

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

 Edward Surbrugg
 Customer ID:
 MAXI57

 Tetra Tech
 Customer PO:
 NA

 303 Irene Street
 Received:
 8/12/2014 9:30

Helena, MT 59601 Date Sampled: 08/10/2014 00:00
Phone: 406-442-5588 EMSL Order: 041423333
Report Date: 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Grid Openings Analyzed: 68

Customer Sample Number: BC-AA-05-00004 Air volume: 10800 Liters EMSL Sample Number: 041423333-0001 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014
Result of Chi² Test: 67.00 Random Analyst: P. Harrison

Analytical Sensitivity: 0.000040 Structure/cc **Limit of Detection:** 0.000119 Structure/cc Poisson 95 % Confidence Interval Structure Class Min Primary Total Density Concentration LCL UCL (Str/cc) (Str/cc) ID Level Str. Str. Str/mm² (Str/cc) PCMe Structures (Chrys) CD 0 0.00 0.000000 0.000000 -0.000119 PCMe Structures (Amph) ADX 1 1.11 0.000040 0.000000 -0.000188 ADX 0 0.00 0.000000 0.000000 -0.000119 PCMe Structures (NRA) **Total PCMe Structures (Regulated)** CD/ADX 1 1.11 0.000040 0.000000 -0.000188 **Total PCMe Structures (All)** CD/ADX 1 1.11 0.000040 0.000000 -0.000188 PCMe Fibers and Bundles (Chrys) CD 0 0.00 0.000000 0.000000 -0.000119 PCMe Fibers and Bundles (Amph) ADX 1 1.11 0.000040 0.000000 -0.000188 0.00 PCMe Fibers and Bundles (NRA) ADX 0 0.000000 0.000000 -0.000119 CD/ADX 0.000188 Total PCMe Fibers and Bundles (Regulated) 1.11 0.000040 0.000000 -CD/ADX 0.000040 0.000000 -0.000188 **Total PCMe Fibers and Bundles (All)** 1.11 1 Non Asbestos Mineral Structures NAM n 0

Asbestiform Minerals Present: Actinolite

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal government as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Samples collected on 0.8 um filters.

Robyn Denton
Approved Signatory

Initial Report

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech	Scope:	JEOL-1200-EX (04-03)		
EMSL Sample ID:	041423333-0001	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-05-00004	Grid Box :	0414-Tetra Tech-07: K	Analyst(s):	P. Harrison
Chi ² Test for Uniformity:	67.00-Random	Pore Size (micron):	Analysis Date:	08/14/2014	
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	5%	

		Chrushina Tina	Structure Number	Dimensi	ons (µm)	Level of	Minoral Type		Christian Company
Grid ID	Grid Opening	Structure Type	Primary Total	Length		ID	Mineral Type	Image Number	Structure Comments
K1	J1	None Detected							
K1	J3	None Detected							
K1	J5	None Detected							
K1	J7	None Detected							
K1	J9	None Detected							
K1	18	None Detected							
K1	16	None Detected							
K1	12	None Detected							
K1	H1	None Detected							
K1	H3	None Detected							
K1	H5	None Detected							
K1	G8	None Detected							
K1	G4	None Detected							
K1	G2	None Detected							
K1	F1	None Detected							
K1	F3	None Detected							
K1	F5	None Detected							
K1	F9	None Detected							
K1	E6	None Detected							
K1	E2	None Detected							
K1	D3	None Detected							
K1	D5	None Detected							
K1	D7	None Detected							
K2	A1	None Detected							
K2	A3	None Detected							
K2	A5	None Detected							
K2	A7	None Detected							
K2	A9	None Detected							
K2	B10	None Detected							
K2	B8	None Detected							
K2	B6	None Detected							
K2	B4	None Detected							
K2	B2	None Detected							
K2	C1	None Detected							
K2	C3	None Detected							
K2	C5	None Detected							
K2	C7	None Detected							
K2	C9	None Detected							

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech	Scope:	JEOL-1200-EX (04-03)		
EMSL Sample ID:	041423333-0001	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-05-00004	Grid Box :	0414-Tetra Tech-07: K	Analyst(s):	P. Harrison
Chi ² Test for Uniformity:	67.00-Random	Pore Size (micron):	Analysis Date:	08/14/2014	
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	5%	

			Struct Num		Dimonoi	ono (um)	Level of			
Grid	Grid	Structure Type				ons (µm)		Mineral Type	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID		Number	
K2	D10	None Detected								
K2	D8	None Detected								
K2	D6	None Detected								
K2	D4	None Detected								
K2	D2	None Detected								
K2	E1	None Detected								
K2	E3	None Detected								
K2	E5	None Detected								
K2	E7	None Detected								
K2	E9	None Detected								
K2	F10	None Detected								
K2	F8	None Detected								
K2	F6	None Detected								
K2	F4	None Detected								
K2	F2	None Detected								
K2	G3	None Detected								
K2	G5	None Detected								
K2	G7	None Detected								
K2	G9	None Detected								
K2	H10	None Detected								
K2	H8	None Detected								
K2	H6	None Detected								
K2	H4	None Detected								
K2	H2	None Detected								
K2	I1	None Detected								
K2	13	None Detected								
K2	15	F	1	1	7.5	1.1	ADX	Actinolite	4457	
K2	17	None Detected								
K2	19	None Detected								
K2	J6	None Detected								
		2 0.00.00								

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy Structure Sketch Sheet for Direct Data Entry

EMSL Order ID: L	141423333-0001						
Client Sample: <u>L</u>	BC-AA-05-00004	Page	of				
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #				
			1				
D. Charles #	Driver Chrystyre #	Primary Structure #	Primary Structure #				
Primary Structure #	Primary Structure #	Primary Structure #	Filmary Structure #				
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #				
I filledly obtactors							
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #				
Structure #	Structure #	Structure #	Structure #				
		1					
		J [
Analyst:	Date: _ <i></i>	4/14	Scope: Of-03				
		* (

Energy Dispersive X-Ray Analysis Quantitative Spectra & Data

EMSL ANALYTICAL, INC.

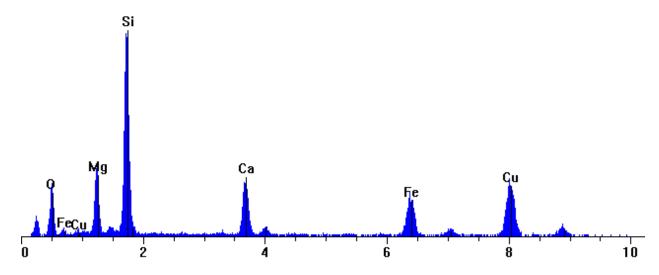
File: L:\EDS Spe...Spectra\Scope 04-03\2014\041423333-0001 K2 I5 1 AC.pgt

Collected: August 14, 2014 09:58:08

Report: Thursday, August 14, 2014

Live Time: 155.71 Count 422 Dead 4.24 %

Rate: Time:


Beam Voltage: 20.00 Beam 2.00 Takeoff 31.00

Current: Angle:

Thickness limit: 27058.25

041423333-0001 K2 I5 1 AC.pgt

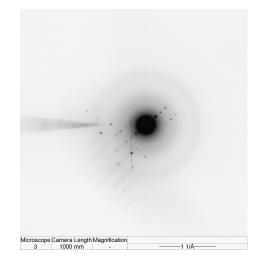
FS: 1100

Element	Line	keV	CL Ratio	Wt%	At%	At Prop	Compound	Cmpd Wt%
Mg	KA1	1.254	1.4000	11.93	11.74	5.4	MgO	19.78
Si	KA1	1.740	1.0000	30.62	26.09	12.0	SiO	48.06
Ca	KA1	3.691	1.1000	11.07	6.61	3.0	CaO	15.49
Fe	KA1	6.403	1.3900	12.96	5.55	2.6	FeO	16.67
Cu	KA1	8.046	0.0000	0.00	0.00	0.0		
О	KA1	0.523	0.0000	33.42	50.00	23.0		
Total			0.0000	100.00	100.00	46.0	Total	100.00

Element	Line	Gross (cps)	BKG (cps)	Net (cps)	P:B Ratio
Mg	KA1	28.0	2.3	25.7	11.2
Si	KA1	94.8	2.4	92.4	38.7
Ca	KA1	32.4	2.0	30.4	15.2
Fe	KA1	29.4	1.3	28.2	22.1
Cu	KA1	42.8	1.4	41.4	30.4
O	KA1	17.2	0.9	16.3	17.7

AMPHIBOLE SAED INDEXING FORM

Image Number: 04457

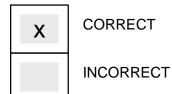

Reference / Sample Number: 0001

Preliminary ID: ACTINOLITE

Camera Constant: 1.965e-003 1/A Pixels

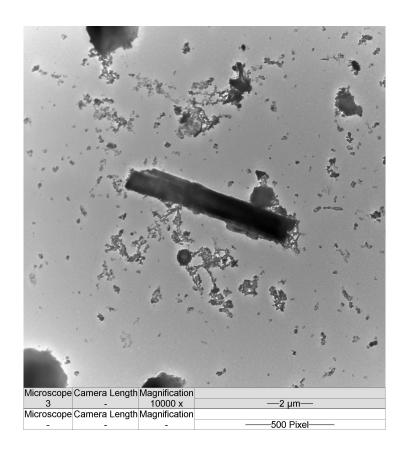
Calibration Reference: 081114-04-03-04452_C

	Measured	Reference	-5%	+5%
Inter-row Spacing:	5.104	5.278	5.014	5.542
d2 or hk0 (Camera K/zero row dist.):	8.693	9.040	8.588	9.492
d1 or hkl (Camera K/slant vector dist.):	3.696	3.880	3.686	4.074
Ratio of hk0/hkl:	2.352	2.330	2.213	2.447
Vector Angle:	51.2	49.790	47.301	52.279



From SAED Reference Book, "unknown" diffraction pattern was

found to be that of: ACTINOLITE


With a Zone Axis of: [101]

Preliminary Identification was:

EMSL Analytical, Inc. Photomicrograph Report

Micrograph Information

Sample ID:	0001
Order ID:	041423333
Image Number:	04458
Mineral Type:	ACTINOLITE
Date:	8/14/2014
Magnification:	10,000
Microscope:	3

Edward Surbrugg

303 Irene Street

Helena, MT 59601

Phone: 406-442-5588

Tetra Tech

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

Customer ID: MAXI57
Customer PO: NA

Grid Openings Analyzed: 69

Received: 8/12/2014 9:30

Date Sampled: 08/10/2014 00:00

EMSL Order: 041423333

Report Date: 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Customer Sample Number: BC-AA-06-00004 Air volume: 10620 Liters EMSL Sample Number: 041423333-0002 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014
Result of Chi² Test: N/A N/A Analyst: P. Harrison

Analytical Sensitivity:	0.000040	Structure	e/cc		Limit of Detection:	0.000119	Structure/cc
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (All)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (All)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	

Asbestiform Minerals Present: None Detected

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal governement as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Samples collected on 0.8 um filters.

