basin in characterized by large normal fault-bounded valleys that are separated by large mountain ranges. The project site is located in the western part of Churchill County in the outer reaches of the broad, low valley of the Carson Sink which is underlain by deposits of Lake Lahontan. The *Geologic Map of Churchill County, Nevada* (Willden and Speed, Plate 1) shows the general map unit in the project area to be Younger Alluvium (Qya), which includes Lake Lahontan deposits, playa deposits, and young fan gravels. The younger alluvium generally is composed of fine-grained sediments, silts, and clays, but near the mountains that rim the Carson Sink it includes considerable well-sorted gravel.

Faulting and Seismicity

The Quaternary Fault and Fold Database for the United States (U.S. Geological Survey) shows several Quaternary faults within 10 miles of the project site. These geologically young and historically active faults are probable locations for near-future seismic activity and are capable of producing moderate- to large-magnitude events. However, no active faults are shown within 3 miles of the project site and no direct evidence of onsite faulting was observed.

FIELD INVESTIGATION

A geotechnical field investigation was conducted on January 22 and 23, 2014. Approximate soil borehole and geophysical survey locations are plotted on the Boring Location Map included in Appendix A. Boring locations and ground elevations provided on the Boring Logs in Appendix B were estimated using plan view alignment and mapping information and physical measurements taken in the field. Locations and elevations should be considered accurate only to the degree implied by the method used to determine locations and elevations.

Soil Borings

The subsurface soil conditions were explored by drilling 4 boreholes, identified as HBR-1, HBR-1A, HBR-2, and HBR-2A. Borehole depths ranged from 5 to 32.5 feet. Boreholes were backfilled with grout immediately after drilling operations were completed for boreholes HBR-1, HBR-2, and HBR-2A. Borehole HBR-1A was backfilled with drill cuttings. The details of subsurface conditions encountered during our exploration are shown in the Boring Logs in Appendix B. A Key to Boring Logs precedes the Boring Logs in Appendix B.

Logs of the subsurface conditions, as encountered during the field investigation, were recorded by NDOT Geotechnical Section staff. Soil samples were examined and identified in the field in accordance with ASTM D 2488. Additional soil classification was subsequently performed on soil samples using the Unified Soil Classification System (USCS) in accordance with ASTM D 2487 upon completion of laboratory testing. Where soil tests are not listed in the appropriate column of the Boring Logs, the USCS symbols and terminology are based solely on visualmanual identification (ASTM D 2488) rather than laboratory classification. Borings HBR-1 and HBR-2 were explored using mud rotary drilling methods. Drilling was performed using an NDOT Diedrich D-120 drill rig (Drill Rig Unit #1082) equipped with a 140-pound automatic hammer. Drive samples were obtained using both a Standard Penetration Testing sampler (SPT, ASTM D1586) and a California Modified sampler (CMS, ASTM D 3550) at locations noted on the Boring Logs. The drive samples were advanced using a 140-pound automatic hammer with a drop of 30 inches. Sampler driving resistance, expressed as blow count per one foot of penetration (N-value), is presented on the Boring Logs at the respective depths. The N-value is an indication of the apparent density of coarse-grained soils and the consistency of fine-grained soils. The field blow counts presented on the Boring Logs have not been corrected for hammer efficiency, overburden pressure, rod length, etc. The energy transfer ratio from the hammer into the drill string for the NDOT Drill Rig Unit #1082 is 86%. Therefore, a factor of 1.4 (86/60) shall be applied to the field blow counts to correct for hammer efficiency.

Two supplemental boreholes, HBR-1A and HBR-2A, were explored using a mobile drill rig equipped with 6-inch solid auger. HBR-1A and HBR-2A were drilled approximately 3 feet west of HBR-1and HBR-2, respectively. Representative bulk soil samples were obtained from auger cuttings at depths indicated on the Boring Logs.

Geophysical Survey

A refraction microtremor (ReMi) survey was conducted at the project site on January 23, 2014 to develop a subsurface shear-wave velocity profile at the project site. The ReMi equipment and methods provide effective means to obtain subsurface information by estimating subsurface shear wave velocity profiles with 20% accuracy.

Data was obtained along a survey line using a cable with 12 geophones spaced 20 feet apart. The ReMi survey line ran along the Wood Drive, the gravel road north of the L-line canal, east of SR 115 as shown on the Boring Location Map in Appendix A. The ReMi survey line was set at an approximate elevation of 3959 feet.

An Optim Software and Data Solutions representative performed interpretations of the data collected at the site using the most current SeisOpt ReMi software. The results of the ReMi survey are represented by the one-dimensional shear wave velocity profile located in the

Geophysical (ReMi) Survey Data in Appendix B. This plot depicts variations in the shear wave velocity profile to a depth of 100 feet and provides the average shear wave velocity for the upper 100 feet of the soil profile, v_{s100} .

LABORATORY ANALYSES

Soil samples were tested at the NDOT Materials and Testing Laboratory in Carson City, Nevada. Soils were classified using the USCS in accordance with ASTM D 2487. Individual laboratory test results for soil samples can be found in Appendix C of this report.

The laboratory testing program for selected samples consisted of the following:

- Particle size gradations through No. 200 sieve (NV T 206)
- Atterberg Limits (NV T 210 and T 212)
- Natural Moisture Content (AASHTO T 265)
- Soil Unit Weight
- Direct Shear (AASHTO T 236)
- Resistance Value (R-value, NV T 115)

SUBSURFACE CONDITIONS

Details of the subsurface conditions encountered during our field investigation at the project site can be found in the Boring Logs in Appendix B. Following is a summary of the subsurface conditions.

Approximately 3.5 to 6.5 inches of asphalt concrete pavement was observed in our borings on top of the fill on either side of the existing structure.

The upper 15 feet of soil encountered in our borings can be considered roadway fill material generally classified as loose to medium dense, poorly graded sand with silt, silty clayey sand, and silty sand.

Based on our subsurface explorations, the soils below the roadway fill at the project site consist predominately of sand and silt with some clay and little to no gravel. Material below the fill and to a depth of about 34 feet (the depth of our deepest boring) can be generally classified as

stratified layers of medium dense to dense, poorly graded sand, poorly graded sand with silt, silty sand, and silt with varying thicknesses up to about 5 feet, and medium stiff to very stiff, sandy lean clay, sandy silty clay, and fat clay of varying plasticity and thicknesses up to of 3 feet.

The results of the ReMi survey are represented by the one-dimensional shear wave velocity profile located in the Geophysical Data in Appendix B. This plot depicts variations in the shear wave velocity profile to a depth of 100 feet. The average shear wave velocity for the upper 100 feet of the soil profile, v_{s100} , is estimated to be 810 feet per second which indicates a Site Class Definition of D as defined by Table 3.10.3.1-1 of AASHTO LRFD Bridge Design Specifications (AASHTO).

Samples to determine R-value were obtained from the fill in the upper 5 feet in borings HBR-1A and HBR-2A. R-value laboratory test results are included on the Summary of Results tables in Appendix C. The R-values were determined to be 71 to 76 in Borings HBR-1A and HBR-2A respectively. The R-value test is used by NDOT to measure subgrade strength and expansion potential, and is used in the design of flexible pavements.

