GEOTECHNICAL REPORT

INTERSTATE 15 STARR AVENUE INTERCHANGE HENDERSON, CLARK COUNTY, NEVADA

June 2016

•

STATE OF NEVADA

DEPARTMENT OF TRANSPORTATION

MATERIALS DIVISION

GEOTECHNICAL SECTION

GEOTECHNICAL REPORT

INTERSTATE 15 / STARR AVENUE INTERCHANGE

Henderson, Clark County, Nevada

JUNE 2016

EA #73687

Prepared by NDOT Geotechnical Section

onalo Reviewed by

Ronald A. Siegel, P.E.

Principal Geotechnical Engineer

Approved by

Darin Tedford, P.E.

Chief Materials Engineer

TABLE OF CONTENTS

1.0	INTRODUCTION1
2.0	SCOPE OF WORK
3.0	PROJECT SITE
4.0	FIELD EXPLORATION
4.1	Drilling3
4.2	Geophysical Surveys
5.0	LABORATORY TESTING
6.0	GEOLOGY
7.0	GEOLOGIC HAZARDS
7.1	Faulting and Fissures5
7.2	Liquefaction5
8.0	SOIL AND GROUNDWATER CONDITIONS
9.0	DISCUSSION AND RECOMMENDATIONS
9.1	Site Preparation and Earthwork6
9.2	Trenching and Excavation
9.3	Seismic Design Parameters
9.4	Foundation Design
9.5	Settlement
10.0	REFERENCES10

APPENDIX A – Boring and Geophysical Survey Location Map

APPENDIX B – Key to Boring Logs

Boring Logs

- **APPENDIX C Laboratory Test Results**
- **APPENDIX D Geophysical Surveys**

1.0 INTRODUCTION

This report presents the results of our geotechnical investigation for the proposed Starr Avenue Interchange on Interstate 15 (I-15) in Henderson, Clark County, Nevada. The Starr Avenue alignment is located on the section line between Section 32, Township 22 North and Section 5, Township 23 North, Range 61 East, MDM. The project location is

shown in Figure 1. The current plan consists of extending Starr Avenue from Dean Martin Drive in the west over I-15 to Las Vegas Boulevard in the east. Starr Avenue will eventually accommodate seven lanes.

2.0 SCOPE OF WORK

The purpose of this geotechnical investigation was to determine general subsurface soil and ground

FIGURE 1 – PROJECT LOCATION³

water conditions in the project area to provide recommendations for design and construction as related to these conditions. The scope of work performed by the Geotechnical Section included the following:

- Subsurface field exploration;
- Geophysical surveys;
- Laboratory testing;
- Engineering analysis;
- Review of published maps and reports;
- Review of preliminary design information provided by the Roadway and Structures Divisions of the Nevada Department of Transportation (NDOT).

3.0 PROJECT SITE

Starr Avenue is currently paved west of the NDOT I-15 right-ofway and is generally devoid of vegetation within the I-15 right-ofway. Some grading has occurred along the Starr Avenue alignment east of the I-15 right-of-way with scattered vegetation consisting of grasses and small shrubs.

FIGURE 2 – SITE CONDITIONS³

The topography along the project area generally slopes north. The I-15 alignment at the proposed interchange has a slope gradient of less than two percent. Site drainage across the project area is generally conveyed via sheet flow and several shallow natural drainage channels.

The western portion of the Starr Avenue alignment is located in a residential neighborhood with housing to the north and a storage facility to the south. The area east of the I-15 right-of-way is mostly vacant with one developed property located south of the alignment about 575 feet west of the intersection of Las Vegas Boulevard and Starr Avenue. Several structures are located on this parcel as shown in Figure 2 – Site Conditions.

4.0 FIELD EXPLORATION

Field exploration consisted of drilling one boring and conducting seismic refraction and refraction microtremor (ReMi) geophysical surveys. Boring and geophysical survey locations, shown on the Location Map included in Appendix A, were obtained using resource grade Global Positioning System (GPS) equipment. The locations should be considered accurate only to the degree implied by this method.