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech	Scope:	JEOL-1200-EX (04-03)		
EMSL Sample ID:	041423333-0002	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-06-00004	Grid Box :	0414-Tetra-Tech-07: K	Analyst(s):	P. Harrison
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	Analysis Date:	08/15/2014	
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	5%	

		Chrushina Tina	Structure Number	Dimensi	ions (µm)	Level of	Minoral Type		Christian Company
Grid ID	Grid Opening	Structure Type	Primary Total	Length		ID	Mineral Type	Image Number	Structure Comments
K5	J10	None Detected							
K5	J8	None Detected							
K5	J6	None Detected							
K5	J4	None Detected							
K5	J2	None Detected							
K5	l1	None Detected							
K5	13	None Detected							
K5	17	None Detected							
K5	19	None Detected							
K5	H10	None Detected							
K5	H8	None Detected							
K5	H6	None Detected							
K5	H4	None Detected							
K5	H2	None Detected							
K5	G1	None Detected							
K5	G3	None Detected							
K5	G5	None Detected							
K5	G7	None Detected							
K5	G9	None Detected							
K5	F10	None Detected							
K5	F6	None Detected							
K5	F4	None Detected							
K5	F2	None Detected							
K5	E3	None Detected							
K5	E5	None Detected							
K5	E7	None Detected							
K5	E9	None Detected							
K5	D10	None Detected							
K5	D8	None Detected							
K5	D6	None Detected							
K5	D4	None Detected							
K5	D2	None Detected							
K5	C1	None Detected							
K5	C3	None Detected							
K5	C9	None Detected							
K5	B10	None Detected							
K5	B8	None Detected							
K5	B6	None Detected							
	-								

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	JEOL-1200-EX (04-03)
EMSL Sample ID:	041423333-0002	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-06-00004	Grid Box :	0414-Tetra-Tech-07: K	Analyst(s):	P. Harrison
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	08/15/2014
Project ID:	NDOT NOA / 10353259.02	2		Particulate Loading:	5%

			Struct Numl		Dimonoi	ono (um)	Level of			
Grid ID	Grid Opening	Structure Type	Primary	Total	Length	ons (µm) Width	ID	Mineral Type	Image Number	Structure Comments
K5	A1	None Detected								
K5	A3	None Detected								
K5	A5	None Detected								
K5	A7	None Detected								
K5	A9	None Detected								
K6	A1	None Detected								
K6	А3	None Detected								
K6	A5	None Detected								
K6	A7	None Detected								
K6	A9	None Detected								
K6	B8	None Detected								
K6	B6	None Detected								
K6	C3	None Detected								
K6	C5	None Detected								
K6	C7	None Detected								
K6	D8	None Detected								
K6	D6	None Detected								
K6	D2	None Detected								
K6	E3	None Detected								
K6	E9	None Detected								
K6	F8	None Detected								
K6	F4	None Detected								
K6	F2	None Detected								
K6	G1	None Detected								
K6	G3	None Detected								
K6	G7	None Detected								
K6	G9	None Detected								
K6	H8	None Detected								
K6	H6	None Detected								
K6	H4	None Detected								
K6	H2	None Detected								

Edward Surbrugg

303 Irene Street

Helena, MT 59601

Phone: 406-442-5588

Tetra Tech

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

Customer ID: MAXI57
Customer PO: NA

Grid Openings Analyzed: 70

Received: 8/12/2014 9:30

Date Sampled: 08/10/2014 00:00

EMSL Order: 041423333

Report Date: 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Customer Sample Number: BC-AA-07-00004 Air volume: 10440 Liters EMSL Sample Number: 041423333-0003 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014
Result of Chi² Test: N/A N/A Analyst: F. Craig

Analytical Sensitivity:	0.000040	Structure	e/cc		Limit of Detection:	0.000119	Structure/cc
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (All)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (All)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	

Asbestiform Minerals Present: None Detected

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal government as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated Amphiboles

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Samples collected on 0.8 um filters.

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0003	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-07-00004	Grid Box :	0414-TetraTech-07: L	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	08/14/2014
Project ID:	NDOT NOA / 10353259.02	2		Particulate Loading:	5%

		Chrushura Tura	Structure Number	Dimensi	ions (µm)	Level of	Mineral Tune		Christian Commonts
Grid ID	Grid Opening	Structure Type	Primary Total	Length		ID	Mineral Type	Image Number	Structure Comments
L3	13	None Detected							
L3	15	None Detected							
L3	17	None Detected							
L3	19	None Detected							
L3	H10	None Detected							
L3	H8	None Detected							
L3	H6	None Detected							
L3	H4	None Detected							
L3	H2	None Detected							
L3	G1	None Detected							
L3	G3	None Detected							
L3	G5	None Detected							
L3	G7	None Detected							
L3	G9	None Detected							
L3	F10	None Detected							
L3	F8	None Detected							
L3	F6	None Detected							
L3	F4	None Detected							
L3	F2	None Detected							
L3	E1	None Detected							
L3	E3	None Detected							
L3	E5	None Detected							
L3	E7	None Detected							
L3	E9	None Detected							
L3	D10	None Detected							
L3	D8	None Detected							
L3	D6	None Detected							
L3	D2	None Detected							
L3	C1	None Detected							
L3	C3	None Detected							
L3	C5	None Detected							
L3	C7	None Detected							
L3	C9	None Detected							
L3	B10	None Detected							
L3	B8	None Detected							
L3	В6	None Detected							
L3	B4	None Detected							
L3	B2	None Detected							

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0003	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-07-00004	Grid Box :	0414-TetraTech-07: L	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	08/14/2014
Project ID:	NDOT NOA / 10353259.02	2		Particulate Loading:	5%

			Struct Num		Dimonoi	ons (µm)	Level of			
Grid ID	Grid Opening	Structure Type	Primary	Total	Length		ID	Mineral Type	Image Number	Structure Comments
L1	B2	None Detected			Ū					
L1	B4	None Detected								
L1	В6	None Detected								
L1	B8	None Detected								
L1	B10	None Detected								
L1	C9	None Detected								
L1	C7	None Detected								
L1	C5	None Detected								
L1	C3	None Detected								
L1	D2	None Detected								
L1	D4	None Detected								
L1	D6	None Detected								
L1	D8	None Detected								
L1	D10	None Detected								
L1	E9	None Detected								
L1	E7	None Detected								
L1	E5	None Detected								
L1	E3	None Detected								
L1	F2	None Detected								
L1	F4	None Detected								
L1	F6	None Detected								
L1	F8	None Detected								
L1	F10	None Detected								
L1	G9	None Detected								
L1	G7	None Detected								
L1	G5	None Detected								
L1	G3	None Detected								
L1	H2	None Detected								
L1	H4	None Detected								
L1	H6	None Detected								
L1	H8	None Detected								
L1	H10	None Detected								

Edward Surbrugg

303 Irene Street

Helena, MT 59601

Phone: 406-442-5588

Tetra Tech

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

Customer ID: MAXI57 Customer PO: NA

Grid Openings Analyzed: 68

8/12/2014 9:30 Received: Date Sampled: 08/10/2014 00:00 EMSL Order: 041423333 Report Date: 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM -Modified for PCMe Analysis

Customer Sample Number: BC-AA-08-00004 Air volume: 10800 Liters EMSL Sample Number: 041423333-0004 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD

Minimum Level of analysis (amphibole): ADX Magnification used for fiber counting: 10,000 Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μm): >5 / 0.25-none

Area of collection filter (mm2): Analysis Date: 08/12/2014 385 Result of Chi² Test: N/A N/A Analyst: F. Craig

Analytical Sensitivity:	0.000040	Structure	e/cc		Limit of Detection:	0.000119	Structure/cc
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (All)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (All)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	

Asbestiform Minerals Present: None Detected

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal governement as

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Samples collected on 0.8 um filters.

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0004	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-08-00004	Grid Box :	0414-TetraTech: L	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	08/16/2014
Project ID:	NDOT NOA / 10353259.02	2		Particulate Loading:	10%

		O	Structure Number	Dimensi	ions (µm)	Level of			0 0
Grid ID	Grid Opening	Structure Type	Primary Total	Length		ID	Mineral Type	Image Number	Structure Comments
L5	B10	None Detected	•	•		'		•	
L5	B8	None Detected							
L5	B6	None Detected							
L5	B4	None Detected							
L5	B2	None Detected							
L5	C1	None Detected							
L5	C3	None Detected							
L5	C5	None Detected							
L5	C7	None Detected							
L5	C9	None Detected							
L5	D10	None Detected							
L5	D8	None Detected							
L5	D6	None Detected							
L5	D4	None Detected							
L5	D2	None Detected							
L5	E1	None Detected							
L5	E3	None Detected							
L5	E5	None Detected							
L5	E7	None Detected							
L5	E9	None Detected							
L5	F10	None Detected							
L5	F8	None Detected							
L5	F6	None Detected							
L5	F4	None Detected							
L5	F2	None Detected							
L5	G1	None Detected							
L5	G3	None Detected							
L5	G5	None Detected							
L5	G7	None Detected							
L5	G9	None Detected							
L5	H8	None Detected							
L5	H6	None Detected							
L5	H4	None Detected							
L5	H2	None Detected							
L6	19	None Detected							
L6	17	None Detected							
L6	15	None Detected							
L6	13	None Detected							
		0.00.00							

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0004	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-08-00004	Grid Box :	0414-TetraTech: L	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	08/16/2014
Project ID:	NDOT NOA / 10353259.02	2		Particulate Loading:	10%

			Struc		Dimensi	()	Level of			
Grid	Grid	Structure Type	Num		Dimensi	ons (µm)		Mineral Type	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID		Number	
L6	I1	None Detected								
L6	H2	None Detected								
L6	H4	None Detected								
L6	H6	None Detected								
L6	H8	None Detected								
L6	G9	None Detected								
L6	G7	None Detected								
L6	G5	None Detected								
L6	G3	None Detected								
L6	G1	None Detected								
L6	F2	None Detected								
L6	F4	None Detected								
L6	F6	None Detected								
L6	F8	None Detected								
L6	E7	None Detected								
L6	E5	None Detected								
L6	E3	None Detected								
L8	I 1	None Detected								
L8	13	None Detected								
L8	15	None Detected								
L8	17	None Detected								
L8	19	None Detected								
L8	H10	None Detected								
L8	H8	None Detected								
L8	H6	None Detected								
L8	H4	None Detected								
L8	H2	None Detected								
L8	G1	None Detected								
L8	G3	None Detected								
L8	G5	None Detected								

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

 Edward Surbrugg
 Customer ID:
 MAXI57

 Tetra Tech
 Customer PO:
 NA

 303 Irene Street
 Received:
 8/12/2014 9:30

Helena, MT 59601 Date Sampled: 08/10/2014 00:00
Phone: 406-442-5588 EMSL Order: 041423333
Report Date: 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Customer Sample Number: BC-AA-09-00004 Air volume: 10440 Liters EMSL Sample Number: 041423333-0005 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD Grid Openings Analyzed: 70

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014
Result of Chi² Test: 68.00 Random Analyst: F. Craig

Analytical Sensitivity:	0.000040	Structure	e/cc		Limit of Detection:	0.000119	Structure/cc
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	2	-	2.16	0.000080	0.000000	- 0.000251
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (Regulated)	CD/ADX	2	-	2.16	0.000080	0.000000	- 0.000251
Total PCMe Structures (All)	CD/ADX	2	-	2.16	0.000080	0.000000	- 0.000251
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	2	2.16	0.000080	0.000000	- 0.000251
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	2	2.16	0.000080	0.000000	- 0.000251
Total PCMe Fibers and Bundles (All)	CD/ADX	-	2	2.16	0.000080	0.000000	- 0.000251
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	

Asbestiform Minerals Present: Anthophyllite, Actinolite

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal government as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

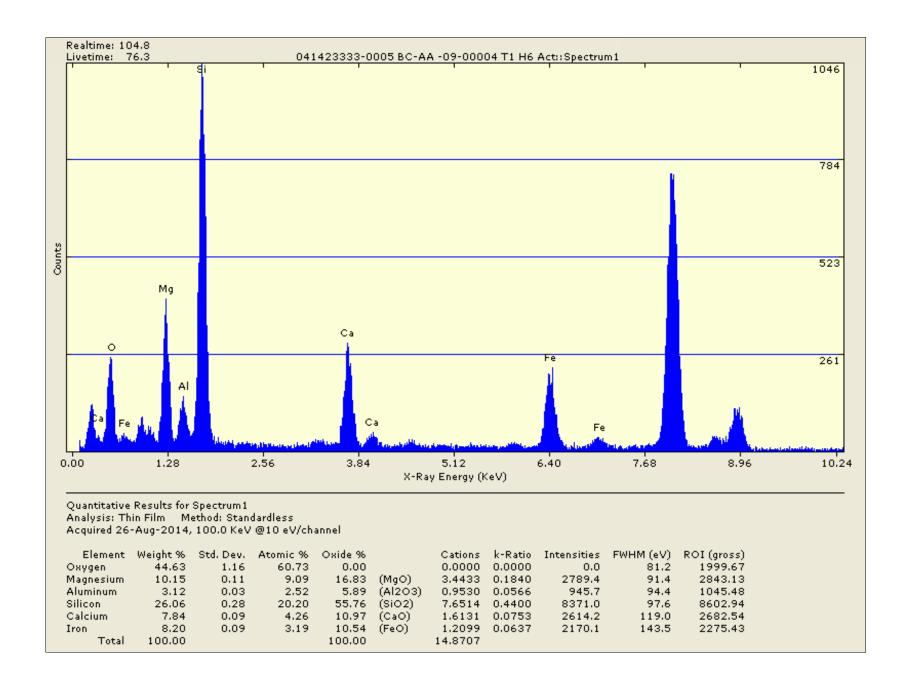
Comment: Samples collected on 0.8 um filters.