Groundwater

Groundwater level was estimated during drilling to be approximately 10 feet below existing grade in borings HBR1 and HBR2. This corresponds to an elevation of approximately 3953 feet. Groundwater level was measured at a depth of 13.5 feet in borehole HBR 2A after drilling. This corresponds to an elevation of approximately 3949.5 feet. The groundwater level in the borings was approximately the same as the water level in the canal during the geotechnical investigation. Fluctuations in the level of the groundwater and soil moisture conditions as noted in this report may change due to variations in precipitation, controlled distribution of irrigation water, and other factors.

SUMMARY OF ANALYSES AND GEOTECHNICAL DESIGN CRITERIA

Seismic Design Considerations

In accordance with AASHTO Article 12.6.1, earthquake loading should only be considered where buried structures cross active faults. No seismic analysis is required since the buried RCB and wingwalls do not cross an active fault.

Scour Design Considerations

The NDOT Hydraulics Section's assessment of offsite flood flow potential determined that significant flood flows through the structure are improbable. The anticipated maximum flow through the structure is estimated to be 300 cubic feet per second which corresponds to an average depth of flow through the channel of approximately 4.6 feet. Flow in the channel is controlled upstream by several in-channel flow control structures that are managed by the TCID. The NDOT Hydraulics Section has proposed engineered scour countermeasures for the bridge replacement project, which are to be detailed in the construction plans, to resist scour for this anticipated maximum flow for the service life of the proposed structure. Therefore, the NDOT Hydraulics Section provided that design and check flood scour is not applicable at this site and they shall be taken to be zero. Hence, no changes to the foundation conditions need to be considered resulting neither from the design flood for scour at the strength and service limit states nor from the check flood for scour at the extreme event limit state in accordance with AASHTO Article 3.7.5.

Lateral Earth Pressures

The RCB and wingwalls will be backfilled with NDOT Granular Backfill material in accordance with NDOT *Standard Specifications for Road and Bridge Construction* (Standard Specifications) Section 207 and NDOT *Standard Plans for Road and Bridge Construction* (Standard Plans) Drawing R-1.1.4. Backfill beyond the limits of Granular Backfill will consist of existing or new roadway embankment fill. For our analyses, it was assumed that the properly compacted Granular Backfill will be free draining and backfill soils have the following material properties: angle of internal friction (ϕ_f) equal to 32 degrees, unit weight of soil (γ) equal to 120 pounds per cubic foot (pcf), and cohesion equal to 0. Earth pressure coefficients were calculated assuming a level backslope.

Static Lateral Earth Pressure

Static lateral earth pressures from the anticipated backfill on the sides of the culvert and wingwall sections that are fixed to the culvert to resist movement should be evaluated for drained conditions using an at-rest earth pressure coefficient, k_0 , of 0.47 and a corresponding at-rest equivalent fluid unit weight of soil of 56 pcf.

Backfill soils were calculated to have a Rankine active earth pressure coefficient, ka, of 0.31.

Vehicular Live Load Surcharge

Constant horizontal earth pressure due to vehicular live load surcharge was evaluated in accordance with AASHTO Article 3.11.6.4. Equivalent height of soil for vehicular loading, h_e , shall be taken as 2.8 feet for the culvert side walls and 2.0 feet for the wingwalls. Therefore, the constant horizontal at-rest earth pressure due to vehicular live load surcharge on the culvert side walls shall be taken as 160 pounds per square foot (psf). Constant horizontal at-rest earth pressure due to vehicular shall be taken as 110 psf.

Other anticipated surcharge loads resulting in lateral loads on the culvert side walls and wingwalls need to be considered in the design.

Structure Loads and Bearing Pressures

Anticipated structure loads and estimated existing structure loads were provided by the NDOT Structures Division. The anticipated new structure dead loads result in a bearing pressure of 0.71 kips per square foot (ksf). The existing structure has an estimated bearing pressure from dead loads of 0.84 ksf at the abutments and 1.65 ksf at the pier. Since the existing structure has greater bearing pressures than the new structure, settlement is not expected.

Settlement

Settlement analyses for the RCB were not performed because the net bearing pressure applied at the proposed foundation elevation is estimated to be less than 0.

Foundation Soil

Based on laboratory test results along with correlation with SPT blow counts, foundation soils were analyzed using of the following soil properties: ϕ_f equal to 36 degrees, γ equal to 124 pcf, and cohesion equal to 0.

Soil Bearing Resistance

Bearing resistances for the RCB were analyzed assuming a 43 feet wide and 41 feet long box culvert founded at an approximate elevation of 3951 feet. Bearing resistances for the box culvert are summarized in Table 1 and are further explained in the following sections.

*Service I	Limit State	Strength I	Limit State	Extreme Event Limit State			
Nominal	Factored	Nominal	Factored	Nominal	Factored		
Resistance	Resistance	Resistance	Resistance	Resistance	Resistance		
(ksf)	(ksf)	(ksf)	(ksf)	(ksf)	(ksf)		
2.0	2.0	50	23	n/a	n/a		

 Table 1. Box Culvert Bearing Resistances

*Note that the provided Service Limit State bearing resistances are based on *net* applied bearing pressure. Read Service Limit State section below for further explanation.

Service Limit State

The resistance factor, φ , for the service limit states shall be taken as 1.0 in accordance with AASHTO Article 10.5.5.1. Therefore, nominal and factored resistances at the service limit states are equal. For this project, the factored bearing resistance at the Service I Limit State is defined as the net bearing pressure that is estimated to produce 1 inch of total settlement. The net bearing pressure is defined as the difference between the bearing pressure applied by the new structure and the bearing pressure applied by the existing structure. Settlement analyses using computational methods based on the results of laboratory and in situ testing were performed in accordance with AASHTO Article 10.6.2.4 and FHWA *Soils and Foundations* manual.

Settlement analyses estimate that total settlement of 1 inch for the proposed RCB would occur from an applied net bearing pressure of approximately 2 kips per square foot (ksf). Therefore, factored bearing resistance at the Service I Limit State shall be 2 ksf.

Since the existing structure has greater applied bearing pressures than the proposed new RCB structure, the net bearing pressure will be less than 0.

Strength Limit State

Nominal bearing resistance at the Strength Limit State was calculated using the theoretical estimation in accordance with AASHTO Article 10.6.3.1.2a. The bearing resistance factor for the Strength Limit state, φ_b , of 0.45 used in our analysis is based on the theoretical method, in sand, using SPT from AASHTO Table 10.5.5.2.2-1.

The nominal bearing resistance at the Strength Limit State for the proposed box culvert embedded 18 inches with no eccentric loading is estimated to be 50 ksf, and the factored bearing resistance is estimated to be 23 ksf.

Extreme Event Limit State

Bearing resistances at the Extreme Event Limit States were not evaluated since seismic design is not required and check flood scour is not applicable at this site.

Foundation Embedment Depth

Section 17.2.4 of the NDOT Structures Manual requires spread footings to be embedded a sufficient depth to provide the greatest of the following:

- adequate bearing, scour and frost heave protection;
- 3 ft to the bottom of footing; or
- 2 ft of cover over the footing.

To protect against frost heave, it is recommended that spread footings be embedded at least 18 inches. Eighteen inches of embedment also provides for adequate bearing resistance.