4.1 Drilling

Boring SIC-1 was drilled to a depth of 105 feet below the existing ground surface within the median of I-15 near the centerline of the Starr Avenue alignment. The boring was drilled using a Diedrich D120 auger type drill rig (Unit #1082) equipped with an automatic hammer utilizing Hollow Stem Continuous Flight Auger (HSA) methods. Our engineer logged the subsurface soil and groundwater conditions encountered during the field investigation and classified soils according to the Unified Soil Classification System (USCS). The boring log, a brief key to the boring log and the USCS are included in Appendix B.

Soil samples were obtained using a Standard Penetration Sampler driven 18 inches (unless otherwise noted) into the bottom of the boring using a 30-inch drop of a 140-pound hammer (Standard Penetration Test – SPT). The number of blows to drive the sampler the final 12 inches of an 18-inch penetration into undisturbed soil provides an N-value (presented as 'Blow Count' on the boring log). The N-value is an indication of the apparent density/consistency of the *in situ* soils. Blow counts presented on the boring log have not been corrected for energy, sampler type, rod length, hammer type, etc. The energy transfer from the automatic hammer into the drill rig string was calibrated at 87.5% for Unit #1802 (SPT Calibration done by Gregg Drilling and Testing, Inc., June 18, 2009). Bulk samples were also obtained by collecting auger cuttings between certain depths during drilling operations.

Soil samples were returned to NDOT laboratories and tested as described under the Laboratory Testing section of this report. The maximum particle size recovered using the SPT sampler is approximately 1³/₈ inches. Therefore, the boring log may not adequately represent the actual quantity or presence of coarse gravel, cobbles or boulders.

4.2 Geophysical Surveys

Four seismic refraction and ReMi geophysical surveys were conducted along the proposed interchange alignment and are presented in Appendix D labeled 'West',

'Middle', 'East 2', and 'East 3'. The West survey line was placed parallel and west of I-15. The Middle line was placed parallel to I-15 in the centerline of the I-15 median. East 2 and East 3 were placed east of I-15 with East 2 parallel to I-15 and East 3 situated transverse to the centerline of East 2 (refer to Location Map, Appendix A).

Both the seismic refraction and ReMi survey data was obtained using cables with 12 geophones spaced 20 feet apart with the exception of East 3. East 3 was conducted using 12 geophones placed 8 feet apart. The data was analyzed by an Optim Software and Data Solutions representative using the most current SeisOpt software.

5.0 LABORATORY TESTING

Laboratory data is presented in Appendix C of this report and includes a summary of test results and graphical reports. The laboratory testing program for selected samples consisted of Natural Moisture Contents (Nev. T-104), Particle Size Gradations (Nev. T-206), Atterberg Limits (Nev. T-210, T-211 and T-212), and Resistance Value (R-Value, Nev. T-115).

6.0 **GEOLOGY**

Site geology consists of quaternary alluvium (Q_{al}) as shown in Figure 3 – Geologic Map. Quaternary alluvium is described as *unconsolidated clay, silt, and sand deposited on old flood plains of streams; coarse gravelly deposits spread by sporadic sheetfloods on wide slopes bordering high ranges.*⁴

FIGURE 3 – GEOLOGIC MAP⁴

7.0 GEOLOGIC HAZARDS

7.1 Faulting and Fissures

A review of published earthquake and fault data indicates that no faults or fissures cross the project alignment. A series of Quaternary faults and two fissure areas are located approximately 5 miles northeast of the project site trending a generally northwest to southeast.^{1,2,5}

7.2 Liquefaction

Liquefaction is a loss of soil shear strength that can occur during a seismic event as cyclic shear stresses cause excessive pore water pressure between the soil grains. This phenomenon is generally limited to unconsolidated, clean to silty sand (up to 35 percent non-plastic fines) lying below the ground water table. The higher the ground acceleration and the longer that shaking caused by a seismic event occurs, the more likely liquefaction will take place. Severe liquefaction can result in catastrophic settlements of large civil structures.

The site is underlain by dense granular soils; therefore, only localized amplification of ground motion would be expected during an earthquake. Liquefaction potential, in our opinion, is negligible.

8.0 SOIL AND GROUNDWATER CONDITIONS

Based on the subsurface investigation, site soils generally consist of very dense silty sand with gravel to poorly graded sand with silt/clay and silty gravel with interbeds of poorly graded sand and sandy silt with gravel. A one-foot thick caliche layer was encountered at 51½ feet. Cementation was observed throughout the subsurface profile to varying degrees. Soils are generally slightly moist to moist. Ground water was not encountered during the subsurface exploration and is expected to lie at a depth that will not affect construction.