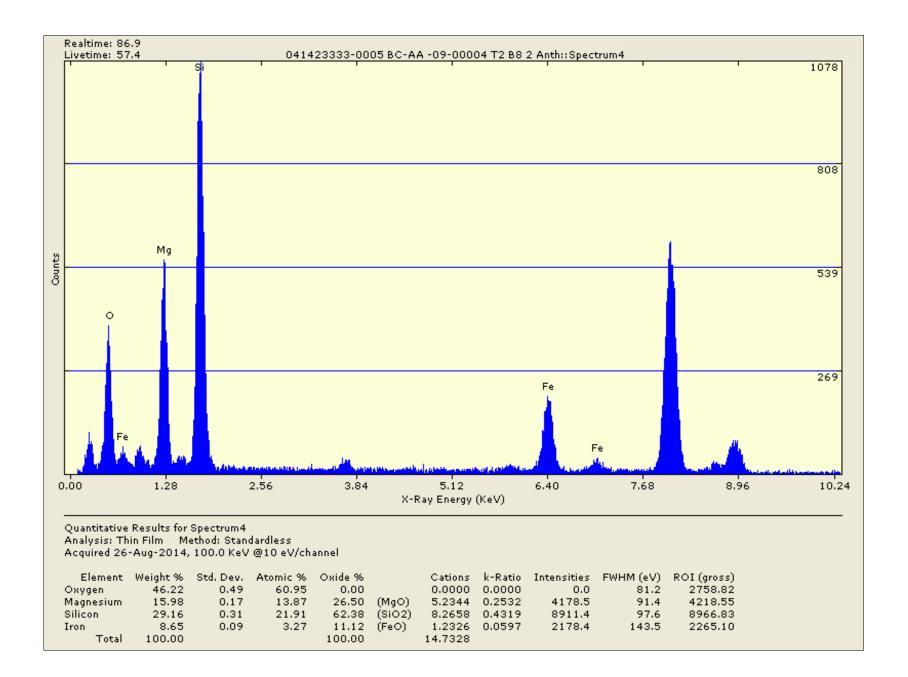
International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0005	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-09-00004	Grid Box :	0414-TetraTech-01: T	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	68.00-Random	Pore Size (micron):	0.8	Analysis Date:	08/26/2014
Project ID:	NDOT NOA / 10353259.02	2		Particulate Loading:	10%

			Struct		D:	()	Level of			
Grid	Grid	Structure Type	Num			ons (µm)		Mineral Type	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID		Number	
T1	C9	None Detected								
T1	C7	None Detected								
T1	C5	None Detected								
T1	C3	None Detected								
T1	D2	None Detected								
T1	D4	None Detected								
T1	D6	None Detected								
T1	D8	None Detected								
T1	D10	None Detected								
T1	E9	None Detected								
T1	E7	None Detected								
T1	E5	None Detected								
T1	E3	None Detected								
T1	F2	None Detected								
T1	F4	None Detected								
T1	F6	None Detected								
T1	F8	None Detected								
T1	F10	None Detected								
T1	G9	None Detected								
T1	G7	None Detected								
T1	G5	None Detected								
T1	G3	None Detected								
T1	H2	None Detected								
T1	H4	None Detected								
T1	H6	MD11	1		33	30	ADX	Actinolite		
T1	H6	MF		1	17.9	1	ADX	Actinolite	010507D	
T1	H8	None Detected								
T1	H10	None Detected								
T1	19	None Detected								
T1	17	None Detected								
T1	15	None Detected								
T1	13	None Detected								
T1	l1	None Detected								
T2	I1	None Detected								
T2	13	None Detected								
T2	15	None Detected								
T2	17	None Detected								
T2	19	None Detected								

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy


Client:	Tetra Tech		Scope:	04-01	
EMSL Sample ID:	041423333-0005	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-09-00004	Grid Box :	0414-TetraTech-01: T	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	68.00-Random	Pore Size (micron):	0.8	Analysis Date:	08/26/2014
Project ID:	NDOT NOA / 10353259.02	2		Particulate Loading:	10%


			Structure		<u>.</u> .	, ,	Level of			
Grid	Grid	Structure Type	Number		Dimensi	" ,		Mineral Type	Image	Structure Comments
ID	Opening		Primary T	otal	Length	Width	ID		Number	
T2	H10	None Detected								
T2	H8	None Detected								
T2	H6	None Detected								
T2	H4	None Detected								
T2	H2	None Detected								
T2	G1	None Detected								
T2	G3	None Detected								
T2	G5	None Detected								
T2	G7	None Detected								
T2	G9	None Detected								
T2	F10	None Detected								
T2	F8	None Detected								
T2	F6	None Detected								
T2	F4	None Detected								
T2	F2	None Detected								
T2	E1	None Detected								
T2	E3	None Detected								
T2	E5	None Detected								
T2	E7	None Detected								
T2	E9	None Detected								
T2	D10	None Detected								
T2	D8	None Detected								
T2	D6	None Detected								
T2	D4	None Detected								
T2	D2	None Detected								
T2	C1	None Detected								
T2	C3	None Detected								
T2	C5	None Detected								
T2	C7	None Detected								
T2	C9	None Detected								
T2	B10	None Detected								
T2	B8	MD11	2		22	11.8	ADX	Anthophyllite		
T2	В8	MF		2	13.68	1.2	ADX	Anthophyllite	10509	
T2	B6	None Detected								

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy Structure Sketch Sheet for Direct Data Entry

EMSL Order ID: 041423333-0005 Client: Tetra Tech Client Sample: BC-AA-09-00004 Page Primary Structure # 2 Primary Structure # Primary Structure # Primary Structure,# 1 Primary Structure # Structure # Structure # Structure # Structure # Date: 8/26/14 Analyst: F Scope: <u>04 0</u>/

AMPHIBOLE SAED INDEXING FORM

EMSL Order Number:

041423333

Date: Aug 26, 2014

Indexing of Image Number:

010507

Scope #: 04 - 01

Reference / Sample No:

0005-04-01

By: F Craig

Preliminary ID:

ACTINOLITE

Using Camera Constant of:

2.958e-003

1/A Pixels

Determined from Reference:

AuCal-082614_10506

Measured Inter-Row Spacing:

62.93

Pixels

Mean Distance between spots on Center row (d2):

98.81

Pixels

Mean Distance between spots on slant vector (d1):

66.81

Pixels

	Calculated	Ref	-5%	+5%
Inter-row Spacing (Angstroms):	5.372	5.278	5.014	5.542
d2 or hk0 (Camera K/zero row dist.):	3.387	3.385	3.216	3.554
d1 or hk1 (Camera K/slant vector dist.):	5.060	5.065	4.812	5.318
Ratio of hk0/hkl:	0.669	0.668	0.635	0.701
Angle of Slant Vector (Measured):	68.8	68.730	65.293	72.167

From SAED Reference Book, "unknown" diffraction pattern was found to

be that of:

Actinolite

By: F Craig

Miller Indice hk0:

150

Miller Indice hkl:

11-1

With a Zone Axis of: [

-5 1 -4

Preliminary Identification was:

X

CORRECT

INCORRECT

Accelerating Voltage | Magnification | Film Number | Sample | 0.5 1/A | 0.5

Percent accuracy to date:

100 %

AMPHIBOLE SAED INDEXING FORM

AIVII I III	BULL SALI			7 I V I	
EMSL Order Number:	041423333		Date:	Aug 26, 2014	
Indexing of Image Number:	010509		Scope #:	04 - 01	
Reference / Sample No:	0005-04-01		Ву:	F Craig	
Preliminary ID:	NRA				
Using Camera Constant of:	2.958e-003	1/A Pix	els		
Determined from Reference:	AuCal-082614_10	0506			
Measured Inter-Row Spacing:				Pi	xels
Mean Distance between spots on C	Center row (d2):			Pi	xels
Mean Distance between spots on s	lant vector (d1):			Pi	xels
•	, ,	Calculated	Ref	-5%	+5%
Intervenie (Ameri	tromo).	5.284		5.016	5.544
· · · · ·	troms):		5.280		
d2 or hk0 (Camera K/zero row o	list.):	5.105	5.102	4.847	5.357
d1 or hk1 (Camera K/slant vector	or dist.):	4.980	5.065	4.812	5.318
Ratio of hk0/hkl:		1.025	1.007	0.957	1.057
Angle of Slant Vector (Measure	d):	67.3	67.160	63.802	70.518
From SAED Reference Book, "unkn	own" diffraction pa	ttern was foun	nd to		
be that of: Anthophyllite	By:	F Craig			
Miller Indice hk0: (130)			•	
Miller Indice hkl: (11-1)			,	
With a Zone Axis of: [-3 1 -2	1				
With a Zone Axis of. [,				
Preliminary Identification was:	X COF	RRECT			•
	INC	ORRECT	Accelerating Voltage Magnification Fi	Im Number Sample	0.5.1/0

Percent accuracy to date:

100 %

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

 Edward Surbrugg
 Customer ID:
 MAXI57

 Tetra Tech
 Customer PO:
 NA

 303 Irene Street
 Received:
 8/12/2014 9:30

Helena, MT 59601 Date Sampled: 08/10/2014 00:00
Phone: 406-442-5588 EMSL Order: 041423333
Report Date: 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Grid Openings Analyzed: 70

Customer Sample Number: BC-AA-10-00004 Air volume: 10440 Liters EMSL Sample Number: 041423333-0006 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014
Result of Chi² Test: N/A N/A Analyst: F. Craig

Analytical Sensitivity:	0.000040	Structure	e/cc		Limit of Detection:	0.000119	Structure/cc
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (All)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (All)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	

Asbestiform Minerals Present: None Detected

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal government as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated Amphiboles

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Samples collected on 0.8 um filters.

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0006	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-10-00004	Grid Box :	0414-TeraTech-07: T	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	08/26/2014
Project ID:	NDOT NOA / 10353259.02	2		Particulate Loading:	10%

		0	Structure Number	Dimensi	ons (µm)	Level of			0 0
Grid ID	Grid Opening	Structure Type	Primary Total	Length		ID	Mineral Type	Image Number	Structure Comments
T5	B10	None Detected							
T5	B8	None Detected							
T5	B6	None Detected							
T5	B4	None Detected							
T5	B2	None Detected							
T5	C1	None Detected							
T5	C3	None Detected							
T5	C5	None Detected							
T5	C7	None Detected							
T5	C9	None Detected							
T5	D10	None Detected							
T5	D8	None Detected							
T5	D6	None Detected							
T5	D4	None Detected							
T5	D2	None Detected							
T5	E1	None Detected							
T5	E3	None Detected							
T5	E5	None Detected							
T5	E7	None Detected							
T5	E9	None Detected							
T5	F10	None Detected							
T5	F8	None Detected							
T5	F6	None Detected							
T5	F4	None Detected							
T5	F2	None Detected							
T5	G1	None Detected							
T5	G3	None Detected							
T5	G5	None Detected							
T5	G7	None Detected							
T5	G9	None Detected							
T5	H10	None Detected							
T5	H8	None Detected							
T5	H6	None Detected							
T5	H4	None Detected							
T5	H2	None Detected							
T5	l1	None Detected							
T5	13	None Detected							
T5	15	None Detected							

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0006	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-10-00004	Grid Box :	0414-TeraTech-07: T	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	08/26/2014
Project ID:	NDOT NOA / 10353259.02	2		Particulate Loading:	10%

			Struct Num		Dimonoi	ons (µm)	Level of			
Grid ID	Grid Opening	Structure Type	Primary	Total	Length		ID	Mineral Type	Image Number	Structure Comments
T6	B2	None Detected	•				<u> </u>			
T6	B4	None Detected								
T6	B6	None Detected								
T6	B8	None Detected								
Т6	B10	None Detected								
T6	C9	None Detected								
T6	C7	None Detected								
T6	C5	None Detected								
Т6	C3	None Detected								
T6	C1	None Detected								
Т6	D2	None Detected								
T6	D4	None Detected								
Т6	D6	None Detected								
T6	D8	None Detected								
T6	D10	None Detected								
T6	E9	None Detected								
T6	E7	None Detected								
T6	E5	None Detected								
T6	E3	None Detected								
T6	E1	None Detected								
T6	F2	None Detected								
T6	F4	None Detected								
T6	F6	None Detected								
T6	F8	None Detected								
T6	F10	None Detected								
T6	G9	None Detected								
T6	G7	None Detected								
T6	G5	None Detected								
T6	G3	None Detected								
T6	G1	None Detected								
T6	H2	None Detected								
T6	H4	None Detected								

Edward Surbrugg

303 Irene Street

Helena, MT 59601

Phone: 406-442-5588

Tetra Tech

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

Customer ID: MAXI57
Customer PO: NA

Received: 8/12/2014 9:30

Date Sampled: 08/10/2014 00:00

EMSL Order: 041423333

Report Date: 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Customer Sample Number: BC-AA-11-00004 Air volume: 10440 Liters EMSL Sample Number: 041423333-0007 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD Grid Openings Analyzed: 70

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014
Result of Chi² Test: N/A N/A Analyst: F. Craig

Analytical Sensitivity:	0.000040	Structure	e/cc		Limit of Detection:	0.000119	Structure/cc
						Poisson 95 % C	onfidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (All)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (All)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	

Asbestiform Minerals Present: None Detected

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal governement as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Samples collected on 0.8 um filters.