The NDOT Hydraulics Section should be consulted to determine the embedment depth that protects against scour.

Soil Liquefaction

During a dynamic event such as an earthquake shaking, loose, saturated cohesionless soil deposits may experience a sudden loss of strength and stiffness. This phenomenon is called soil liquefaction.

Although saturated, cohesionless sands and silts are predominant at the site, they are generally medium dense to dense at and below the proposed foundation elevation which decreases the potential for soil liquefaction at the site.

Liquefaction analysis of onsite soils at and below the proposed footing elevations have been performed using the Simplified Procedure as described in the FHWA *Geotechnical Earthquake Engineering* manual. The analysis determined that there is no potential for liquefaction in the soils encountered at or below the proposed footing elevation at the project site.

CONSTRUCTION RECOMMENDATIONS

Removal of Existing Structure

Construction of the new RCB will require removal of the existing structure. The existing structure and all spread footing foundation elements shall be fully removed.

Dewatering

Construction is proposed to take place from December 2014 to March 2015. During this time the TCID can redirect the water flow in the canal so that no irrigation water will flow through the canal at the project site. However, the foundation soils will likely be saturated and water seepage will likely be encountered in excavations.

During our geotechnical investigation in January 2014, irrigation water was not flowing through the canal. Yet, there was water/ice present in the canal. Below are photos taken at the project site during our investigation that show water conditions in the L-line canal.

Photo 1. Looking East (downstream) towards Bridge B-100.

Photo 2. Looking West (upstream) at Bridge B-100.

Photo 3. Looking East (downstream) towards the weir from Bridge B-100.

Dewatering is the Contractor's responsibility and is included in the Structure Excavation item of work as stated in NDOT Standard Specifications Sub-Section 206.01.01. Additionally, we recommend that the contractor protect any subgrade from exposure to water and any unnecessary construction traffic.

Excavations

Construction of the new RCB will require soil excavation. All structure excavation shall conform in accordance with Section 206 of NDOT Standard Specifications and current OSHA safety regulations for sloping the sides of excavations, using shoring and bracing, and for using other safety features. The working area will require the contractor to shore foundation excavations due to right-of way limitations and utility conflicts. Shoring shall be designed using appropriate lateral earth pressures presented in this report and anticipated surcharge loads.

Existing fill materials and adjacent underlying native materials at the project site can generally be classified as OSHA Class C soils defined by granular soils including gravel, sand, and sandy loam; and submerged soil or soil from which water is freely seeping. Maximum allowable slopes for excavations less than 20 feet in Class C soils is 1.5H:1V. These limits and soil classifications may change based on the soil conditions exposed during construction as determined by a competent person.

Utilities

Limits of excavation will need to be confined to not interfere with existing utility infrastructure. The contractor is responsible for any necessary shoring needed for structure excavation to avoid existing utilities. As stated in Subsection 105.06 of the Standard Specifications, the contractor is responsible to take steps to ascertain the exact location of all underground facilities before doing work that may damage such facilities or interfere with their service. Locating of underground facilities is the sole responsibility of the Contractor. No reliance may be placed upon the location of underground facilities as noted on the plans.

Construction Platform

The box culvert shall be bedded on 4 inches of bedding material and backfilled in accordance with NDOT Standard Plans Drawing R-1.1.4. It is likely that unstable foundations conditions will be encountered during construction due to migration of saturated sands, seepage, and/or

yielding conditions which prevent proper compaction of the foundation soils. Therefore, we recommend that both the box culvert and wingwall footings be founded on the 4 inches of bedding material and be constructed on a platform consisting of Class 150 Riprap Bedding wrapped in geotextile fabric. The recommended thickness of the Riprap Bedding is 36 inches under the RCB and 18 inches under the wingwalls. Riprap Bedding placed as part of the construction platform shall be placed in lifts and be properly compacted in accordance with Section 208 of the contract Special Provisions. The initial lift of Riprap Bedding should be approximately 12 inches, and following lifts should be no more than 8 inches. Details of the construction platform will be depicted in the construction plans.

Geotextile

Geotextile will be installed as part of the aforementioned construction platform. Additionally, geotextile will be installed for scour mitigation applications. Geotextile installation procedures and material specifications for both applications shall be in conformance with Sections 203 and 731 of the contract Special Provisions.

GEOTECHNICAL REPORT LIMITATIONS

Recommendations contained in this report are based on the information obtained from our field investigations, laboratory tests, and observations of our geotechnical engineer. If conditions are encountered during construction which differ from those described in this report, or if the scope of construction is altered significantly, the NDOT Geotechnical Section must be notified in order to provide a review of our recommendations. The nature and extent of variations may not be evident until construction takes place.

REFERENCES

- 1. AASHTO, AASHTO LRFD Bridge Design Specifications, Sixth Edition 2012.
- Barker, R.M., Duncan, J. M., Rojiani, K.B., Ooi, P.S.K., Tan, C.K., and Kim, S.G., *Manuals for the Design of Bridge Foundations*, Transportation Research Board, National Research Council, Washington D.C., December 1991. National Cooperative Highway Research Program Report 343, page 7.
- Bell, John W., 1984, *Quaternary Fault Map of Nevada--Reno Sheet*: Nevada Bureau of Mines and Geology Map 79, 1 sheet, scale 1:250,000
- 4. Kavazanjian, E., Matasovic, N., Hamou, T. H., and Wang, J., *Geotechnical Earthquake Engineering* Reference Manual; Publication No. FHWA-HI-99-012.
- 5. Nevada Department of Transportation, As-Built Plans, Contract 73 and Contract 351.
- 6. Nevada Department of Transportation, Geotechnical Policies and Procedures Manual, 2005.
- Nevada Department of Transportation, Scour Critical Bridge Plan of Action, B-100. Prepared by Ares Associates, 2005.
- Nevada Department of Transportation, Standard Plans for Road and Bridge Construction, 2010.
- Nevada Department of Transportation, Standard Specifications for Road and Bridge Construction, 2001.
- 10. Nevada Department of Transportation, Structures Manual, 2008.
- 11. OSHA, 29 CFR, Part 1926, Subpart P.
- 12. Quaternary Fault and Fold Database of the United States. (2005, December 16) USGS.gov. Retrieved February 7, 2014, from http://earthquake.usgs.gov/hazards/qfaults/nv/ren.html.
- Samtani, N and Nowatzki, E, *Soils and Foundations* Reference Manual Volume 1; Publication No. FHWA NHI-06-088.
- 14. Willden, Ronald and Speed, Robert C., 1974, *Geology and Mineral Deposits of Churchill County, Nevada*, Bulletin 83, Nevada Bureau of Mines and Geology prepared cooperatively by the U.S. Geological Survey.