9.0 DISCUSSION AND RECOMMENDATIONS

9.1 Site Preparation and Earthwork

All excavation and site preparation shall be performed in accordance with NDOT Standard Specifications for Road and Bridge Construction.

9.2 Trenching and Excavation

For excavations less than 20 feet deep, site soils are considered Type B for temporary excavation purposes with an allowed OSHA maximum allowable slope of 1H:1V. Cemented soils may cause difficulties during excavation and trenching activities, however, blasting will likely not be required.

9.3 Seismic Design Parameters

Seismic Design parameters are based on the results of the geophysical surveys and field exploration. The average 1-dimensional shear wave velocity profiles for the upper 100 feet of the soil profile are presented in Appendix D. The average shear wave velocities at the project site ranged from 2,067 feet per second (ft/s) to 2,431 ft/s; therefore, the soil profile is considered Site Class C (Table 3.10.3.1-1 of AASHTO LRFD Bridge Design Specifications, 2010).

The Peak Ground Acceleration for Clark County is 0.15g with a Short-Period Acceleration Coefficient (S_s) of 0.40 and a Long-Period Spectral Acceleration Coefficient (S₁) of 0.15(NDOT Bridge Manual).

9.4 Foundation Design

Based on the results of the field exploration and laboratory testing, native soils can provide support for shallow spread footings for bridge and wall structures. Foundation grade soils shall be prepared in accordance with NDOT standards and specifications. Figures 4 and 5 provide strength limit state factored bearing resistance values and service limit state settlement values for pier and embankment foundations, respectively. These values are based on gross bearing resistance with an embedment depth of five feet for pier structures and zero embedment for foundations in embankment material.

FIGURE 4 – PIER FOUNDATIONS SETTLEMENT AND FACTORED BEARING RESISTANCE

FIGURE 5 – EMBANKMENT FOUNDATIONS SETTLEMENT AND FACTORED BEARING RESISTANCE

Lateral loads, such as wind or seismic, may be resisted by passive soil pressure and friction on the bottom of the footing. A friction factor of 0.40 may be utilized for sliding resistance at the base of the spread footing. Design value for passive equivalent fluid pressures is 300 pounds per square foot (psf) per foot of depth. Both the passive pressure and sliding resistance can be assumed to act concurrently. In designing for passive pressure, the soil above the footing should not be included unless confined by a concrete slab, or pavement. The base of all excavations should be dry and free of loose materials at the time of concrete placement. Loose, soft, wet, frozen or disturbed soils encountered

at foundation subgrade should be removed to expose suitable soils and the resulting excavation shall be backfilled with compacted granular fill.

9.5 Settlement

Total settlement of an individual foundation will vary depending on the plan dimensions of the foundation and the actual load supported. Settlement of all foundations is expected to occur rapidly and should be essentially complete shortly after initial application of the loads due to the very dense granular soils present at the site.

10.0 REFERENCES

- 1. Bell, J.W. and Price, G.G., 1993, *Subsidence in Las Vegas Valley, 1980-1991, Final Project Report*, Nevada Bureau of Mines and Geology, Open-File Report 93-4.
- dePolo, C.M., and Bell, J.W., 2000, *Map of Faults and Earth Fissures in the Las Vegas Area*, Nevada Bureau of Mines and Geology, prepared in cooperation with Las Vegas Valley Water District: Plate 1.
- 3. ESRI, Arc GIS Explorer, *Aerial Photograph*, United States Geological Society (USGS), NASA, NGA, 2008.
- Longwell, C. R. Pampeyan, E. H., Bowyer, Ben, and Roberts, R. J., 1965, *Geology and Mineral Deposits of Clark County*, Nevada, Nevada Bureau of Mines and Geology, Bulletin 52,.
- 5. United States Geological Survey (USGS), 2011b, *Quaternary Faults and Folds Database of the United States*: http://earthquakes.usgs.gov/qfaults.