EMSL

ISO 10312

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech	Scope:	04 01		
EMSL Sample ID:	041423333-0007	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-11-00004	Grid Box :	0414-TetraTech-07: T	Analyst(s):	F Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	Analysis Date:	08/26/2014	
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	5%	

		Structure Type	Structure Number	Dimensi	ons (µm)	Level of	Minoral Type		Structure Comments
Grid ID	Grid Opening	Structure Type	Primary Total	Length		ID	Mineral Type	Image Number	Structure Comments
T10	l1	None Detected							
T10	13	None Detected							
T10	15	None Detected							
T10	17	None Detected							
T10	19	None Detected							
T10	H10	None Detected							
T10	8	None Detected							
T10	H6	None Detected							
T10	H4	None Detected							
T10	H2	None Detected							
T10	G1	None Detected							
T10	G3	None Detected							
T10	G5	None Detected							
T10	G7	None Detected							
T10	G9	None Detected							
T10	F10	None Detected							
T10	F8	None Detected							
T10	F6	None Detected							
T10	F4	None Detected							
T10	F2	None Detected							
T10	E1	None Detected							
T10	E3	None Detected							
T10	E5	None Detected							
T10	E7	None Detected							
T10	E9	None Detected							
T10	D10	None Detected							
T10	D8	None Detected							
T10	D6	None Detected							
T10	D4	None Detected							
T10	D2	None Detected							
T10	C1	None Detected							
T10	C3	None Detected							
T10	C5	None Detected							
T10	C7	None Detected							
T10	C9	None Detected							
T11	B10	None Detected							
T11	B8	None Detected							
T11	B6	None Detected							
	-								

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech	Scope:	04 01		
EMSL Sample ID:	041423333-0007	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-11-00004	Grid Box :	0414-TetraTech-07: T	Analyst(s):	F Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	Analysis Date:	08/26/2014	
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	5%	

Grid Grid Opening Structure Type Number Dimensions (µm) Primary Total Length Width ID Mineral Type Image Number Number Number Structure Type Primary Total Length Width ID Mineral Type Image Number Structure Type Image Number Number Number Structure Type Image Number Num	_
T11 B2 None Detected T11 C1 None Detected T11 C3 None Detected T11 C5 None Detected T11 C7 None Detected T11 C9 None Detected T11 D10 None Detected T11 D8 None Detected T11 D6 None Detected T11 D4 None Detected T11 D2 None Detected T11 E1 None Detected T11 E3 None Detected T11 E5 None Detected T11 E7 None Detected T11 E9 None Detected T11 F8 None Detected T11 F6 None Detected T11 F2 None Detected T11 G1 None Detected	ucture Comments
T11 C3 None Detected T11 C5 None Detected T11 C7 None Detected T11 C9 None Detected T11 D10 None Detected T11 D8 None Detected T11 D6 None Detected T11 D4 None Detected T11 D2 None Detected T11 D2 None Detected T11 E1 None Detected T11 E3 None Detected T11 E5 None Detected T11 E7 None Detected T11 E7 None Detected T11 E7 None Detected T11 E7 None Detected T11 F10 None Detected T11 F8 None Detected T11 F9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F8 None Detected T11 F9 None Detected T11 F8 None Detected T11 F9 None Detected	
T11 C5 None Detected T11 C7 None Detected T11 C9 None Detected T11 D10 None Detected T11 D8 None Detected T11 D6 None Detected T11 D4 None Detected T11 D2 None Detected T11 E1 None Detected T11 E2 None Detected T11 E5 None Detected T11 E7 None Detected T11 E7 None Detected T11 E8 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F8 None Detected T11 F6 None Detected T11 F6 None Detected T11 F7 None Detected T11 F7 None Detected T11 F8 None Detected T11 F8 None Detected T11 F8 None Detected T11 F9 None Detected	
T11 C7 None Detected T11 C9 None Detected T11 D10 None Detected T11 D8 None Detected T11 D6 None Detected T11 D4 None Detected T11 D2 None Detected T11 E1 None Detected T11 E3 None Detected T11 E5 None Detected T11 E7 None Detected T11 E7 None Detected T11 E8 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F8 None Detected T11 F6 None Detected T11 F7 None Detected T11 F7 None Detected T11 F8 None Detected T11 F8 None Detected T11 F8 None Detected T11 F9 None Detected T11 F10 None Detected	
T11 C9 None Detected T11 D10 None Detected T11 D8 None Detected T11 D6 None Detected T11 D4 None Detected T11 D2 None Detected T11 D2 None Detected T11 E1 None Detected T11 E3 None Detected T11 E5 None Detected T11 E7 None Detected T11 E7 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F8 None Detected T11 F8 None Detected T11 F6 None Detected T11 F7 None Detected T11 F7 None Detected T11 F8 None Detected T11 F8 None Detected T11 F9 None Detected T11 F10 None Detected	
T11 D10 None Detected T11 D8 None Detected T11 D6 None Detected T11 D4 None Detected T11 D2 None Detected T11 E1 None Detected T11 E3 None Detected T11 E5 None Detected T11 E7 None Detected T11 E7 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F8 None Detected T11 F6 None Detected T11 F4 None Detected T11 F2 None Detected T11 F3 None Detected T11 F4 None Detected T11 F5 None Detected T11 F6 None Detected T11 F1 None Detected T11 F2 None Detected T11 F2 None Detected T11 F3 None Detected T11 F3 None Detected T11 F4 None Detected T11 F4 None Detected T11 F5 None Detected T11 F5 None Detected	
T11 D8 None Detected T11 D6 None Detected T11 D4 None Detected T11 D2 None Detected T11 E1 None Detected T11 E3 None Detected T11 E5 None Detected T11 E7 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F8 None Detected T11 F6 None Detected T11 F4 None Detected T11 F2 None Detected T11 F3 None Detected T11 F4 None Detected T11 F5 None Detected T11 F6 None Detected T11 F10 None Detected T11 F10 None Detected T11 T10 None Detected T11 T2 None Detected T11 T2 None Detected T11 T3 None Detected T11 T4 None Detected	
T11 D6 None Detected T11 D4 None Detected T11 D2 None Detected T11 E1 None Detected T11 E3 None Detected T11 E5 None Detected T11 E7 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F6 None Detected T11 F6 None Detected T11 F7 None Detected T11 F10 None Detected	
T11 D4 None Detected T11 D2 None Detected T11 E1 None Detected T11 E3 None Detected T11 E5 None Detected T11 E7 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F6 None Detected T11 F6 None Detected T11 F1 None Detected T11 F2 None Detected T11 F2 None Detected	
T11 D2 None Detected T11 E1 None Detected T11 E3 None Detected T11 E5 None Detected T11 E7 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F6 None Detected T11 F6 None Detected T11 F1 None Detected T11 F1 None Detected T11 F1 None Detected T11 F1 None Detected T11 F2 None Detected T11 F2 None Detected	
T11 E1 None Detected T11 E3 None Detected T11 E5 None Detected T11 E7 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F6 None Detected T11 F4 None Detected T11 F2 None Detected T11 F2 None Detected T11 G1 None Detected	
T11 E3 None Detected T11 E5 None Detected T11 E7 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F6 None Detected T11 F6 None Detected T11 F2 None Detected T11 F2 None Detected T11 G1 None Detected	
T11 E5 None Detected T11 E7 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F6 None Detected T11 F4 None Detected T11 F2 None Detected T11 G1 None Detected	
T11 E7 None Detected T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F6 None Detected T11 F4 None Detected T11 F2 None Detected T11 G1 None Detected	
T11 E9 None Detected T11 F10 None Detected T11 F8 None Detected T11 F6 None Detected T11 F4 None Detected T11 F2 None Detected T11 G1 None Detected	
T11 F10 None Detected T11 F8 None Detected T11 F6 None Detected T11 F4 None Detected T11 F2 None Detected T11 G1 None Detected	
T11 F8 None Detected T11 F6 None Detected T11 F4 None Detected T11 F2 None Detected T11 G1 None Detected	
T11 F6 None Detected T11 F4 None Detected T11 F2 None Detected T11 G1 None Detected	
T11 F4 None Detected T11 F2 None Detected T11 G1 None Detected	
T11 F2 None Detected T11 G1 None Detected	
T11 G1 None Detected	
T11 G3 None Detected	
T11 G5 None Detected	
T11 G7 None Detected	
T11 G9 None Detected	
T11 H10 None Detected	
T11 H8 None Detected	
T11 H6 None Detected	
T11 H4 None Detected	
T11 H2 None Detected	
T11 I1 None Detected	

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

 Edward Surbrugg
 Customer ID:
 MAXI57

 Tetra Tech
 Customer PO:
 NA

 303 Irene Street
 Received:
 8/12/201

 303 Irene Street
 Received:
 8/12/2014 9:30

 Helena, MT 59601
 Date Sampled:
 08/10/2014 00:00

 Phone: 406-442-5588
 EMSL Order:
 041423333

 Report Date:
 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Grid Openings Analyzed: 68

Customer Sample Number: BC-AA-12-00004 Air volume: 10800 Liters EMSL Sample Number: 041423333-0008 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014
Result of Chi² Test: N/A N/A Analyst: F. Craig

Analytical Sensitivity:	0.000040 Structure/cc		Limit of Detection:	Limit of Detection: 0.000119 Structure/cc			
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (All)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (All)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	

Asbestiform Minerals Present: None Detected

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal governement as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated Amphiboles

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Samples collected on 0.8 um filters.

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech		Scope:	04-01
EMSL Sample ID:	041423333-0008	GO area (mm²):	Mag.	10,000
Customer Sample:	BC-AA-12-00004	Grid Box :	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	Analysis Date:	08/22/2014
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	5%

		Chrushina Tina	Structure Number	Dimensi	ions (µm)	Level of	Minoral Type		Christian Company
Grid ID	Grid Opening	Structure Type	Primary Total	Length		ID	Mineral Type	Image Number	Structure Comments
U1	l1	None Detected							
U1	13	None Detected							
U1	15	None Detected							
U1	17	None Detected							
U1	H8	None Detected							
U1	H6	None Detected							
U1	H4	None Detected							
U1	H2	None Detected							
U1	G1	None Detected							
U1	G3	None Detected							
U1	G5	None Detected							
U1	7	None Detected							
U1	G9	None Detected							
U1	F8	None Detected							
U1	F6	None Detected							
U1	F4	None Detected							
U1	F2	None Detected							
U1	E1	None Detected							
U1	E3	None Detected							
U1	E5	None Detected							
U1	E7	None Detected							
U1	E9	None Detected							
U1	D8	None Detected							
U1	D6	None Detected							
U1	D4	None Detected							
U1	D2	None Detected							
U1	C1	None Detected							
U1	C3	None Detected							
U1	C5	None Detected							
U1	C7	None Detected							
U1	C9	None Detected							
U1	B10	None Detected							
U1	B8	None Detected							
U1	B6	None Detected							
U1	B4	None Detected							
U3	19	None Detected							
U3	17	None Detected							
U3	15	None Detected							

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech	Scope:	04-01		
EMSL Sample ID:	041423333-0008	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-12-00004	Grid Box :	0414-TetraTech-07: U	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	Analysis Date:	08/22/2014	
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	5%	

			Struc		Dimensi	ono (um)	Level of			
Grid	Grid	Structure Type	Num		Dimensi	ons (µm)		Mineral Type	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID		Number	
U3	13	None Detected								
U3	l1	None Detected								
U3	H2	None Detected								
U3	H4	None Detected								
U3	H6	None Detected								
U3	H8	None Detected								
U3	H10	None Detected								
U3	G9	None Detected								
U3	G7	None Detected								
U3	G5	None Detected								
U3	G3	None Detected								
U3	G1	None Detected								
U3	F2	None Detected								
U3	F4	None Detected								
U3	F6	None Detected								
U3	F8	None Detected								
U3	F10	None Detected								
U3	E9	None Detected								
U3	E7	None Detected								
U3	E5	None Detected								
U3	E3	None Detected								
U3	E1	None Detected								
U3	D2	None Detected								
U3	D4	None Detected								
U3	D6	None Detected								
U3	D8	None Detected								
U3	D10	None Detected								
U3	C9	None Detected								
U3	C78	None Detected								
U3	C5	None Detected								

Edward Surbrugg

303 Irene Street

Helena, MT 59601

Phone: 406-442-5588

Tetra Tech

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

Customer ID: MAXI57
Customer PO: NA

Grid Openings Analyzed: 68

Received: 8/12/2014 9:30

Date Sampled: 08/10/2014 06:00

EMSL Order: 041423333

Report Date: 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Customer Sample Number: BC-AA-01-00009 Air volume: 10800 Liters EMSL Sample Number: 041423333-0009 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014
Result of Chi² Test: 67.00 Random Analyst: F. Craig