APPENDIX A: MAPS

Site Location Map Boring Location Map

SITE LOCATION MAP

BORING LOCATION MAP

APPENDIX B: SUBSURFACE EXPLORATION DATA

Key to Boring Logs Boring Logs Geophysical (ReMi) Survey Data

KEY TO BORING LOGS

	PARTICLE SIZE LIMITS													
CLAY	SILT		SAND		GR	AVEL	COBBLES	BOULDERS						
		FINE	MEDIUM	COARSE	FINE	COARSE								
.00	2 mm #:	200 #	40 #1	LO #	4 ³⁄₄ i:	nch 3	inch 12	inch						

USCS GROUP	TYPICAL SOIL DESCRIPTION
GW	Well graded gravels, gravel-sand mixtures, little or no fines
GP	Poorly graded gravels, gravel-sand mixtures, little or no fines
GC	Clayey gravels, poorly graded gravel-sand-clay mixtures
SW	Well graded sands, gravelly sands, little or no fines
SP	Poorly graded sands, gravelly sands, little or no fines
SM	Silty sands, poorly graded sand-silt mixtures
SC	Clayey sands, poorly graded sand-clay mixtures
ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity
CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
OL	Organic silts and organic silt-clays of low plasticity
MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
СН	Inorganic clays of high plasticity, fat clays
OH	Organic clays of medium to high plasticity
PT	Peat and other highly organic soils

MOISTURE CONDITION CRITERIA

MOISTURE CON	DITION CRITERIA	SOIL CEMENTATION CRITERIA					
Description	<u>Criteria</u>	Description	<u>Criteria</u>				
Dry	Absence of moisture, dusty, dry to touch.	Weak	Crumbles or breaks with handling or little finger pressure.				
Moist Wet	Damp, no visible free water. Visible free water, usually below	Moderate	Crumbles or breaks with considerable finger pressure.				
	groundwater table.	Strong	Won't break or crumble w/finger pressure				
$\underline{\mathbf{V}}$ $\underline{\mathbf{V}}$	Groundwater Elevation Symbols						

STANDARD P	ENETRATION CLASSIF	[CATION [*] (after Peck, et al., 1974)				
GI	RANULAR SOIL	CLAYEY SOIL				
BLOWS/FT	DENSITY	BLOWS/FT	CONSISTENCY			
N60		N60				
0 - 4	VERY LOOSE	0 - 1	VERY SOFT			
5 – 10	LOOSE	2 - 4	SOFT			
11 - 30	MEDIUM DENSE	5 - 8	MEDIUM STIFF			
31 - 50	DENSE	9 - 15	STIFF			
OVER 50	VERY DENSE	16 - 30	VERY STIFF			
* SPT N60-values	are only reliable for sands.	31 - 60	HARD			
and should serve materials such as	only as estimates for other gravels, silts and clays.	OVER 60	VERY HARD			

California Modified Sampler field blow counts (NCMS field) for (6< NCMS field <50) can be converted to NSPT field by: (NCMS field)(0.62) = NSPT field

SPT field blow counts (NSPT field) can be converted to N₆₀ by: (NSPT field)(ETR/60) =N60

ETR = Energy Transfer Ratio

Field blow counts from 140 lb hammer with 30 inch free fall

SAMPLER NOTATION

TEST ABBREVIATIONS

CD CH CU D S E G H HC K	CONSOLIDATED DRAINED CHEMICAL (CORROSIVENESS) COMPACTION CONSOLIDATED UNDRAINED DISPERSIVE SOILS DIRECT SHEAR EXPANSIVE SOIL SPECIFIC GRAVITY HYDROMETER HYDRO-COLLAPSE PERMEABILITY	O OC PI RQI S SL U UU UU UW W	ORGANIC CONTENT CONSOLIDATION PLASTICITY INDEX D ROCK QUALITY DESIGNATION R-VALUE SIEVE ANALYSIS SHRINKAGE LIMIT UNCONFINED COMPRESSION UNCONSOLIDATED UNDRAINED UNIT WEIGHT MOISTURE CONTENT	CMS CPT CS PB RC SH SPT TP	CALIF. MODIFIED SAMPLER ¹ CONE PENETRATION TEST CONTINUOUS SAMPLER ² PITCHER BARREL ROCK CORE ³ SHELBY TUBE ⁴ STANDARD PENETRATION TEST ⁵ TEST PIT
SOI CH/	L COLOR DESIGNATIONS ARE FROM ARTS. EXAMPLE: <u>(7.5 YR 5/3) BROWN</u>	I TH	E MUNSELL SOIL/ROCK COLOR	2- i.d 3- nx 4- i.d 5- i.d	=3.228 inch with tube; 3.50 inch w/o tube B I.D.= 1.875 inch = 2.875 inch = 1.375 inch, O.D.= 2.00 inch

						4/	22/14			BC	RING LOG			
			邩	ST	TART DATE		22/14							SHEET 1 OF 1
	DEPAR TRANSP	TMENT OF	╷║┛	E	ND DATE	1/	22/14) ride a l	Donlage	mont D 100	STATION	"HR" 105	+40
				_ JC	B DESCRI	PTION		gan Road E	snage i	Replacer	nent B-100	OFFSET	<u>20' RT</u>	
			$\langle $	LC	OCATION			t L-line Can	a			ENGINEER	Diedrich [0120 Rig #1082
)	BC	DRING	72	DK-1			CDOLU			Altamiran	0
				Ε.	A. #) 90) 90 (ft)			DATE	DEPTH ft ELEV. ft	DRILLING	2 5" Doto	n. Waab
	CEOTECI	DUCAL		G	ROUND EL	EV	os. (۱۱) من		27 50/	1/22/14	10.0 3953.0	METHOD		1/22/2014
	ENGINE	EERING V		HA	AMMER DF	OP SYS	STEM	uio, Ein-o	57.570			BACKFILLED		ATE
	ELEV. (ft)	ELEV. (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)						LAB TESTS	USCS Group		MATERIAL DE	SCRIPTION		REMARKS
										1.00	Asphalt and Aggrega	te Base - — — — — — — —		Started drilling at 10:40 am.
		2.5									Silty SAND moist, m	ostly fine sands tic fines.	Used bentonite drilling mud and	
		4.0	A	SPT	7 6 3	9	65	S, PI, W	SM		Cobble at about 2' to		Used head	
	2059.0	_ 5.0												for entire depth
	3930.0	6.5	в	CMS	2 3 7	10	75	S, PI, W, DS, UW			Sample B: 8.0% moi unit weight, 31 degre 0.7 psi cohesion.	e peak friction a	98.7 pcf dry angle and	penetration. All samplers
		7.5								7.00	·			used sand
		- 9.0	с	SPT	4 5 6	11	85	S, PI, W	SC SM		Silty, Clayey SAND r about 30% fines, PI =	moist, mostly fir = 6.	ne sands,	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.0								9.50	Poorly graded SAND	with Silt moist		-
	3953.0 -	10	П	SPT	5	13	65	SPLW			mostly fine sands, ab	out 5% to 9% n	onplastic	Estimated depth
		11.5			7			0,11,11	SP		Sample E1: 21.5% n	noisture content	t, 107.3 pcf	during drilling
		12.5			11				SM		dry unit weight. Sample E2: 20.0% n	noisture content	t. 98.7 pcf	10'.
		14.0	E	CMS	14 20	34	75	S, PI, W, DS, UW		44.50	dry unit weight, 37 de and 1.5 psi cohesion	gree peak fricti	on angle	
	3048.0 -	15.0								14.50	Poorly graded SAND	wet, mostly fin	e sands,	
	3340.0		F	SPT	10 7	13	85	S, PI, W	51	15.50	<5% nonplastic fines		~	
		16.5			6				СН	17.00	Fat CLAY wet, 90%			
		17.5			9				SM		Silty SAND wet, mo	stly fine sands,	32%	
		19.0	G	CMS	16 26	42	90	S, PI, W, DS, UW	SP SM	19.20	dry unit weight, 21 de and 8.4 psi cohesion.	egree peak fricti	on angle	-
	3943.0 -	20.0								19.50	Poorly graded SAND	with Silt wet,	mostly fine	
			н	SPT	3	6	90	S, PI, W	CL		Sandy Silty CLAY w	et, 63% fines, P	PI = 7.	
		21.5			3					22.00				_
		22.5			13			S DI W	-		Silty SAND wet, abo	ut 25% to 40%	nonplastic	
		24.0		CMS	22 24	46	100	DS, UW			Comple 14: 22.0% m	aiatuwa aantant	100 0 maf	
	3938.0 -	-25							SM		dry unit weight. Sample I2: 19.6% m dry unit weight, 32 de and 6.6 psi cohesion.	oisture content, oisture content, gree peak fricti	100.8 pcf 104.5 pcf on angle	
		27.5								27.00				-
14		- 29.0	J	SPT	6 4 7	11	100	S, PI, W			SILT wet, 93.5% fine	es, PI = 5.		
2/14									ML					
GDT	3933.0 -	30								31.00				
DOT.		-												-
N		32.5			~				SM		Silty SAND wet, abo	ut 20% nonplas	tic fines.	Finished drilling
R.GPJ		-	к	SPT	25 31	71	100	S, PI, W						at 2:00 pm.
HBF.		34.0			40					34.00	Bottom of hole at 34'	depth.		-
DOT	3928.0 -	-35									Hole filled with grout	on 1/22/14.		
≥́														

