

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

Edward Surbrugg MAXI57 Customer ID: Tetra Tech Customer PO: NA 303 Irene Street 6/17/2014 9:42 Received:

Helena, MT 59601 Date Sampled: 06/15/2014 07:00 Phone: 406-442-5588 EMSL Order: 041416997 Report Date: 07/03/14

Project: NDOT NOA / 10353259

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM -Modified for PCMe Analysis

Customer Sample Number: BC-AA-01-00004 Air volume: 14400 Liters EMSL Sample Number: 041416997-0001 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD Grid Openings Analyzed: 51

Minimum Level of analysis (amphibole): ADX Magnification used for fiber counting: 10,000 Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μm): >5 / 0.25-none

Area of collection filter (mm²): Analysis Date: 06/17/2014 385 Result of Chi² Test: 50.00 Random Analyst: F. Craig

Analytical Sensitivity:	0.000040	Structure	e/cc		Limit of Detection:	0.000119	Structure/cc
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	1	-	1.49	0.000040	0.000000	- 0.000188
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (Regulated)	CD/ADX	1	-	1.49	0.000040	0.000000	- 0.000188
Total PCMe Structures (All)	CD/ADX	1	-	1.49	0.000040	0.000000	- 0.000188
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	1	1.49	0.000040	0.000000	- 0.000188
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	1	1.49	0.000040	0.000000	- 0.000188
Total PCMe Fibers and Bundles (All)	CD/ADX	-	1	1.49	0.000040	0.000000	- 0.000188
Non Asbestos Mineral Structures	NAM	1	1	-	-	-	_

Asbestiform Minerals Present: Actinolite

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal governement as

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Sample collected on 0.8 um MCE filter.

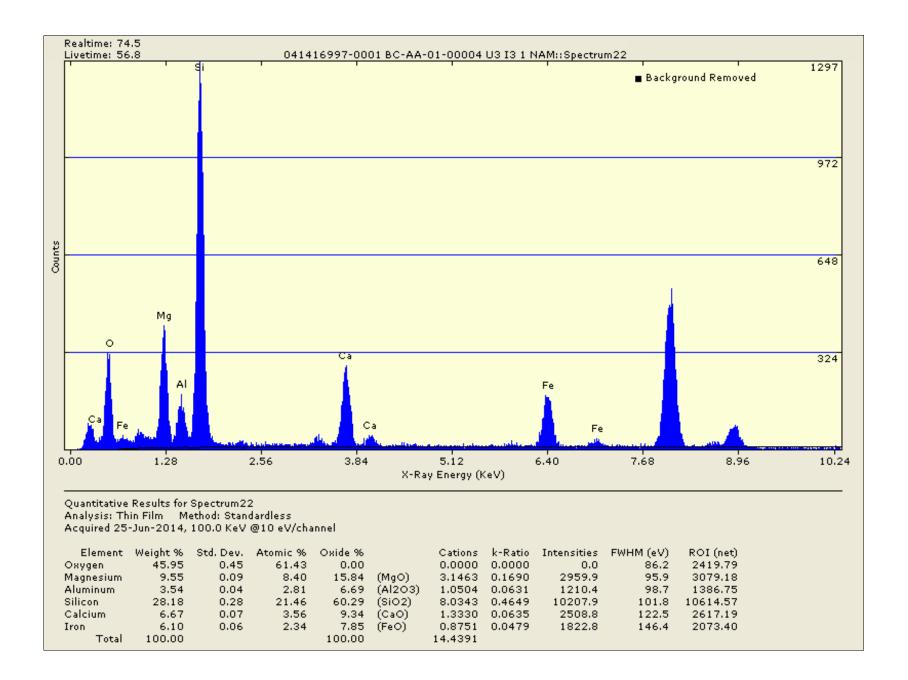
Obyn Denton
Approved Signatory

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech		Scope:	04-01	
EMSL Sample ID:	041416997-0001	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-01-00004	Grid Box :	0414-TetraTech-04: U	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	50.00-Random	Pore Size (micron):	0.8	Analysis Date:	06/25/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	25%

			Struc Num		Dimensi	ons (µm)	Level of			
Grid ID	Grid Opening	Structure Type	Primary	Total	Length		ID	Mineral Type	Image Number	Structure Comments
U2	13	None Detected			Ü					
U2	15	None Detected								
U2	G9	None Detected								
U2	G7	None Detected								
U2	G5	None Detected								
U2	E1	None Detected								
U2	E3	None Detected								
U2	D2	None Detected								
U2	D4	None Detected								
U2	D6	None Detected								
U2	C9	MD11	0		13.8	3.56	ADX	Actinolite		
U2	C9	MF		0	13.8	0.72	ADX	Actinolite	010315D	
U2	C7	None Detected								
U2	C5	None Detected								
U2	C3	None Detected								
U2	B2	None Detected								
U2	B4	None Detected								
U2	B6	None Detected								
U2	B8	None Detected								
U2	A9	None Detected								
U2	A7	None Detected								
U2	A5	None Detected								
U2	А3	None Detected								
U2	J2	None Detected								
U2	J4	None Detected								
U2	J6	None Detected								
U2	J8	None Detected								
U3	J8	None Detected								
U3	J6	None Detected								
U3	J4	None Detected								
U3	J2	None Detected								
U3	l1	None Detected								
110	10	MD44	4		7.4	2.06	NIANA	Non Ash Mineral		
U3	13	MD11	1		7.4	2.86	NAM	Non Asb. Mineral		
U3	13	MF		1	5	1.2	NAM	Non Asb. Mineral		
U3	15	None Detected								
U3	17	None Detected								
U3	19	None Detected								
U3	G9	None Detected								