Analytical Sensitivity:	0.000040	Structure	e/cc		Limit of Detection:	0.000119	Structure/cc
						Poisson 95 % (Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (NRA)	ADX	1	-	1.11	0.000040	0.000000	- 0.000188
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (All)	CD/ADX	1	-	1.11	0.000040	0.000000	- 0.000188
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (NRA)	ADX	-	1	1.11	0.000040	0.000000	- 0.000188
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (All)	CD/ADX	-	1	1.11	0.000040	0.000000	- 0.000188
Non Asbestos Mineral Structures	NAM	1	1	-	-	-	

Asbestiform Minerals Present: Non-Regulated, Amphibole

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal governement as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated Amphiboles

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

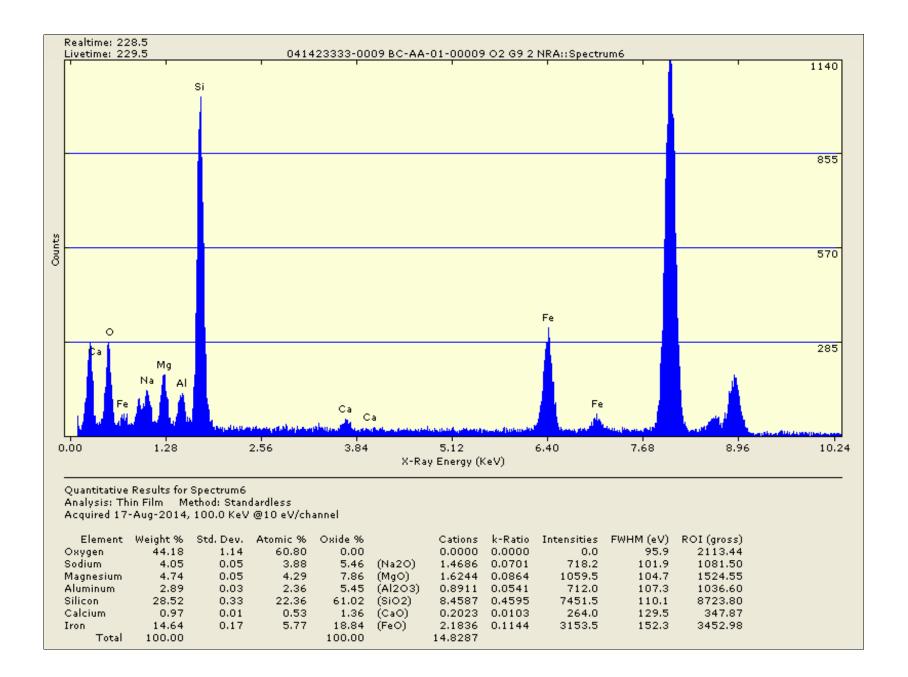
Comment: Samples collected on 0.8 um filters.

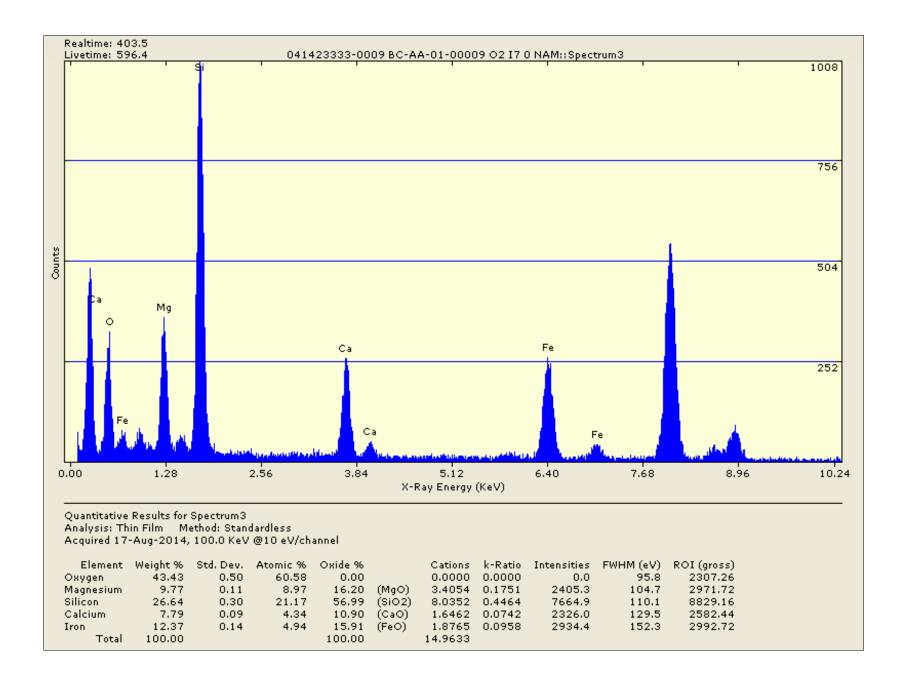
International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0009	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-01-00009	Grid Box :	0414-TetraTech-07: O	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	67.00-Random	Pore Size (micron):	Analysis Date:	08/17/2014	
Project ID:	NDOT NOA / 10353259.02	2		Particulate Loading:	20%

	Grid Structure Type Opening	O:	Structure Number Dime		Dimensi	sions (µm) Level o				Structure Corements
Grid ID				Length		ID	Mineral Type	Image Number	Structure Comments	
O2	11	None Detected								
O2	13	None Detected								
02	15	None Detected								
02	17	MD41	1		30.6	21.38	NAM	Non Asb. Mineral		
02	17	MF		1	8.3	0.5	NAM	Non Asb. Mineral		
OZ.	- 17	IVII		•	0.0	0.0	147 (17)	Non Asb. Mineral		
O2	17	MF		0	4.8	0.24	NAM	Non Asb. Mineral		
02	17	MF		0	3.3	0.1	NAM	Non Asb. Mineral		
02	17	MF		0	1.1	0.1	NAM	Non Asb. Mineral		
02	19	None Detected				0				
02	H10	None Detected								
02	H8	None Detected								
02	H6	None Detected								
02	H4	None Detected								
02	H2	None Detected								
02	G1	None Detected								
O2	G3	None Detected								
O2	G5	None Detected								
O2	G7	None Detected								
02	G9	MD11	2		8.6	3.56	ADX	Non Reg.Amph.		
O2	G9	MF		2	7.6	0.5	ADX	Non Reg.Amph.	010483D	
O2	F10	None Detected								
O2	F8	None Detected								
O2	F6	None Detected								
02	F4	None Detected								
02	F2	None Detected								
02	E3	None Detected								
02	E5	None Detected								
02	E7	None Detected								
02	E9	None Detected								
02	D10	None Detected								
02	D8	None Detected								
02	D6	None Detected								
02	D4	None Detected								
02	D2	None Detected								
O2	C1	None Detected								
02	C3	None Detected								
					_					

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy


Client:	Tetra Tech		Scope:	04-01	
EMSL Sample ID:	041423333-0009	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-01-00009	Grid Box :	0414-TetraTech-07: O	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	67.00-Random Pore Size (micron): 0.8			Analysis Date:	08/17/2014
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	20%	


	Grid Grid ID Opening	Structure Type	Structure Number	Dimensi	ions (µm)	Level of	Mineral Type	Image Number	Structure Comments
Grid ID			Primary Total	Length		ID			
02	C7	None Detected		-					
O2	C9	None Detected							
02	B10	None Detected							
O2	B8	None Detected							
02	B6	None Detected							
O2	B4	None Detected							
02	B2	None Detected							
O3	G7	None Detected							
О3	G5	None Detected							
O3	G3	None Detected							
О3	F6	None Detected							
O3	F8	None Detected							
О3	F10	None Detected							
O3	E9	None Detected							
О3	E7	None Detected							
О3	E5	None Detected							
О3	E3	None Detected							
O3	D4	None Detected							
O3	D6	None Detected							
O3	D8	None Detected							
О3	D10	None Detected							
O3	C9	None Detected							
О3	C7	None Detected							
O3	C5	None Detected							
O3	C3	None Detected							
O3	B4	None Detected							
O3	B6	None Detected							
O3	B8	None Detected							
O3	B10	None Detected							
04	E9	None Detected							
04	E7	None Detected							
O4	5	None Detected							
04	E3	None Detected							
04	F2	None Detected							
04	F4	None Detected							
04	F6	None Detected							
04	F8	None Detected							

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy Structure Sketch Sheet for Direct Data Entry

EMSL Order ID: 0	41423333-0009	Client: Tetra Tech				
Client Sample: <u>E</u>	BC-AA-01-00009	Page	of/			
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #			
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #			
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #			
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #			
Structure #	Structure #	Structure #	Structure #			
Analyst:	Date: <u> </u>	7/14	Scope: <u>04</u> 6/			

AMPHIBOLE SAED INDEXING FORM

EMSL Order Number:

041423333

Date: Aug 17, 2014

Indexing of Image Number:

010483

Scope #: 04 - 01

Reference / Sample No:

0009-04-01

By: F Craig

Preliminary ID:

NRA

Using Camera Constant of:

2.950e-003

1/A Pixels

Determined from Reference:

AuCal-081214_10469

Measured Inter-Row Spacing:

63.72

Pixels

Mean Distance between spots on Center row (d2):

172.07

Pixels

Mean Distance between spots on slant vector (d1):

98.71

Pixels

	Calculated	Ref	-5%	+5%
Inter-row Spacing (Angstroms):	5.320	5.300	5.035	5.565
d2 or hk0 (Camera K/zero row dist.):	1.970	1.961	1.863	2.059
d1 or hk1 (Camera K/slant vector dist.):	3.434	3.380	3.211	3.549
Ratio of hk0/hkl:	0.574	0.580	0.551	0.609
Angle of Slant Vector (Measured):	40.0	41.770	39.682	43.859

From SAED Reference Book, "unknown" diffraction pattern was found to

be that of:

Ferroglaucophane

By: 📙

F Craig

Miller Indice hk0:

370

Miller Indice hkl:

131

With a Zone Axis of: [

7 -3 2

Preliminary Identification was:

Χ

CORRECT

INCORRECT

Accelerating Voltage | Magnification | Film Number | Sample | 0.51/2.

Percent accuracy to date:

100 %

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

Customer ID: MAXI57
Customer PO: NA

Grid Openings Analyzed: 68

Received: 8/12/2014 9:30

Date Sampled: 08/10/2014 07:00

EMSL Order: 041423333

Report Date: 08/26/14

Tetra Tech 303 Irene Street Helena, MT 59601 Phone: 406-442-5588

Edward Surbrugg

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Customer Sample Number: BC-AA-03-00009 Air volume: 10800 Liters EMSL Sample Number: 041423333-0010 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014
Result of Chi² Test: N/A N/A Analyst: F. Craig

Analytical Sensitivity:	0.000040 Structure/cc				Limit of Detection:	0.000119	Structure/cc		
						Poisson 95 % C	Confidence Interval		
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL		
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)		
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119		
PCMe Structures (Amph)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119		
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119		
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119		
Total PCMe Structures (All)	CD/ADX	0	-	0.00	0.000000	0.000000	- 0.000119		
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119		
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119		
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119		
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119		
Total PCMe Fibers and Bundles (All)	CD/ADX	-	0	0.00	0.000000	0.000000	- 0.000119		
Non Asbestos Mineral Structures	NAM	0	0	-	-	-			

Asbestiform Minerals Present: None Detected

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal government as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Samples collected on 0.8 um filters.