						1/	00/4.4			BORING LOG	
	<b>EVADA</b> START DATE <u>1/23/14</u>									SHEET	1 OF 1
DI TR	EPARTN ANSPO	IENT OF		E	ND DATE	17.	23/14			STATION <u>"HR" 105+40</u>	
	*			JC	B DESCRI	PTION	Harri	gan Road B	riage	Replacement B-100 OFFSET 20' RT	
	LOCATION SR 115 at L-line Canal									ENGINEER	
	BORING HBR-1A										
		ŧŊ	/	Ε.	A. #	73	3798				
		$\leq$		G	ROUND EL	EV39	963. (ft)			DATE DEPTH π ELEV. π DRILLING 6" Solid Auger	
GEC	DTECHN NGINEE	ICAL RING		HA	AMMER DF	ROP SYS	STEM			BACKFILLED Yes DATE 1/23	8/2014
ELE (fi	ΞV. [	DEPTH (ft)	SAI NO.	MPLE TYPE	BLOW C 6 inch Increments	OUNT Last 1 foot	Percent Recov'd	LAB TESTS	USCS Group	MATERIAL DESCRIPTION REMA	RKS
	_	1.0								0.75 3.5" Asphalt Pavement 5.5" of Agg Base/Gravel Material.	
			Bulk	1				PV/	SM	Silty SAND	
		ļ		1							
	F	5.0								5.00	
395	8.0 +	5 0.0								Bottom of hole at 5'.	
	F				Hole backfilled with cuttings on 1/23/14						
	-										
	F										
	-										
395	3.0 🗕	10									
	Γ										
	F										
	F										
394	8.0 +	15									
	-										
	-										
	-										
204		00									
394	3.0 —	-20									
	F										
	F										
	F										
	-										
393	8.0 🗕	-25									
4	F										
2/14/	F										
10 393	3.0 +	-30									
01.0	F										
≥	F										
1 LdS	Ļ										
BR.G											
T H		05									
⊡ 3920 ≩	8.U †	- 35									

			•			1/	22/11			BORING LOG	
		UHL	개	S	TART DATE	<u> </u>	∠3/14 23/14				SHEET 1 OF 1
	DEPAR TRANS	TMENT OF	, <b>   </b>	E	ND DATE		20/14 Harri	 aan Road E	Rridae I	STATION "HR" 10	6+20
				JC	DB DESCRI	PTION	- 115 of	t Luline Can	al al	OFFSET <u>9 L1</u>	
	-/		$\langle  $	LC	DCATION	 	RD_2		a	ENGINEER Diedrich	D120. Rig #1082
			+	BC	JRING	73	3798				ino
		E.A. # 73735 G							DATE DEPTH ft ELEV. ft DRILLING 3.5" RO	arv Wash	
	GEOTECI	HNICAL		■ GI H/	ROUND EL AMMER DE	EV	STEM A	uto, ETR=8	37.5%	1/23/14 10.0 3953.0 METHOD C.0 Ho	DATE 1/23/2014
┢	ELEV.	DEPTH	SA	MPLE	BLOW C		Percent		USCS		
	(ft)	(ft)	NO.	TYPE	Increments	1 foot	Recov'd		Group	Apphalt and Aggregate Rase	Started drilling
		-							L		$_{-1}$ at 9:45 am.
		- 25								Poorly graded SAND with Silt moist, mostly	Used bentonite
		2.5			5			0.01.00	SP	fine sands, about 11% nonplastic fines.	3.5" tri-cone bit.
		4.0	A	SPT	3	6	85	S, PI, W			Used head pressure only
	2050.0	_ 5.0								4.50	- for entire depth
	3958.0	-5	в	SPT	1	4	75	S PL W		Silty SAND moist, about 10% to 20%	penetration.
		6.5			2			0,11,11	_	nonplastic fines.	All samplers
		7.5			F				SM	Sample C1: with 24% gravel, 9.2% moisture content, 119.6 pcf dry unit weight.	catchers.
		-	С	CMS	5	10	75	S, PI, W, UW			
	_	9.0			5			011		9.50	
	3953.0 -	<mark>¥ 10 ^{10.0}</mark>			3				80	Silty Clavey SAND wet 28.3% fines PI = 4	Estimated depth
		11.5	D	SPT	4 5	9	60	S, PI, W	SM	<u></u>	of free water
		12.5								12.00 Poorty graded SAND wet about 3% to 5%	10'.
		-	F	SPT	6	15	65	SPLW		nonplastice fines,	
		14.0			8		00	0,11,1	_	Sample F1: 19.1% moisture content, 107.3 pcf	
	3948.0 -	15.0			10				SP	dry unit weight. Sample E2: 15.3% moisture content: 107.4 pcf	
			F	CMS	18	43	85	S, PI, W,		dry unit weight, 42 degree peak friction angle	
		16.5			24			20,011			
		17.5			5				-	Silty SAND wet 25% nonplastic fines	
		19.0	G	SPT	7 14	21	80	S, PI, W	SM		
		20.0								20.00	
	3943.0 -	-20	ц	SDT	9	٩	80	S PL W	<u>+</u>		
		21.5			4	3	00	0,11,1	CL	Sandy lean CLAY wet, 70% fines, PI = 9.	
		-								22.00	
		-									
		-								Silty SAND wet, 26% nonplastic fines.	
	3938.0 -	-25 25.0			19				SM		
		26.5	I	SPT	27 28	55	95	S, PI, W		26.50	
		-								Bottom of hole at 26.5' depth.	
		-								Hole filled with grout on 1/23/14.	
14/14		-									
1 2/	3933.0 -	-30									
DT.GD		_									
		_									
N L4											Finished drilling at 12:00 pm.
BR.G											
OT H	2000.0	25									
	J928.U -										