APPENDIX A

APPENDIX B

KEY TO EXPLORATION LOGS

	PARTICLE SIZE LIMITS													
CLAY SILT SAND GRAVEL COBBLES BOULD														
		FINE	MEDIUM	COARSE	FINE	COARSE								
.00	2 mm #	200 #	 # 40 #1	LO #	 4 ∛₄i	nch 3	inch 12	inch						

USCS GROUP	TYPICAL SOIL DESCRIPTION
GW	Well graded gravels, gravel-sand mixtures, little or no fines
GP	Poorly graded gravels, gravel-sand mixtures, little or no fines
GC	Clayey gravels, poorly graded gravel-sand-clay mixtures
SW	Well graded sands, gravelly sands, little or no fines
SP	Poorly graded sands, gravelly sands, little or no fines
SM	Silty sands, poorly graded sand-silt mixtures
SC	Clayey sands, poorly graded sand-clay mixtures
ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity
CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
OL	Organic silts and organic silt-clays of low plasticity
MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
СН	Inorganic clays of high plasticity, fat clays
ОН	Organic clays of medium to high plasticity
PT	Peat and other highly organic soils

MOISTURE CONDITION CRITERIA

MOISTURE CONDI	TION CRITERIA	SOIL CEMENTA	TION CRITERIA
Description Dry	<u>Criteria</u> Absence of moisture, dusty, dry to touch.	<u>Description</u> Weak	<u>Criteria</u> Crumbles or breaks with handling or little finger pressure.
Moist Wet	Damp, no visible free water. Visible free water, usually below	Moderate	Crumbles or breaks with considerable finger pressure.
$\underline{\nabla}$ $\underline{\mathbf{V}}$	groundwater table. Groundwater Elevation Symbols	Strong	Won't break or crumble w/finger pressure

	STANDARD PENETRATION	CLASSIFICATION*						
	GRANULAR SOIL	C	LAYEY SOIL					
BLOWS/FT	DENSITY	BLOWS/FT	CONSISTENCY					
0 - 4	VERY LOOSE	0 - 1	VERY SOFT					
5 - 10	LOOSE	2 - 4	Soft					
11 - 30	MEDIUM DENSE	5 - 8	MEDIUM STIFF					
31 - 50	DENSE	9 - 15	STIFF					
OVER 50	VERY DENSE	16 - 30	VERY STIFF					
*Standard Pene	tration Test (N) 140 lb hammer	31 - 60	HARD					
30 inch free fal	l on 2 inch O.D. x 1.4 inch I.D. sampler.	OVER 60	VERY HARD					

Field Blow counts on California Modified Sampler (NCMS) can be converted to NSPT field by: (NCMS field)(0.62) = NSPT field

Blow counts from Automatic Hammer can be converted to Standard SPT N60 by: Rig #1627: (NSPT field)(1.2) =N60 Rig #1082: (NSPT field)(1.45) =N60

TEST ABBREVIATIONS		SAMPLER NOTATION
CD CONSOLIDATED DRAINED CH CHEMICAL (CORROSIVENESS) CM COMPACTION CU CONSOLIDATED UNDRAINED D DISPERSIVE SOILS DS DIRECT SHEAR E EXPANSIVE SOIL G SPECIFIC GRAVITY H HYDROMETER HC HYDRO-COLLAPSE K PERMEABILITY SOIL COLOR DESIGNATIONS ARE FRO CHARTS. EXAMPLE: (7.5 YR 5/3) BROW	OC ORGANIC CONTENT C CONSOLIDATION PI PLASTICITY INDEX RQD ROCK QUALITY DESIGNATION RV R-VALUE S SIEVE ANALYSIS SL SHRINKAGE LIMIT U UNCONFINED COMPRESSION UU UNCONSOLIDATED UNDRAINED UW UNIT WEIGHT W MOISTURE CONTENT M THE MUNSELL SOIL/ROCK COLOR	CMS CALIF. MODIFIED SAMPLER ¹ CPT CONE PENETRATION TEST CS CONTINUOUS SAMPLER ² PB PITCHER BARREL RC ROCK CORE ³ SH SHELBY TUBE ⁴ SPT STANDARD PENETRATION TEST TP TEST PIT 1-I.D.= 2.421 inch 2-I.D.= 3.228 inch with tube; 3.50 inch w/o tube 3-NXB I.D.= 1.875 inch 4-I.D.= 2.875 inch
Revised August 2010		