Robyn Denton
Approved Signatory

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech	Scope:	04-01		
EMSL Sample ID:	041423333-0010	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-03-00009	Grid Box :	0414-TetraTech-07: R	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	08/20/2014
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	10%	

		Chrushina Tina	Structure Number	Dimensi	ons (µm)	Level of	Minoral Type		Christian Company
Grid ID	Grid Opening	Structure Type	Primary Total	Length		ID	Mineral Type	Image Number	Structure Comments
R1	B8	None Detected							
R1	B6	None Detected							
R1	B4	None Detected							
R1	B2	None Detected							
R1	C1	None Detected							
R1	C3	None Detected							
R1	C5	None Detected							
R1	C7	None Detected							
R1	C9	None Detected							
R1	D10	None Detected							
R1	D8	None Detected							
R1	D6	None Detected							
R1	D4	None Detected							
R1	D2	None Detected							
R1	E1	None Detected							
R1	E3	None Detected							
R1	E5	None Detected							
R1	E7	None Detected							
R1	E9	None Detected							
R1	F10	None Detected							
R1	F8	None Detected							
R1	F6	None Detected							
R1	F4	None Detected							
R1	F2	None Detected							
R1	G1	None Detected							
R1	G3	None Detected							
R1	G5	None Detected							
R1	G7	None Detected							
R1	G9	None Detected							
R1	H10	None Detected							
R1	H8	None Detected							
R1	H6	None Detected							
R1	H4	None Detected							
R1	H2	None Detected							
R2	19	None Detected							
R2	17	None Detected							
R2	15	None Detected							
R2	13	None Detected							

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech	Scope:	04-01		
EMSL Sample ID:	041423333-0010	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-03-00009	Grid Box :	0414-TetraTech-07: R	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	08/20/2014
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	10%	

			Struc Num		Dimensi	one (um)	Level of			
Grid	Grid	Structure Type	Primary				ID	Mineral Type	Image	Structure Comments
ID	Opening		Filliary	Total	Length	Width	טו		Number	
R2	l1	None Detected								
R2	H2	None Detected								
R2	H4	None Detected								
R2	H6	None Detected								
R2	H8	None Detected								
R2	H10	None Detected								
R2	G9	None Detected								
R2	G7	None Detected								
R2	G5	None Detected								
R2	G3	None Detected								
R2	G1	None Detected								
R2	F2	None Detected								
R2	F4	None Detected								
R2	F6	None Detected								
R2	F8	None Detected								
R2	F10	None Detected								
R2	E9	None Detected								
R2	E7	None Detected								
R2	E5	None Detected								
R2	E3	None Detected								
R2	E1	None Detected								
R2	D2	None Detected								
R2	D4	None Detected								
R2	D6	None Detected								
R2	D8	None Detected								
R2	D10	None Detected								
R2	C9	None Detected								
R2	C7	None Detected								
R2	C5	None Detected								
R2	C3	None Detected								

Edward Surbrugg

303 Irene Street

Helena, MT 59601

Phone: 406-442-5588

Tetra Tech

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

Customer ID: MAXI57
Customer PO: NA

Grid Openings Analyzed: 68

Received: 8/12/2014 9:30

Date Sampled: 08/10/2014 07:00

EMSL Order: 041423333

Report Date: 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Customer Sample Number: BC-AA-04-00009 Air volume: 10800 Liters EMSL Sample Number: 041423333-0011 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014

Result of Chi² Test: 57.56 Random Analyst: F. Craig

Analytical Sensitivity:	0.000040 Structure/cc				Limit of Detection:	0.000119	Structure/cc
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	16	-	17.83	0.000635	0.000363	- 0.001032
PCMe Structures (NRA)	ADX	2	-	2.23	0.000079	0.000000	- 0.000250
Total PCMe Structures (Regulated)	CD/ADX	16	-	17.83	0.000635	0.000363	- 0.001032
Total PCMe Structures (All)	CD/ADX	18	-	20.05	0.000715	0.000424	- 0.001130
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	15	16.71	0.000596	0.000333	- 0.000983
PCMe Fibers and Bundles (NRA)	ADX	-	2	2.23	0.000079	0.000000	- 0.000250
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	15	16.71	0.000596	0.000333	- 0.000983
Total PCMe Fibers and Bundles (All)	CD/ADX	-	17	18.94	0.000675	0.000393	- 0.001081
Non Asbestos Mineral Structures	NAM	3	3	-	-	-	_

Asbestiform Minerals Present: Actinolite, Non-Regulated, Amphibole

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal governement as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated Amphiboles

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Samples collected on 0.8 um filters.

Robyn Denton
Approved Signatory

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech	Scope:	04-01		
EMSL Sample ID:	041423333-0011	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-04-00009	Grid Box :	0414-TetraTech-07: P	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	57.56-Random	Pore Size (micron):	0.8	Analysis Date:	08/18/2014 & 08/19/2014
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	15%	

		Otrosatorea Torosa	Struc Num		Dimensi	ons (µm)	Level of	Min and Toma		Otrostore Occasionate
Grid ID	Grid Opening	Structure Type	Primary		Length		ID	Mineral Type	Image Number	Structure Comments
P2	B8	None Detected	•		•					
P2	B6	None Detected								
P2	B4	None Detected								
P2	B2	None Detected								
P2	C1	None Detected								
P2	C3	None Detected								
P2	C5	None Detected								
P2	C7	None Detected								
P2	C9	None Detected								
P2	D10	None Detected								
P2	D8	None Detected								
P2	D6	MD11	1		17.8	11.88	ADX	Actinolite		
P2	D6	MF		1	10	2.6	ADX	Actinolite	010485D	
P2	D4	None Detected								
P2	D2	None Detected								
P2	E1	None Detected								
P2	E3	None Detected								
P2	E5	None Detected								
P2	E7	MD11	2		9.5	2.38	ADX	Actinolite		
P2	E7	MF		2	7.6	0.72	ADX	Actinolite	010487D	
P2	E9	None Detected								
P2	F10	MD11	3		5.7	1.3	ADX	Non Reg.Amph.		
P2	F10	MF		3	5.7	0.72	ADX	Non Reg.Amph.	010489D	
P2	F8	MD11	4		21.2	15.6	ADX	Actinolite		
P2	F8	MF		4	10.7	1.8	ADX	Actinolite		
P2	F6	None Detected								
P2	F4	None Detected								
P2	F2	F	5	5	6.6	0.72	ADX	Actinolite	010491D	
P2	G3	MD11	6		8.3	4.75	NAM	Non Asb. Mineral		
1 4		IVIDII	U		0.0	7.70	1 W/7(IVI	NOTE ASD. WILLETE		
P2	G3	MF		6	7.4	1.44	NAM	Non Asb. Mineral		
P2	G7	MD11	7		30.9	10.69	ADX	Actinolite		
P2	G7	MF		7	29	2.62	ADX	Actinolite	010493D	
P2	G9	None Detected								
P2	H10	None Detected								
P2	H8	None Detected								
P2	H6	None Detected								
P2	H4	MD11	8		20	18	ADX	Actinolite		
P2	H4	MF		8	10	1.32	ADX	Actinolite		
				_						

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Bench Sheet Data

Client:	Tetra Tech	Scope:	04-01		
EMSL Sample ID:	041423333-0011	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-04-00009	Grid Box :	0414-TetraTech-07: P	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	57.56-Random	Pore Size (micron):	0.8	Analysis Date:	08/18/2014 & 08/19/2014
2		_		Particulate Loading:	15%
Project ID:	NDOT NOA / 10353259.02	2		Loading:	

			Struct		Dimarai	()	Level of			
Grid	Grid	Structure Type	Num			ons (µm)		Mineral Type	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID		Number	
P2	I1	None Detected								
P2	15	None Detected								
P2	17	MD11	9		10.9	4.75	ADX	Actinolite		
P2	17	MB		9	7.1	1	ADX	Actinolite		
P2	19	None Detected								
P3	19	None Detected								
P3	15	MC11	10	10	27.1	20.9	ADX	Actinolite		
P3	13	MD11	11		13.1	2.38	ADX	Actinolite		
P3	13	MF		11	13.1	0.72	ADX	Actinolite		
P3	l1	None Detected								
P3	H4	MD11	12		14.5	7.61	ADX	Actinolite		
P3	H4	MF		12	12.1	1.02	ADX	Actinolite		
P3	H8	MD11	13		10.5	8.3	ADX	Actinolite		
P3	H8	MF		13	6.9	0.72	ADX	Actinolite		
DO	1.10	MD44	4.4		44.0	F 0F	N10.04	Nice Act Miceel		
P3	H8	MD11	14		11.9	5.65	NAM	Non Asb. Mineral		
P3	H8	MF		14	10.9	1.25	NAM	Non Asb. Mineral		
P3	H10	None Detected		• •		0				
P3	G9	None Detected								
P3	G7	None Detected								
P3	G3	None Detected								
P3	F2	MD11	15		29.7	17.1	ADX	Actinolite		
P3	F2	MF		15	6.4	1.44	ADX	Actinolite		
P3	F2	MD11	16		21.4	1.68	ADX	Non Reg.Amph.		
P3	F2	MF		16	21.4	0.5	ADX	Non Reg.Amph.	010498D	
P3	F4	None Detected								
P3	F6	None Detected								
P3	F8	MD11	17		7.4	3.58	ADX	Actinolite		
P3	F8	MF		17	6.2	1.44	ADX	Actinolite		
P3	F10	None Detected								
P3	E7	None Detected								
P3	EE	None Detected								
P3	E1	MD11	18		5.9	2.16	ADX	Actinolite		
P3	E1	MF		18	5.2	1.44	ADX	Actinolite		
P3	D2	None Detected								
P3	D4	F	0	0	21.9	2.86	ADX	Actinolite		
P3	D6	None Detected								
P3	D8	MD11	19		9.5	1.44	ADX	Actinolite		
P3	D8	MF		19	8.3	1	ADX	Actinolite		
P3	C9	MD11	20		11.6	3.54	ADX	Actinolite		
					2	200 Rou	ite 130 N	North		

Cinnaminson, NJ 08077

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

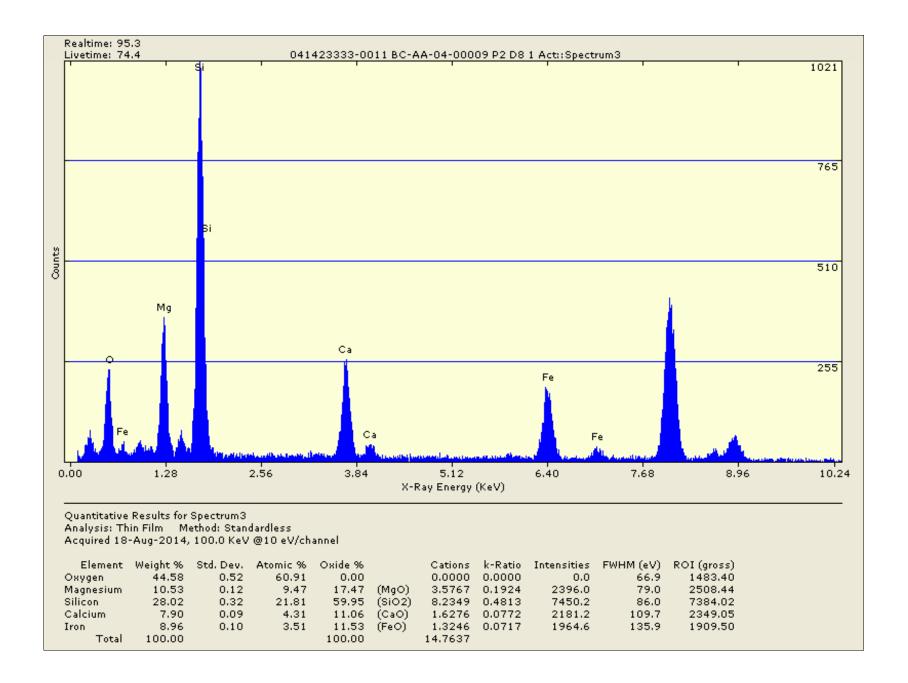
Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0011	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-04-00009	Grid Box :	0414-TetraTech-07: P	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	57.56-Random	Pore Size (micron):	0.8	Analysis Date:	08/18/2014 & 08/19/2014
Project ID:	NDOT NOA / 10353259.02	2		Particulate Loading:	15%

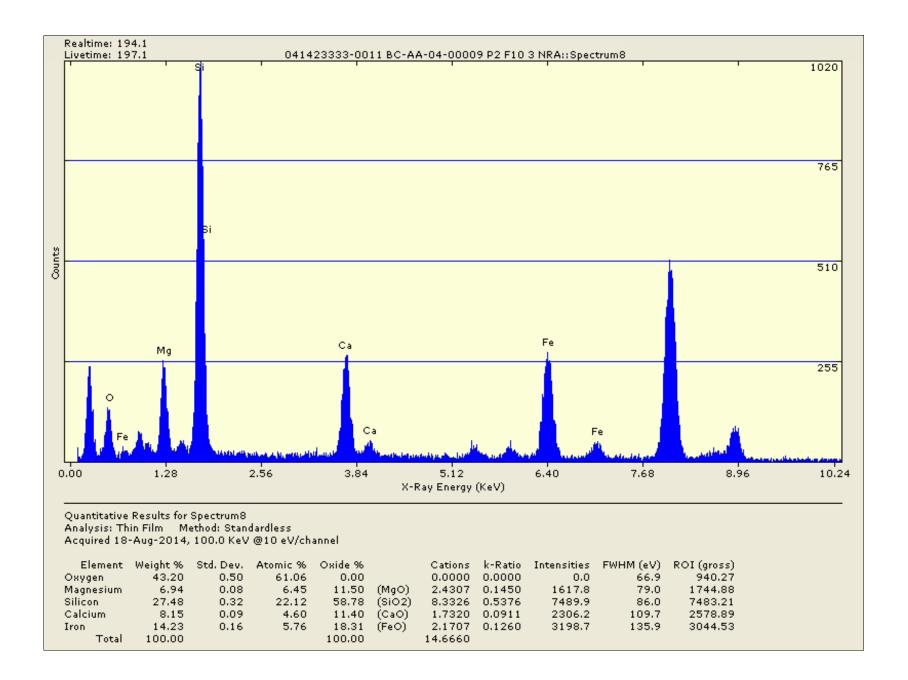
0 -: -1	0-:-1	Structure Type	Struct Num		Dimensi	ons (µm)	Level of	Mineral Type	lman	Structure Comments
Grid ID	Grid Opening	.,,,,	Primary	Total	Length	Width	ID		Image Number	
P3	C9	MF		20	11.6	1.68	ADX	Actinolite		
P3	C5	None Detected								
P3	C7	MD11	21		9	3.32	NAM	Non Asb. Mineral		
Р3	C7	MF		21	9	1.2	NAM	Non Asb. Mineral		
P3	C3	None Detected								
P3	B4	None Detected								
P3	B6	None Detected								
P3	B8	None Detected								
P3	B10	None Detected								
P3	A7	None Detected								
P3	A5	None Detected								
P3	А3	MD11	0		19.9	4.24	ADX	Non Reg.Amph.		
P3	A3	MB		0	19.9	1.2	ADX	Non Reg.Amph.		