ſ						4 /	22/11			BC	RING L	OG			
		UH	빗	S	TART DATE	1/	23/14 23/11								SHEET 1 OF 1
	DEPAR TRANS	TMENT OF		El	ND DATE		23/14 Horri	 aan Dood P	ridao	Doploor	nont P 1	00	STATION	<u>"HR" 106-</u>	+20
				JC	DB DESCRI	PTION		t L ling Can	al	Replacei		00	OFFSET	9 L1	
	-	- Thomas -	$\langle  $	LC	DCATION		RD_2A		ai					Mobile Dr	ill
			$\rightarrow$	B	ORING	73	2708			GROU				Altamiran	0
				E.	A. #		)63 (ft)			DATE	DEPTH ft	ELEV. ft	DRILLING	6" Solid A	uger
	GEOTEC	HNICAL		■ G		=V				1/23/14	13.5	3949.5	METHOD	Yes	ATE 1/23/2014
	ENGIN	EERING N				OP SYS	SIEM						BACKFILLED	D	ATE
	ELEV. (ft)	DEPTH (ft)	NO.	MPLE TYPE	6 inch	Last 1 foot	Percent Recovid	LAB TESTS	USCS Group		MAT	ERIAL DE	SCRIPTION		REMARKS
	(17)	(1)			Increments	11001	TRECOV U				6.5" Asph	nalt Paveme	ent Matarial		
		1.5								1.25	8.5 OT AQ	gg Base/Gra	avel Material.		
		-													
			Rulk	1				RV			SILY SAN				
		- '													
	3958.0	-5 _{5.5}													
		-													
		F													
		L							SM						
									Sivi						
	2052.0	10													
	3953.0														
		F													
		F													
	-	$\overline{\mathbf{x}}$													
		-													Measured ground water at
	3948.0	- 15								15.00	Bottom of	f hole at 15'			a depth of 13.5'.
		-										filled with a	rout on 1/22/14		
		-											1001 011 1/23/14	•	
		L													
	3043.0	20													
	3943.0	20													
		F													
		F													
		-													
		-													
	3938.0	-25													
		-													
		L													
		L													
/14															
2/14	0000 0														
GDT.	3933.0	-30													
DOT.		F													
N		F													
GPJ		F													
HBR		-													
DOT	3928.0	-35													
N															



# Geophysical (ReMi) Survey Data

Shear-Wave Velocity, ft/s

# **APPENDIX C: LABORATORY TEST RESULTS**

Summary of Results Particle Size Distribution Reports Direct Shear Test Reports

**EA/Cont #** 73798

Job Description B-100 Harrigan Bridge Replacement, over L-line canal

3963

Boring No. HBR - 1

Elevation (ft)

Station "HR" 105+40, 20' Rt. Date

1/22/2014

	SAMPLE	SAMP- N DRY % STRENGTH TEST														
SAMPLE	DEPTH	LER	BLOWS	SOIL	W%	UW	PASS	LL	PL	ΡI	TEST	Φ	С	Φ	С	COMMENTS
NO.	(ft)	TYPE	per ft.	GROUP		pcf	#200	%	%	%	TYPE	deg.	psi	deg.	psi	
			-			-						Pe	ak	Res	idual	
А	2.5 - 4.0	SPT	9	SM	21.2		19.7	17	NP	NP						
В	5.7 - 6.3	CMS	10	SM	8.0	98.7	16.8	17	NP	NP	DS	31	0.7	31	0.7	
С	7.5 - 9.0	SPT	11	SC-SM	21.5		30.2	23	17	6						
D	10.0 - 11.5	SPT	13	SP-SM	23.5		8.8	20	NP	NP						
E1	12.7 - 13.2	CMS	34	SP-SM	21.5	107.3	5.3	19	NP	NP						
E2	13.2 - 13.7	CMS		SP-SM	20.0	98.7	5.9	20	NP	NP	DS	37	1.5	32	0.6	
F1	15.0 - 15.5	SPT	13	SP	23.8		4.8	17	NP	NP						
F2	15.5 - 16.5	SPT		СН	34.0		88.9	61	20	41						
G1	17.7 - 18.2	CMS	42	SM	23.3	99.5	32.0	18	16	2						
G2	18.2 - 19.0	CMS		SP-SM	23.2		6.1	20	NP	NP						
Н	20.0 - 21.5	SPT	6	CL-ML	33.3		63.0	26	19	7						
11	22.7 - 23.2	CMS	46	SM	23.0	100.8	37.3	21	NP	NP						

CMS = California Modified Sampler 2.42" ID SPT = Standard Penetration 1.38" ID CS = Continuous Sample 3.23" ID RC = Rock Core PB = Pitcher Barrel CSS = Calif. Split Spoon 2.42" ID CPT = Cone Penetration Test TP = Test Pit P = Pushed, not driven R = Refusal Sh = Shelby Tube 2.87" ID  $\label{eq:update} \begin{array}{l} U = Unconfined Compressive\\ UU = Unconsolidated Undrained\\ CD = Consolidated Drained\\ CU = Consolidated Undrained\\ DS = Direct Shear\\ \Phi = Friction\\ C = Cohesion\\ N = No. of blows per ft., sampler\\ \\ N = Field SPT \qquad N = (N_{css})(0.62) \end{array}$ 

 $H = Hydrometer \\ S = Sieve \\ G = Specific Gravity \\ PI = Plasticity Index \\ LL = Liquid Limit \\ PL = Plastic Limit \\ NP = Non-Plastic \\ OC = Consolidation \\ Ch = Chemical \\ RV = R - Value \\ MD = Moisture Density$ 

CM = Compaction E = Swell/Pressure on Expansive Soils SL = Shrinkage Limit UW= Unit Weight W = Moisture Content K = Permeability O = Organic Content D = Dispersive RQD = Rock Quality Designation X = X-Ray Defraction HCpot = Hydro-Collapse Potential

EA/Cont # 73798 Job Description B-100 Harrigan Bridge Replacement, over L-line canal

Boring No. HBR - 1 Elevation (ft) 3963 SAMPLE SAMP-STRENGTH TEST Ν DRY % SAMPLE DEPTH LER BLOWS SOIL W% UW PASS LL PL ΡI TEST С COMMENTS Φ С Φ NO. (ft) TYPE per ft. GROUP pcf #200 % % % TYPE deg. psi deg. psi Peak Residual 12 23.2 - 23.7 CMS 46 SM 19.6 104.5 25.0 20 NP NP DS 32 6.6 32 2.2 J 27.5 - 29.0 SPT 11 37.5 93.5 31 26 5 ML κ 32.5 - 34.0 SPT 71 25.8 22 NP NP SM 19.9

CMS = California Modified Sampler 2.42" ID SPT = Standard Penetration 1.38" ID CS = Continuous Sample 3.23" ID RC = Rock Core PB = Pitcher Barrel CSS = Calif. Split Spoon 2.42" ID CPT = Cone Penetration Test TP = Test Pit P = Pushed, not driven R = Refusal Sh = Shelby Tube 2.87" ID