Revised August 2010

Г	a transfer dar bara	اللي ويرد في مريد الم	್ಕೆ ಜಿಲ					<u> </u>		EXPLORATIONLOG			
	ΥE	UAI	1)	s [.]	TART DAT	E _10)/6/10						SHEET 1 OF 4
	DEPAR	TMENT OF		EI	ND DATE	_10)/7/10				STATION	<u>333+34 "L</u>	<u>.S"</u>
				JC	DB DESCR		1-15 8	STARR INT	ERCH	ANGE	OFFSET	53' RT	
			$\langle $	LC	OCATION			OUNIY	,, .		ENGINEER		3 #1801
				В	ORING		C-1		·····			D. FORD	3#1001
			/	E.	A. #		687			DATE DEPTH # ELEV #	DRILLING		
				G	ROUND EI	_EV23	<u>161' (π)</u>			N.E. 0.0	METHOD	<u>H5A</u>	40/07/40
	GEOTECH	ERING		H	AMMER D	ROP SYS	STEM_A	.010	l		BACKFILLED	D	ATE
	ELEV. (ft)	DEPTH (ft)	SAI NO.	MPLE TYPE	BLOW C 6 inch	COUNT Last s 1 foot	Percent Recov'd	LAB TESTS	USCS Group	MATERIAL DI	ESCRIPTIO	N	REMARKS
		0.00								SILTY GRAVEL WIT dry, light brown, with	H SAND subrounded gra	ivel.	No free water encountered.
			AÆ	UGE	R				GM	NOTE: Cobbles enco with an approximate r diameter.	2 1/2 feet n nominal		
		-											
	-	5.00	<u> </u>							5.00			
		5.10	B2	SPT	17 39	89	0		ht orange brow	n, mostly			
		6.60			50				-	medium to coarse sai	nd with subang	ular gravel.	
		7.50	B14	HGF	R	<u> </u>							
		8.83	C	SPT	28 39 50/4	50/4"	100						
		10.00											
	-	1010.17	D-	SPT	50/2***	50/2"-	0						
		40.50								High SPT blow counts	are due to pre	sence of	
		- 1 <u>2:75</u> -	E	SPT	50/3"	50/3"	100		SM	strong cementation.			
		_											
	-	15.00 1515:30	F	SPT	50/3.75"	50/3.75	90						
		-			:	1							
		20.00	-				_			20.00			
11/0	-	20.10	⊟G- ∣	SPT	50/1"	-50/1"-	0		1	POORLY GRADED S	SAND WITH CI	AY AND	
11/3(-								moist, tan to light ora	nge brown, mo	stly medium	
GDT		-								to course sand with s gravel and low plastic	ubangular to ar : fines	ngular	
DOT.		, r	н	BULK	{					graner and ten presse			
≧		- ·											
GPJ.		-								High SDT blow source			
NARY	-	25.90	-	SPT	50/4 5"	50/4 5"	100			strong cementation.	are due to pre	esence of	
ELIMI					0.01-1.0	0.0, 1.0	100		1				
- PRE													
Z INT		F											
TARF		-											
S TC		-											
ō ≷	30.00												

						10	V6/10			EXPLORATION LOG			
			4	s	TART DATI	E	//0/10 //7/10						SHEET 2 OF 4
	DEPAR TRANSI	TMENT OF	N	E	ND DATE		145				STATION	333+34 "	LS"
				_ ∩	OB DESCR	IPTION	<u>1-15 8</u>			ANGE	OFFSET	<u>53' RT</u>	
			$\langle $	L	OCATION			UUNTY	-		ENGINEER		C #1901
				B	ORING		<u>C-1</u>		r		EQUIPMENT		G #1001
			/	E	.A. #		687			GROUNDWATER LEVEL	DRILLING	<u>D.1 01(D</u>	
				G	ROUND EL	.EV23	61' (ff)		[N.E. 0.0	METHOD	HSA	
	GEOTECI ENGINI	EERING		H.	AMMER DF	ROP SYS	STEM_A	UTO	[BACKFILLED .	Yes [DATE 10/07/10
	ELEV.	DEPTH	SA	MPLE	BLOW C		Percent		uscs				DEMARKS
	(ft)	(ft)	NO.	SPT	Increments	1 foot	Recov'd		Group			· · · · · · · · · · · · · · · · · · ·	REMARKS
		30.17			00/2	00/2							
		-											
		-											
		-											
	-	35.00	ĸ	CDT	50/5"	50/5"	100						
		55.42		551	50/5	50/5	100_						
		-											
		-											
		_											
		-											
	-	40.00		SPT	50/3.5"	50/3 5"	- 29		SP				
						0010.0.			30				
		_											
		-											
		-											
								;					
1		-											
	-	4515:29	M=	SPT	50/2.5"	50/2.5"	100						
		~											
		-											
ľ													ĺ
		_		ı									
	-	50.00 5050.33	N	SPT	50/4"	50/4"	100						
30/1			_11	SEL		50/4							
Ē		-								NOTE: HARD CALICI	HE LAYER AT 5	1' TO	
GD.		_								52.5'			
2													
Ş													
GPJ		_											
JARY	_	55 ^{65.00}	-0-	SPT		50/<1"							
LIMIP			-										
PRE		-											
Ē		-											
ARR		_											
ST/													
<u>[</u>		-											
≩Ľ		60.00								60.00			