EMSL Order ID: 041423333-0011

ISO 10312

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy Structure Sketch Sheet for Direct Data Entry


Client: Tetra Tech


Client Sample: BC-AA-04-00009 Page Primary Structure # 3 Primary Structure # 3 Primary Structure # Primary Structure # Primary Structure # Primary Structure # 6 Primary Structure # Primary Structure # 8 Primary Structure # 9 Primary Structure # (0 Primary Structure # // Primary Structure # Primary Structure # / 4 Primary Structure # Primary Structure # 15 Primary Structure # /6 Structure # Structure # 18 Structure # Structure # Date: 8/20/14 Scope: <u>04 0/</u> Analyst:

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy Structure Sketch Sheet for Direct Data Entry

EMSL Order ID: 04	11423333-0011	Client: Tetra Tech						
Client Sample: B	C-AA-04-00009	Page	2 of 2					
Primary Structure # 20	Primary Structure # 2 /	Primary Structure #	Primary Structure #					
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #					
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #					
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #					
Structure #	Structure #	Structure #	Structure #					
Analyst:	Date: 8/2	0/14	Scone: 04 of					

AMPHIBOLE SAED INDEXING FORM

EMSL Order Number:

041423333

Date: Aug 18, 2014

Indexing of Image Number:

010485

Scope #: 04 - 01

Reference / Sample No:

0011-04-01

By: F Craig

Preliminary ID:

ACTINOLITE

Using Camera Constant of:

2.950e-003

1/A Pixels

Determined from Reference:

AuCal-081214 10469

Measured Inter-Row Spacing:

192.6

Pixels

Mean Distance between spots on Center row (d2):

74.47

Pixels

Mean Distance between spots on slant vector (d1):

196.63

Pixels

	Calculated	Ref	-5%	+5%
Inter-row Spacing (Angstroms):	1.760	1.759	1.671	1.847
d2 or hk0 (Camera K/zero row dist.):	4.552	4.520	4.294	4.746
d1 or hk1 (Camera K/slant vector dist.):	1.724	1.718	1.632	1.804
Ratio of hk0/hkl:	2.640	2.631	2.499	2.763
Angle of Slant Vector (Measured):	79.6	79.010	75.060	82.961

From SAED Reference Book, "unknown" diffraction pattern was found to

be that of:

Actinolite

By: F Craig

Miller Indice hk0:

040

Miller Indice hkl:

-2 2 3

With a Zone Axis of: [

302

Preliminary Identification was:

Χ

CORRECT

INCORRECT

Accelerating Voltage | Magnification | Film Number | Sample

Percent accuracy to date:

100 %

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

 Edward Surbrugg
 Customer ID:
 MAXI57

 Tetra Tech
 Customer PO:
 NA

 303 Irene Street
 Received:
 8/12/20²

 303 Irene Street
 Received:
 8/12/2014 9:30

 Helena, MT 59601
 Date Sampled:
 08/10/2014 08:00

 Phone: 406-442-5588
 EMSL Order:
 041423333

 Report Date:
 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Grid Openings Analyzed: 68

Customer Sample Number: BC-AA-02-00009 Air volume: 10800 Liters EMSL Sample Number: 041423333-0012 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014
Result of Chi² Test: 66.00 Random Analyst: F. Craig

Analytical Sensitivity:	0.000040	Structure/cc		Limit of Detection:	0.000119	Structure/cc	
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	2	-	2.23	0.000079	0.000000	- 0.000250
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (Regulated)	CD/ADX	2	-	2.23	0.000079	0.000000	- 0.000250
Total PCMe Structures (All)	CD/ADX	2	-	2.23	0.000079	0.000000	- 0.000250
PCMe Fibers and Bundles (Chrys)	CD	-	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	2	2.23	0.000079	0.000000	- 0.000250
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	2	2.23	0.000079	0.000000	- 0.000250
Total PCMe Fibers and Bundles (All)	CD/ADX	-	2	2.23	0.000079	0.000000	- 0.000250
Non Asbestos Mineral Structures	NAM	0	0	_	_	-	

Asbestiform Minerals Present: Actinolite

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal government as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Samples collected on 0.8 um filters.

Robyn Denton
Approved Signatory

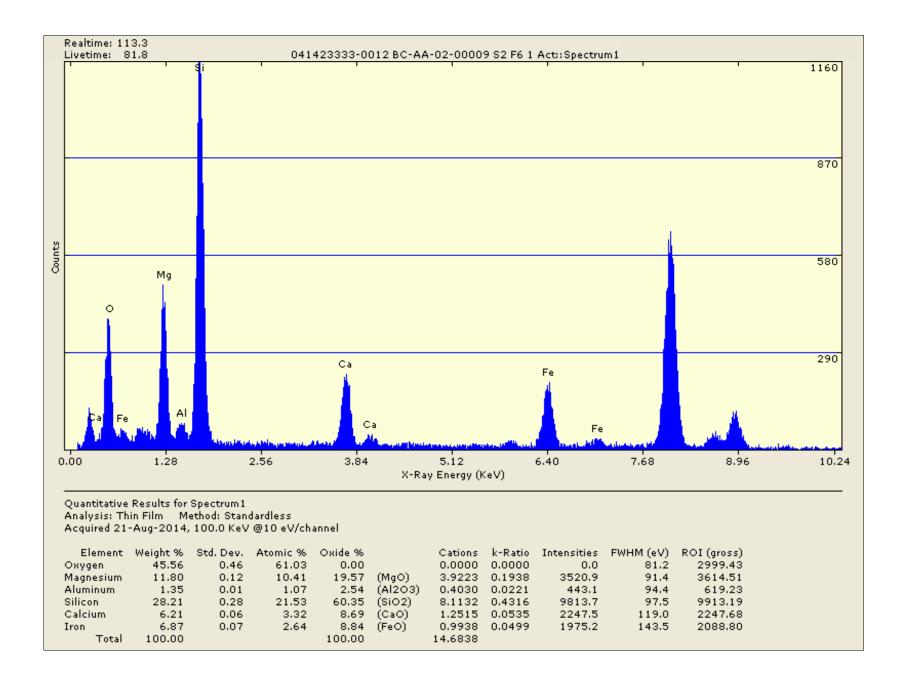
International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

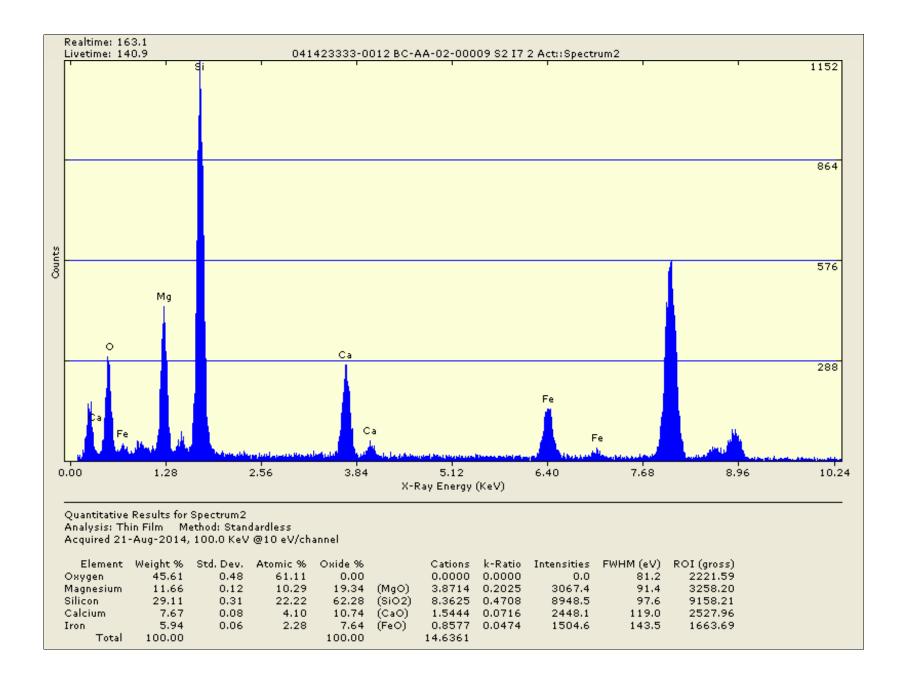
Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0012	GO area (mm²):	Mag.	10,000	
Customer Sample:	BC-AA-02-00009	Grid Box :	0414-TetraTech-07: S	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	66.00-Random	Pore Size (micron):	Analysis Date:	08/21/2014	
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	10%	

			Struct Num		Dimonoi	ono (um)	Level of			
Grid	Grid	Structure Type	Primary			ons (µm)	ID	Mineral Type	Image	Structure Comments
ID S2	Opening B8	None Detected	Filliary	Total	Length	Width	ID		Number	
S2	B6	None Detected								
	В6 В4									
S2	B2	None Detected								
S2		None Detected								
S2	C3	None Detected								
S2	C5	None Detected								
S2	C7	None Detected								
S2	C9	None Detected								
S2	D10	None Detected								
S2	D8	None Detected								
S2	D6	None Detected								
S2	D4	None Detected								
S2	D2	None Detected								
S2	E3	None Detected								
S2	E5	None Detected								
S2	E7	None Detected								
S2	E9	None Detected								
S2	F10	None Detected								
S2	F8	None Detected								
S2	F6	F	1	1	5.2	0.6	ADX	Actinolite	010500D	
S2	F4	None Detected								
S2	G3	None Detected								
S2	G5	None Detected								
S2	G7	None Detected								
S2	G9	None Detected								
S2	H10	None Detected								
S2	H8	None Detected								
S2	H6	None Detected								
S2	H4	None Detected								
S2	13	None Detected								
S2	15	None Detected								
S2	17	F	2	2	6.2	0.9	ADX	Actinolite		
S2	19	None Detected								
S3	J10	None Detected								
S3	J8	None Detected								
S3	J6	None Detected								
S3	J4	None Detected								
S3	13	None Detected								

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0012	GO area (mm²):	Mag.	10,000	
Customer Sample:	BC-AA-02-00009	Grid Box :	0414-TetraTech-07: S	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	66.00-Random	Pore Size (micron):	Analysis Date:	08/21/2014	
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	10%	


			Struct Numl		Dimonoi	ons (µm)	Level of			
Grid	Grid	Structure Type					ID	Mineral Type	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID		Number	
S3	15	None Detected								
S3	17	None Detected								
S3	19	None Detected								
S3	H10	None Detected								
S3	H8	None Detected								
S3	H6	None Detected								
S3	H4	None Detected								
S3	G3	None Detected								
S3	G5	None Detected								
S3	G7	None Detected								
S3	G9	None Detected								
S3	G10	None Detected								
S3	F8	None Detected								
S3	F6	None Detected								
S3	F4	None Detected								
S3	E3	None Detected								
S3	E5	None Detected								
S3	E7	None Detected								
S3	E9	None Detected								
S3	D10	None Detected								
S3	D8	None Detected								
S3	D6	None Detected								
S3	D4	None Detected								
S3	C3	None Detected								
S3	C5	None Detected								
S3	C7	None Detected								
S3	C9	None Detected								
S3	B10	None Detected								
S3	B8	None Detected								
S3	B6	None Detected								


EMSL

ISO 10312

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy Structure Sketch Sheet for Direct Data Entry

Client: Tetra Tech EMSL Order ID: 041423333-0012 Page of Client Sample: BC-AA-02-00009 Primary Structure # 2 Primary Structure # Structure # Structure # Structure # Structure # Date: 8/2/14 Scope: <u>04 01</u> Analyst:_