U = Unconfined Compressive UU = Unconsolidated Undrained CD = Consolidated Drained CU = Consolidated Undrained DS = Direct Shear  $\Phi$  = Friction C = Cohesion N = No. of blows per ft., sampler  $N = (N_{css})(0.62)$ N = Field SPT

H = Hydrometer S = Sieve G = Specific Gravity PI = Plasticity Index LL = Liquid Limit PL = Plastic Limit NP = Non-Plastic OC = Consolidation Ch = Chemical RV = R - Value MD = Moisture Density CM = Compaction E = Swell/Pressure on Expansive Soils SL = Shrinkage Limit UW= Unit Weight W = Moisture Content K = Permeability O = Organic Content D = Dispersive RQD = Rock Quality Designation X = X-Ray Defraction HCpot = Hydro-Collapse Potential

Station "HR" 105+40, 20' Rt. Date

1/22/2014

**EA/Cont #** 73798

Job Description B-100 Harrigan Bridge Replacement, over L-line canal

3963

Boring No. HBR - 1A

Elevation (ft)

Station "HR" 105+40, 17' Rt. Date

1/22/2014

SAMPLE SAMP- N DRY % STRENGTH TEST																
SAMPLE	DEPTH	LER	BLOWS	SOIL	W%	UW	PASS	LL	PL	PI	TEST	Φ	С	Φ	С	COMMENTS
NO.	(ft)	TYPE	per ft.	GROUP		pcf	#200	%	%	%	TYPE	deg.	psi	deg.	psi	
												Pe	ak	Res	idual	
BULK 1	1.0 - 5.0			SM			18.3	17	NP	NP						RV = 71

 $\label{eq:cms} \begin{array}{l} \mathsf{CMS} = \mathsf{California} \ \mathsf{Modified} \ \mathsf{Sampler} \ 2.42" \ \mathsf{ID} \\ \mathsf{SPT} = \mathsf{Standard} \ \mathsf{Penetration} \ 1.38" \ \mathsf{ID} \\ \mathsf{CS} = \mathsf{Continuous} \ \mathsf{Sample} \ 3.23" \ \mathsf{ID} \\ \mathsf{RC} = \mathsf{Rock} \ \mathsf{Core} \\ \mathsf{PB} = \mathsf{Pitcher} \ \mathsf{Barrel} \\ \mathsf{CSS} = \mathsf{Calif.} \ \mathsf{Split} \ \mathsf{Spoon} \ 2.42" \ \mathsf{ID} \\ \mathsf{CPT} = \mathsf{Cone} \ \mathsf{Penetration} \ \mathsf{Test} \\ \mathsf{TP} = \mathsf{Test} \ \mathsf{Pit} \\ \mathsf{P} = \mathsf{Pushed}, \ \mathsf{not} \ \mathsf{driven} \\ \mathsf{R} = \mathsf{Refusal} \\ \mathsf{Sh} = \mathsf{Shelby} \ \mathsf{Tube} \ 2.87" \ \mathsf{ID} \end{array}$ 

 $\label{eq:constraint} \begin{array}{l} U = Unconfined Compressive \\ UU = Unconsolidated Undrained \\ CD = Consolidated Drained \\ CU = Consolidated Undrained \\ DS = Direct Shear \\ \Phi = Friction \\ C = Cohesion \\ N = No. of blows per ft., sampler \\ \\ N = Field SPT \\ N = (N_{css})(0.62) \end{array}$ 

 $H = Hydrometer \\ S = Sieve \\ G = Specific Gravity \\ PI = Plasticity Index \\ LL = Liquid Limit \\ PL = Plastic Limit \\ NP = Non-Plastic \\ OC = Consolidation \\ Ch = Chemical \\ RV = R - Value \\ MD = Moisture Density$ 

CM = Compaction E = Swell/Pressure on Expansive Soils SL = Shrinkage Limit UW= Unit Weight W = Moisture Content K = Permeability O = Organic Content D = Dispersive RQD = Rock Quality Designation X = X-Ray Defraction HCpot = Hydro-Collapse Potential

**EA/Cont #** 73798

Job Description B-100 Harrigan Bridge Replacement, over L-line canal

3963

Boring No. HBR - 2

Elevation (ft)

Station "HR" 106+20, 9' Lt.

1/23/2014

Date

	SAMPLE	MPLE SAMP- N DRY % STRENGTH TEST														
SAMPLE	DEPTH	LER	BLOWS	SOIL	W%	UW	PASS	LL	PL	PI	TEST	Φ	С	Φ	С	COMMENTS
NO.	(ft)	TYPE	per ft.	GROUP		pcf	#200	%	%	%	TYPE	deg.	psi	deg.	psi	
												Pe	eak	Res	idual	
А	2.5 - 4.0	SPT	6	SP-SM	21.2		10.6	19	NP	NP						
В	5.0 - 6.5	SPT	4	SM	21.4		12.5	19	NP	NP						
C1	8.2 - 8.7	CMS	10	SM	9.2	119.6	17.1	17	NP	NP						
C2	8.7 - 9.0	CMS		SM	12.6		19.9	17	NP	NP						
D	10.0 - 11.5	SPT	9	SC-SM	20.0		28.3	20	16	4						
Е	12.5 - 14.0	SPT	15	SP	22.5		4.7	18	NP	NP						
F1	15.2 - 15.7	CMS	43	SP	19.1	107.3	3.1	20	NP	NP						
F2	15.7 - 16.2	CMS		SP	15.3	107.4	3.3	15	NP	NP	DS	42	1.6	35	0.0	
G	17.5 - 19.0	SPT	21	SM	24.0		25.0	18	NP	NP						
н	20.0 - 21.5	SPT	9	CL	32.1		69.7	27	18	9						
I	25.0 - 26.5	SPT	55	SM	23.8		26.0	19	NP	NP						

 $\label{eq:cms} \begin{array}{l} \mathsf{CMS} = \mathsf{California} \ \mathsf{Modified} \ \mathsf{Sampler} \ 2.42" \ \mathsf{ID} \\ \mathsf{SPT} = \mathsf{Standard} \ \mathsf{Penetration} \ 1.38" \ \mathsf{ID} \\ \mathsf{CS} = \mathsf{Continuous} \ \mathsf{Sample} \ 3.23" \ \mathsf{ID} \\ \mathsf{RC} = \mathsf{Rock} \ \mathsf{Core} \\ \mathsf{PB} = \mathsf{Pitcher} \ \mathsf{Barrel} \\ \mathsf{CSS} = \mathsf{Calif.} \ \mathsf{Split} \ \mathsf{Spoon} \ 2.42" \ \mathsf{ID} \\ \mathsf{CPT} = \mathsf{Cone} \ \mathsf{Penetration} \ \mathsf{Test} \\ \mathsf{TP} = \mathsf{Test} \ \mathsf{Pit} \\ \mathsf{P} = \mathsf{Pushed}, \ \mathsf{not} \ \mathsf{driven} \\ \mathsf{R} = \mathsf{Refusal} \\ \mathsf{Sh} = \mathsf{Shelby} \ \mathsf{Tube} \ 2.87" \ \mathsf{ID} \end{array}$ 