						10	16/10			EXPL	ORATIC	ON LOG				
			4	S	TART DATI	=									SHEET 3 OF 4	
	DEPAR TRANS	TMENT OF	F	E	ND DATE		1450			NOE			STATION	333+34	"LS"	
				J	OB DESCR					ANGE			OFFSET	<u>53' RT</u>		
			\mathbf{n}	L	OCATION								ENGINEER		NG #1801	
i				B	ORING		0-1							D		
				E.	.A. #		2611 (#)			DATE	DEPTH ft	ELEVEL	DRILLING			
	CEOTEC	TRUCAL		G	ROUND EL	.EV					N.E.	0.0	METHOD	<u> </u>	10/07/10	
	ENGIN	EERING		H.	AMMER DF	ROP SYS	STEM_A	010					BACKFILLED		DATE	
	ELEV. (ft)	DEPTH (ft)	NO.	MPLE TYPE	BLOW C 6 inch Increments	OUNT Last 1 foot	Percent Recov'd	LAB TESTS	USCS Group		MAT	ERIAL D	ESCRIPTIO	N	REMARKS	
		60.25	,		- 50/5	-30/3_	100		1		WITH CL	EDDED PO	ORLY GRADED			
		Γ									SILT WIT	H GRAVEL	- medium sand	fine		
		-									subangul	ar to angula	ir gravel.			
		F														
		Ĺ														
	-	65														
		-														
		-														
		-														
		ŀ														
		- 20.99				-										
		7070.23			50/3"	50/3"	100									
		-														
		-														
		-														
	-	-75														
ĺ		-														
		-														
Ξ	-	80.00	R	SPT	50/3.75"	50/3.75'	100									
1/30/		-														
Б										l						
01.G									мн							
∆ ≩		-								1						
4 Ldč		-														
RY.G		05														
MINA	-	-85														
REL		_														
4 5		_														
RR II																
STA																
БОТ																
≷		90.00			,											