AMPHIBOLE SAED INDEXING FORM

EMSL Order Number:	041423333		Date:	Aug 21, 2014	1
Indexing of Image Number:	010500		Scope #:	04 - 01	
Reference / Sample No:	0012-04-01		Ву:	F Craig	
Preliminary ID:	ACTINOLITE				
Using Camera Constant of:	2.953e-003	1/A F	Pixels		
Determined from Reference:	AuCal-081914_10	0497			
Measured Inter-Row Spacing:				63.94 P	ixels
Mean Distance between spots on C	enter row (d2):		Ī	P	ixels
Mean Distance between spots on s	lant vector (d1):		Ī	P	ixels
,	(3, 7,	0.1.1.1.	-	F0/	5 0/
		Calculate		-5%	+5%
Inter-row Spacing (Angs	troms):	5.296	5.300	5.035	5.565
d2 or hk0 (Camera K/zero row d	list.):	N/A	N/A	-	-
d1 or hk1 (Camera K/slant vector	or dist.):	N/A	N/A	-	-
Ratio of hk0/hkl:		N/A	N/A	-	-
Angle of Slant Vector (Measure	d):	N/A	N/A	-	-
From SAED Reference Book, "unkn	own" diffraction pa	nttern was fo	ound to		
be that of: Actinolite	By:				
Miller Indice hk0: (Miller Indice hkl: (With a Zone Axis of: [N/A Preliminary Identification was:)] X COF	RRECT			
	INC	ORRECT	Accelerating Voltage Magnification F	Film Number Sample	0.5 1/A
Percent accuracy to da	te: 10	00 %			

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

 Edward Surbrugg
 Customer ID:
 MAXI57

 Tetra Tech
 Customer PO:
 NA

 303 Irene Street
 Received:
 8/12/2014 9:30

Helena, MT 59601

Phone: 406-442-5588

EMSL Order: 08/26/14

Report Date: 08/26/14

Project: NDOT NOA / 10353259.02

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Customer Sample Number: FIELD BLANK 081014 Air volume: 0 Liters EMSL Sample Number: 041423333-0013 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD Grid Openings Analyzed: 10

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 08/12/2014
Result of Chi² Test: N/A N/A Analysis F. Craig

Analytical Sensitivity:	7.575758	Structure	e/ mm²		Limit of Detection:	22.651515	Structure/ mm²
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	Str/ mm ²	Str/ mm ²	Str/ mm ²
PCMe Structures (Chrys)	CD	0	-	0.00	NA	0.000000	- 22.651515
PCMe Structures (Amph)	ADX	0	-	0.00	NA	0.000000	- 22.651515
PCMe Structures (NRA)	ADX	0	-	0.00	NA	0.000000	- 22.651515
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	NA	0.000000	- 22.651515
Total PCMe Structures (All)	CD/ADX	0	-	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	NA	0.000000	- 22.651515
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	NA	0.000000	- 22.651515
Total PCMe Fibers and Bundles (All)	CD/ADX	-	0	0.00	NA	0.000000	- 22.651515
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	

Asbestiform Minerals Present: None Detected

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal government as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated Amphiboles

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Samples collected on 0.8 um filters.

Robyn Denton
Approved Signatory

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041423333-0013	GO area (mm²):	Mag.	10,000	
Customer Sample:	FIELD BLANK 081014	Grid Box :	0414-TetraTech-07: Q	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	Analysis Date:	08/14/2014	
Project ID:	NDOT NOA / 10353259.02	2	Particulate Loading:	1%	

	Grid Opening	Structure Type	Structure Number		Dimensions (µm)		Level of	Mineral Type		Structure Comments
Grid ID			Primary	Total	Length	Width	ID	William Typo	Image Number	Guadare Commente
Q1	B8	None Detected								
Q1	D9	None Detected								
Q1	E5	None Detected								
Q1	G3	None Detected								
Q1	15	None Detected								
Q2	A2	None Detected								
Q2	C3	None Detected								
Q2	F7	None Detected								
Q2	H6	None Detected								
Q2	J4	None Detected								

OrderID: 041423333

Asbestos Chain of Custody

	ISL Order Number (Lab Use Only):	
Oc	11423333	

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077

PHONE: (800) 220-3675 FAX: (856) 786-5974

Company: Fetra Tech		EMSL-Bill to: Same Different # Bill to is Different motivinstructions in Comments**					
Street: 7 West 10th Archue,	Suite 412	Third Party Billing requires written authorization from third party					
· · · · ·	ate/Province: MT	Zip/Postal Code: 59601 Country: USA					
Report To (Name): Ed Sur by 444		Telephone #: 40% 441 329 (4					
Email Address: Toward. Surbrugge	Ethatch.com	Fax #: 400 442 7167 Purchase Order:					
Project Name/Number: 10353355	.02	Please Provide Results: Fax Email Mail					
U.S. State Samples Taken:		Connecticut Samples: Commercial Residential					
3 Hour 6 Hour 24 H		T) Options* – Please Che	cx 96 Hour	k 1 2 Week			
*For TEM Air 3 hr through 6 hr, please call ahead an authorization form for this service. And	to schedule.*There is a pre-	nium charge for 3 Hour TEM Al-	IERA or EPA Level II TAT.	You will be asked to sign			
PCM - Air Check if samples are from N		4.5hr TAT (AHERA only)	TEM- Dust	TICE GUIUE.			
☐ NIOSH 7400	AHERA 40 C	FR, Part 763	☐ Microvac - ASTM	D 5755			
☐ w/ OSHA 8hr. TWA	□ NIOSH 7402		☐ Wipe - ASTM D64	480			
PLM - Bulk (reporting limit)	EPA Level II	Sensitivity ?	Carpet Sonication	r (EPA 600/J-93/167)			
☐ PLM EPA 600/R-93/116 (<1%)	130 10312	0.00004	Soil/Rock/Vermicul				
PLM EPA NOB (<1%)	TEM - Bulk	<u>,</u>	_	A (0.25% sensitivity)			
Point Count 	☐ TEM EPA NO	8.4 (non-friable-NY)	☐ PLM CARB 435 -	`			
Point Count w/Gravimetric	☐ Chatfield SOI		1 =	' '' [
400 (<0.25%) 1000 (<0.1%)	TEM Mass A	nalysis-EPA 600 sec. 2.5	☐ TEM CARB 435 - C (0.01% sensitivity)				
NYS 198.1 (friable in NY)	TEM - Water: E	PA 100.2	TEM Qual. via Dr	op-Mount Technique			
NYS 198.6 NOB (non-friable-NY)		☐ Waste ☐ Drinking	Other:				
☐ NIOSH 9002 (<1%)	All Fiber Sizes	☐ Waste ☐ Drinking					
☐ Check For Positive Stop - Clearly Identify Homogenous Group Filter Pore Size (Air Samples). X8.8µm ☐ 0.45µm							
Check For Positive Stop - Clearly ide	entify Homogenous G	roup Filter Pore Size (/	Air Samples) X0.8	μm 🔲 0.45μm			
Samplers Name: PSECKIDAM	entify Homogenous G	Samplers Signature:	Ω	jum 🗌 0.45µm			
	entify Homogenous G Sample Descripti	Samplers Signature:	Ω	Date/Time			
Samplers Name: PSECKIDAM Sample #		Samplers Signature:	Volume/Area (Air)	Date/Time			
Sample # Sample #		Samplers Signature:	Volume/Area (Air) HA # (Bulk)	Date/Time Sampled 8-10-17 COUD 6-10-17 DODD			
Sample # BC-AA-05-00004 Site 5 BC-AA-06-00004 Site 4		Samplers Signature:	Volume/Area (Air) HA # (Buik) D,800	Date/Time Sampled 8-10-14 0000			
Samplers Name: PSECKIDAM Sample # BC-AA-05-00004 Six 5 BC-AA-01-00004 Six 4 4C-AA-01-0004 Six 7		Samplers Signature:	Volume/Area (Air) HA # (Buik) 10,800 L 10,620 L	Date/Time Sampled 8-10-14 0000 5-10-14 0000 8-10-14 のひひひ 8-10-14 のひひひ			
Sample # Sample # BC-AA-05-00004 Six 5 BC-AA-06-00004 Six 6 bC-AA-01-0004 Six 7 BC-AA-01-0004 Six 7		Samplers Signature:	Volume/Area (Air) HA # (Bulk) 10,800 L 10,440 L 10,440 L 10,440 L	Date/Time Sampled 8-10-14 0000 6-10-14 0000 8-10-14 0000 8-10-14 0000			
Sample # BC-AA-05-00004 Site 5 BC-AA-01-00004 Site 10 BC-AA-01-00004 Site 10 BC-AA-01-00004 Site 8 BC-AA-09-00004 Site 10		Samplers Signature:	Volume/Area (Air) HA # (Bulk) 10,800 L 10,440 L 10,440 L 10,440 L	Date/Time Sampled 8-10-14 0000 5-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14			
Sample # Sample # BC-AA-05-00004 Site 5 BC-AA-01-00004 Site 10 BC-AA-01-00004 Site 8 BC-AA-08-00004 Site 8 BC-AA-08-0004 Site 10 BC-AA-08-0004 Site 10 BC-AA-11-00004 Site 11		Samplers Signature:	Volume/Area (Air) HA # (Bulk) 10,800 L 10,440 L 10,440 L 10,440 L	Date/Time Sampled 8-10-14 0000 5-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000			
Sample # Sample # BC AA-05-00004 Site 5 BC-AA-06-00004 Site 4 tc-AA-01-0004 Site 7 tc-AA-08-0004 Site 8 tc-AA-08-0004 Site 8 tc-AA-08-0004 Site 8 tc-AA-11-0004 Site 10 tc-AA-11-0004 Site 11 tc-AA-11-0004 Site 11		Samplers Signature:	Volume/Area (Air) HA# (Bulk) 10,800 L 10,440 L 10,440 L 10,440 L 10,440 L 10,440 L 10,440 L	Date/Time Sampled 8-10-14 0000 6-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000			
Sample # Sample # BC-AA-05-00004 Site 5 BC-AA-06-00004 Site 16 BC-AA-01-0004 Site 7 BC-AA-08-00004 Site 8 BC-AA-08-00004 Site 8 BC-AA-11-0004 Site 10 BC-AA-11-0004 Site 11 BC-AA-11-0004 Site 11	Sample Descripti	Samplers Signature:	Volume/Area (Air) HA# (Bulk) 10,800 L 10,440 L 10,440 L 10,440 L 10,440 L	Date/Time Sampled 8-10-14 0000 6-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14			
Sample # Sample # BC AA-05-00004 Site 5 BC-AA-06-00004 Site 4 tc-AA-01-0004 Site 7 tc-AA-08-0004 Site 8 tc-AA-08-0004 Site 8 tc-AA-08-0004 Site 8 tc-AA-11-0004 Site 10 tc-AA-11-0004 Site 11 tc-AA-11-0004 Site 11	Sample Descripti	Samplers Signature:	Volume/Area (Air) HA# (Bulk) 10,800 L 10,440 L 10,440 L 10,440 L 10,440 L 10,440 L 10,440 L	Date/Time Sampled 8-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000			
Sample # Sample # BC-AA-05-00004 Site 5 BC-AA-06-00004 Site 16 BC-AA-01-0004 Site 7 BC-AA-08-00004 Site 8 BC-AA-08-00004 Site 8 BC-AA-11-0004 Site 10 BC-AA-11-0004 Site 11 BC-AA-11-0004 Site 11	Sample Descripti	Samplers Signature:	Volume/Area (Air) HA # (Bulk) 10,800 L 10,440 L 10,440 L 10,440 L 10,440 L 10,440 L 10,800 L Total # of Samples:	Date/Time Sampled 8-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 0000 8-10-14 00000 8-10-14 00000 8-10-14 00000 8-10-14 00000			

Controlled Document -- Aubeston COC -- R5 - 1/11/2012

Page 1 of _____ pages

OrderID: 041423333

Asbestos Chain of Custody EMSL Order Number (Lab Use Only):

0/1423333

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077

PHONE: (800) 220-3675 FAX: (856) 786-5974

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	Sample Description	Volume/Area (Air) HA # (Bulk)	Date/Time Sampled
BC+AA-01-00009	3rts 1	10,800 L	870.14 DW55
0C-AA-03-00NO9	.		8-10-14
bc-9n-04 00009	Site4	10,800 C	8-10-14 0735
2C-AA-07-00009	Rite 2		O. HY-IV
Seld 6 (calcoso)	Field Blank	10/100 -	8-10-14 0937
relat plumicos ios	The was a series of the series		2750
			
$\overline{}$			
*Comments/Specia	I Instructions:		
	Page 📿 of 🐊 pages		
Controlled Document - Asbestos COC	•		- H (3) - 5 1 - 5
			ුදු