 $\label{eq:constraint} \begin{array}{l} U = Unconfined Compressive \\ UU = Unconsolidated Undrained \\ CD = Consolidated Drained \\ CU = Consolidated Undrained \\ DS = Direct Shear \\ \Phi = Friction \\ C = Cohesion \\ N = No. of blows per ft., sampler \\ \\ N = Field SPT \qquad N = (N_{css})(0.62) \end{array}$ 

 $H = Hydrometer \\ S = Sieve \\ G = Specific Gravity \\ PI = Plasticity Index \\ LL = Liquid Limit \\ PL = Plastic Limit \\ NP = Non-Plastic \\ OC = Consolidation \\ Ch = Chemical \\ RV = R - Value \\ MD = Moisture Density$ 

CM = Compaction E = Swell/Pressure on Expansive Soils SL = Shrinkage Limit UW= Unit Weight W = Moisture Content K = Permeability O = Organic Content D = Dispersive RQD = Rock Quality Designation X = X-Ray Defraction HCpot = Hydro-Collapse Potential

EA/Cont # 73798

Job Description B-100 Harrigan Bridge Replacement, over L-line canal

3963

Boring No. HBR - 2A

Elevation (ft)

Station "HR" 106+20, 12' Lt. Date

1/23/2014

	SAMPLE SAMP- N DRY % STRENGTH TEST															
SAMPLE	DEPTH	LER	BLOWS	SOIL	W%	UW	PASS	LL	PL	PI	TEST	Φ	С	Φ	С	COMMENTS
NO.	(ft)	TYPE	per ft.	GROUP		pcf	#200	%	%	%	TYPE	deg.	psi	deg.	psi	
												Pe	eak	Res	idual	
BULK 1	1.5 - 5.5			SM			13.4	18	NP	NP						RV = 76

CMS = California Modified Sampler 2.42" ID SPT = Standard Penetration 1.38" ID CS = Continuous Sample 3.23" ID RC = Rock Core PB = Pitcher Barrel CSS = Calif. Split Spoon 2.42" ID CPT = Cone Penetration Test TP = Test Pit P = Pushed, not driven R = Refusal Sh = Shelby Tube 2.87" ID  $\label{eq:constraint} \begin{array}{l} U = Unconfined Compressive \\ UU = Unconsolidated Undrained \\ CD = Consolidated Drained \\ CU = Consolidated Undrained \\ DS = Direct Shear \\ \Phi = Friction \\ C = Cohesion \\ N = No. of blows per ft., sampler \\ \\ N = Field SPT \\ N = (N_{css})(0.62) \end{array}$ 

 $H = Hydrometer \\ S = Sieve \\ G = Specific Gravity \\ PI = Plasticity Index \\ LL = Liquid Limit \\ PL = Plastic Limit \\ NP = Non-Plastic \\ OC = Consolidation \\ Ch = Chemical \\ RV = R - Value \\ MD = Moisture Density$ 

#### CM = Compaction E = Swell/Pressure on Expansive Soils SL = Shrinkage Limit UW= Unit Weight W = Moisture Content K = Permeability O = Organic Content D = Dispersive RQD = Rock Quality Designation X = X-Ray Defraction HCpot = Hydro-Collapse Potential

























Boring: HBR-1

Sample: B

	Result 1	Result 2	Result 3	
Specimen:	а	b	С	
Date Tested	1/27/2014	1/27/2014	1/27/2014	
Diameter (inch):	2.42	2.42	2.42	
Height (inch):	1.00	1.00	1.00	
Depth (ft):	6.20	6.20	6.20	
Moisture (%)	7.4	7.6	7.3	
Dry Unit Wt (pcf)	98.7	100.1	99.9	
SHEAR				
Displacement Rate( ⁱⁿ / _{min} )	0.0053	0.0056	0.0057	
Normal Stress (psi)	6.93	13.88	27.77	
Peak Shear Stress(psi)	4.91	9.19	17.64	
Residual Shear Stress(psi)	4.8	9.0	17.2	
Residual Point Picked @(in)	0.242	0.242	0.242	
Time @ Peak Failure (min)	13.5	17.4	15.9	

- a Medium brown silty sand shear @ 1000 psf
- b Medium brown silty sand shear @ 2000 psf
- c Medium brown silty sand shear @ 4000 psf







Boring: HBR-1

Sample: E2

	Result 1	Result 2	Result 3	
Specimen:	а	b	С	
Date Tested	1/28/2014	1/28/2014	1/28/2014	
Diameter (inch):	2.42	2.42	2.42	
Height (inch):	1.00	1.00	1.00	
Depth (ft):	13.80	13.80	13.80	
Moisture (%)	22.1	20.9	22.4	
Dry Unit Wt (pcf)	101.1	103.4	101.5	
SHEAR				
Displacement Rate( ⁱⁿ / _{min} )	0.0054	0.0055	0.0055	
Normal Stress (psi)	13.87	27.75	55.54	
Peak Shear Stress(psi)	11.82	21.88	42.64	
Residual Shear Stress(psi)	9.6	17.7	35.6	
Residual Point Picked @(in)	0.242	0.242	0.242	
Time	13.6	14.3	17.4	

- a Medium brown sand with silt shear @ 2000 psf
- b Medium brown sand with silt shear @ 4000 psf
- c Medium brown sand with silt shear @ 8000 psf







Boring: HBR-1

Sample: I2

	Result 1	Result 2	Result 3	
Specimen:	а	b	С	
Date Tested	1/30/2014	1/30/2014	1/30/2014	
Diameter (inch):	2.42	2.42	2.42	
Height (inch):	1.00	1.00	1.00	
Depth (ft):	23.80	23.80	23.80	
Moisture (%)	19.1	20.0	19.2	
Dry Unit Wt (pcf)	107.0	106.3	107.9	
SHEAR				
Displacement Rate( ⁱⁿ / _{min} )	0.0055	0.0054	0.0054	
Normal Stress (psi)	20.80	41.65	83.32	
Peak Shear Stress(psi)	19.00	34.29	59.09	
Residual Shear Stress(psi)	15.6	28.0	54.9	
Residual Point Picked @(in)	0.242	0.242	0.242	
Time @ Peak Failure (min)	15.6	13.0	16.0	

- a Medium brown silty sand shear @ 3000 psf
- b Medium brown silty sand shear @ 6000 psf
- c Medium brown silty sand shear @ 12000 psf







Boring: HBR-2

Sample: F2

	Result 1	Result 2	Result 3	
Specimen:	а	b	С	
Date Tested	1/31/2014	1/31/2014	1/31/2014	
Diameter (inch):	2.42	2.42	2.42	
Height (inch):	1.00	1.00	1.00	
Depth (ft):	16.30	16.30	16.30	
Moisture (%)	18.8	18.6	17.1	
Dry Unit Wt (pcf)	102.9	104.3	105.7	
SHEAR				
Displacement Rate( ⁱⁿ / _{min} )	0.0056	0.0054	0.0055	
Normal Stress (psi)	13.84	27.77	55.53	
Peak Shear Stress(psi)	14.30	25.50	51.06	
Residual Shear Stress(psi)	9.2	17.2	38.2	
Residual Point Picked @(in)	0.242	0.242	0.242	
Time @ Peak Failure (min)	12.3	13.8	19.8	

- a Medium to light sandy shear @ 2000 psf
- b Medium to light sandy shear @ 4000 psf
- c Medium to light sandy shear @ 8000 psf