International Control State / 4 / 4 State / 4 / 4 Bio Date 100/10 State / 4 / 4 333-54 / 12* Job Description L15 STARE INTERCHANCE OFFER 333-54 / 12* Job Description L15 STARE INTERCHANCE OFFER MB Construction CLARK COUNTY Excert dots MB BOUND SIC-1 Excert dots DEFOND MB Construction CLARK COUNTY Excert dots MB Construction State / 100/10 Defond MB Construction State / 100/10 Defond MB Construction State / 100/10 MB Defond MB Construction State / 100/10 MA Ternal / 100/10 Ternal / 100/10 MB State / 100/10 State / 100/10 State / 100/10 State			m/ //			_ 10)/6/10			EXPL	ORATIO	N LOG					
Bit Out Prof. Control Lits STARR INTERCHANCE STATION 3337 (1)* Job Description Lits STARR INTERCHANCE STATION 3337 (1)* Station 3337 (1)* Convolution SIG-1 Convolution Convolution </td <td></td> <td colspan="14">ARTMENT OF L END DATE 10/7/10 333+34 "L</td>		ARTMENT OF L END DATE 10/7/10 333+34 "L															
OFFER OFFER SPI LOCATION LOCATION CLARK COUNTY BORNER SPI BORNE SIC-1 EQUIPACENT DRILLING #1001 DFCRD CROUND ELEV. 23817 GROUND ELEV. DRILLING #1001 DFCRD CROUND ELEV. 23817 (R) GROUNDWATTERTER. DFCRD DFCRD CROUND ELEV. 23817 (R) GROUNDWATTERTER. DRILLING #100710 HSA DATE DRIVE BORDORS SYSTEM. AUTO HSA BORDORS HSA MAMER DROP SYSTEM AUTO MATE BORDORS HSA BORDORS HSA MARE DROP SYSTEM AUTO MATE BORDORS HSA BORDORS HSA MARE DROP SYSTEM LATE DROPS HSA BORDORS HSA BORDORS HSA HSA MATE BORDORS LATE DROPS HSA HSA HSA HSA MATE HSA HSA HSA HSA HSA HSA MARE DROPS HSA	DEPAR TRANSI	TMENT OF	F	E	ND DATE								STATION	333+34	"LS"		
Control CLARK COUNTY Equipment Difference Difference <thdifference< th=""> Difference Difference</thdifference<>				J	OB DESCR	IPTION	1-15 3		ERCH	ANGE			OFFSET	<u>53' RT</u>			
OPENNO SIC1 EQUIPMENT Definition		\frown	$\langle $	L	OCATION			OUNTY					ENGINEER				
CONCUMPUNCE				B	ORING	S	C-1						EQUIPMENT		<u>RIG #1801</u>		
UNITED OPENNENT MARKED DUP MARKED AUTO MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MARKED MAR			/	E.	A. #	_73	3687			GROU	NDWATER	RLEVEL	OPERATOR	D. TON			
OBJECTION HAMMER ORCP SYSTEM AUTO Date OUCLING BACKFILLED Yes DATE 1007/10 ELEM. DEPTIT SAMPLE 0002 FORM Les FORMATION REMARKS UNIT SAMPLE 0002 FORM Les FORMATION REMARKS UNIT SAMPLE OUCL FORMATION Les FORMATION REMARKS UNIT SAMPLE SAMPLE FORMATION Les FORMATION REMARKS UNIT SAMPLE SAMPLE SAMPLE SAMPLE FORMATION REMARKS UNIT SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE UNIT SAMPLE SAMPLE </td <td></td> <td></td> <td></td> <td>G</td> <td>ROUND EL</td> <td>.EV23</td> <td>361' (ft)</td> <td></td> <td></td> <td>DATE</td> <td>DEPTH ft N F</td> <td>ELEV. ft</td> <td>METHOD</td> <td>HSA</td> <td></td>				G	ROUND EL	.EV23	361' (ft)			DATE	DEPTH ft N F	ELEV. ft	METHOD	HSA			
ELEV. (0) Deptity (0) Addet al: (0) Image: addet al: (0) Percent (0) Last Percent (0) USCS MATERIAL DESCRIPTION Remarks -00.17 -01.1742 -01.01 Last Percent (0)	GEOTECI	HNICAL		H,	AMMER DF	ROP SYS	STEM_A	UTO			- N.C.	0.0	BACKFILLED	Yes	DATE 10/07/10		
Lat. Omit No. Type 0 find: Lat. Percent Lat Remarks MATERIAL DESCRIPTION Remarks 90:11 S SPT 50:27 50:27 100 105:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00		DEDTH	SA	MPLE	BLOW	OUNT			11000	1							
90.17 5 517 502 502 100 95 162.00 1 502 502 100 105 105 105 105 105 105 105	(ft)	(ft)	NO.	TYPE	6 inch	Last	Percent Recov'd	LAB TESTS	Group		MAT	ERIAL D	ESCRIPTION	N	REMARKS		
es - es - 198 79 - ser - 50/2* 50/2* 50/2* 100 - 105 - 105 - 105 - 115 - 116 - 116		90.17	S	SPT	50/2	50/2	100-										
		-					:										
95 108-09 50/2*** 50/2*** 100 105 105.00 105.00 106 105.00 110 105.00		_															
- 25 - 108-99 T SPT - 50/2* S0/2* 100 - 105 - 105 - 115 - 115				[[
- es - 108-09 T SPT 50/2* 50/2* 100 - 105 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	-															
- 95 - 188.00 T SPT 50/2" 50/2" 100 - 105 - 105 - 105 - 115 - 115		-															
188.09 T SPT 50/2" 100 105 105.00 105.00 105 105 105		- 95															
188.99 T SPT 50/2* 50/2* 100		00															
188.99 T SPT 50/2* 50/2* 100		F															
- 105		-															
108.99 T SPT 50/2* 100 105 1 1 1 105 105 105 1 1 1 1 105 105 1 1 1 1 1 105 1 1 1 1 1 105 1 1 1 1 1 110 1 1 1 1 1 1 110 1 1 1 1 1 1 1 110 1 1 1 1 1 1 1 1 110 1 <td></td> <td></td> <td></td> <td> </td> <td></td>																	
168.99 T SPT 50/2* 50/2* 100										[
		-															
105.00 105.00 105.00 Bottom of boring at 105 feet.	_	198.99		ODT			100										
		1000111		581	50/2"	-50/2	-100										
105.00 Bottom of boring at 105 feet.		-															
105.00 Bottom of boring at 105 feet.		_															
105.00 Bottom of boring at 105 feet.																	
105 105.00 Bottom of boring at 105 feet.		F															
105 - 105 		ŀ															
Bottom of boring at 105 feet.		105								105.00							
		- 105									Bottom of	boring at 1	05 feet.				
		-															
		_															
		_															
		- 110															
		L															
		Ļ															
		_															
		-															
		— 115															
		-															
		_															
		-															
		-															

NV_DOT STARR INT - PRELIMINARY.GPJ NV_DOT.GDT 11/30/11

APPENDIX C

SUMMARY OF RESULTS N.D.O.T. GEOTECHNICAL SECTION

EA/Cont #

73687

Job Description I-15 Starr Interchange

Boring No	b. SIC - 1				Elevatio	on (ft)	2361'					Station	333+34,	53' RT		Date	10/7/2010	
SAMPLE NO.	SAMPLE DEPTH (ft)	SAMP- LER TYPE	N BLOWS per ft.	SOIL GROUP	W%	DRY UW pcf	% PASS #200	LL %	PL %	PI %	TEST TYPE	STF Φ deg. Pe	ENGTH C psi eak	ΓEST Φ deg. Res	C psi idual	-	COMMENTS	
А	0.0 - 5.0	Auger		GM			15.5	28	25	3							RV = 80	
B1	5.0 - 10.0	Auger		SC-SM	3.4		13.6	25	20	5								
B2	5.1-6.6	SPT	89	SM														
С	7.5 - 9.0	SPT	50/4"	SM	6.6		19.3	38	27	11								
D	10.0-10.17	SPT	R		4.8		15.6		SAMPLE	E 'D' AN	D'E'	1						
E	12.5-12.75	SPT	R		4.8		15.6		COMBI	NED								
F	15.0-15.3	SPT	R		2.0		24.3											
н	20.0-25.0	Auger	R	SP-SC	2.9		10.7	38	24	14								

CMS = California Modified Sampler 2.42" ID SPT = Standard Penetration 1.38" ID CS = Continuous Sample 3.23" ID RC = Rock Core PB = Pitcher Barrel CSS = Calif. Split Spoon 2.42" ID CPT = Cone Penetration Test TP = Test Pit P = Pushed, not driven R = Refusal Sh = Shelby Tube 2.87" ID
$$\label{eq:unconfined Compressive} \begin{split} U &= Unconfined Compressive\\ UU &= Unconsolidated Undrained\\ CD &= Consolidated Undrained\\ DS &= Direct Shear\\ \Phi &= Friction\\ C &= Cohesion\\ N &= No. of blows per ft., sampler\\ \\ N &= Field SPT \qquad N = (N_{css})(0.62) \end{split}$$

 $H = Hydrometer \\ S = Sieve \\ G = Specific Gravity \\ PI = Plasticity Index \\ LL = Liquid Limit \\ PL = Plastic Limit \\ NP = Non-Plastic \\ OC = Consolidation \\ Ch = Chemical \\ RV = R - Value \\ MD = Moisture Density$

CM = Compaction E = Swell/Pressure on Expansive Soils SL = Shrinkage Limit UW= Unit Weight W = Moisture Content K = Permeability O = Organic Content D = Dispersive RQD = Rock Quality Designation X = X-Ray Defraction HCpot = Hydro-Collapse Potential

APPENDIX D