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy


Client:	Tetra Tech		Scope:	04-01	
EMSL Sample ID:	041416997-0001	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-01-00004	Grid Box :	0414-TetraTech-04: U	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	50.00-Random	Pore Size (micron):	0.8	Analysis Date:	06/25/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	25%

0	01	Structure Type	Struct Numl		Dimensi	ons (µm)	Level of	Mineral Type		Structure Comments
Grid ID	Grid Opening	Caractare Type	Primary	Total	Length	Width	ID	minoral Typo	Image Number	Cardotaro Commonto
U3	G7	None Detected								
U3	G5	None Detected								
U3	G3	None Detected								
U3	G1	None Detected								
U3	F4	MD11	2		31.2	26.4	ADX	Actinolite		
U3	F4	MF		2	6.2	1.68	ADX	Actinolite	010317D	
U3	F2	None Detected								
U3	E1	None Detected								
U3	E3	None Detected								
U3	E5	None Detected								
U3	E7	None Detected								
U3	D6	None Detected								
U3	D4	None Detected								
U3	D2	None Detected								
U3	C1	None Detected								
U3	C5	None Detected								

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy Structure Sketch Sheet for Direct Data Entry

EMSL Order ID: 0	41416997-0001	Client: Tetra Tech					
Client Sample: <u>B</u>	C-AA-01-00004	Page	of				
Primary Structure # O	Primary Structure #	Primary Structure #	Primary Structure #				
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #				
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #				
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #				
Structure #	Structure #	Structure #	Structure #				
Analyst:	Date: <u>6/2</u>	5/14	Scope: 04 01				

AMPHIBOLE SAED INDEXING FORM

EMSL Order Number: 041416997

Date: Jun 25, 2014

Indexing of Image Number:

010317

Scope #: 04 - 01

Reference / Sample No:

0001-04-01

By: F Craig

Preliminary ID:

ACTINOLITE

Using Camera Constant of:

2.943e-003

1/A Pixels

Determined from Reference:

AuCal-062414 10304

Measured Inter-Row Spacing:

63.98

Pixels

Mean Distance between spots on Center row (d2):

100.23

Pixels

Mean Distance between spots on slant vector (d1):

75.37

Pixels

	Calculated	Ref	-5%	+5%
Inter-row Spacing (Angstroms):	5.311	5.278	5.014	5.542
d2 or hk0 (Camera K/zero row dist.):	3.390	3.385	3.216	3.554
d1 or hk1 (Camera K/slant vector dist.):	4.508	4.482	4.258	4.706
Ratio of hk0/hkl:	0.750	0.755	0.717	0.793
Angle of Slant Vector (Measured):	57.1	57.000	54.150	59.850

From SAED Reference Book, "unknown" diffraction pattern was found to

be that of:

Actinolite

By: F Craig

Miller Indice hk0:

150

Miller Indice hkl:

021

With a Zone Axis of: [

5 -1 2

Preliminary Identification was:

X

CORRECT

INCORRECT

Accelerating Voltage | Magnification | Film Number | Sample

Percent accuracy to date:

100 %

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

 Edward Surbrugg
 Customer ID:
 MAXI57

 Tetra Tech
 Customer PO:
 NA

 303 Irene Street
 Received:
 6/17/2014 9:42

Helena, MT 59601 Date Sampled: 06/15/2014 07:00
Phone: 406-442-5588 EMSL Order: 041416997
Report Date: 07/03/14

Project: NDOT NOA / 10353259

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Customer Sample Number: Field Blank 061514 Air volume: 0 Liters EMSL Sample Number: 041416997-0002 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD Grid Openings Analyzed: 10

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μm): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 06/17/2014
Result of Chi² Test: N/A N/A Analysis F. Craig

Analytical Sensitivity:	7.575758	Structur	e/ mm²		Limit of Detection:	22.651515	Structure/ mm ²
						Poisson 95 % C	onfidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	Str/ mm ²	Str/ mm ²	Str/ mm ²
PCMe Structures (Chrys)	CD	0	-	0.00	NA	0.000000	- 22.651515
PCMe Structures (Amph)	ADX	0	-	0.00	NA	0.000000	- 22.651515
PCMe Structures (NRA)	ADX	0	-	0.00	NA	0.000000	- 22.651515
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	NA	0.000000	- 22.651515
Total PCMe Structures (All)	CD/ADX	0	-	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (Chrys)	CD	-	0	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	NA	0.000000	- 22.651515
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	NA	0.000000	- 22.651515
Total PCMe Fibers and Bundles (All)	CD/ADX	-	0	0.00	NA	0.000000	- 22.651515
Non Asbestos Mineral Structures	NAM	0	0	-	-	_	

Asbestiform Minerals Present: None Detected

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal government as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated Amphiboles

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Sample collected on 0.8 um MCE filter.

Robyn Denton
Approved Signatory

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech		Scope:	04-01	
EMSL Sample ID:	041416997-0002	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	Field Blank 061514	Grid Box :	0414-TetraTech-04: O	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	06/25/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	1%

		Structure Type	Struct Num		Dimensi	ons (µm)	Level of	Mineral Type		Structure Comments
Grid ID	Grid Opening		Primary	Total	Length	Width	ID	Willieral Type	Image Number	Cirdotare Comments
07	14	None Detected								
07	G2	None Detected								
07	F6	None Detected								
07	D5	None Detected								
07	В3	None Detected								
O8	H8	None Detected								
O8	F9	None Detected								
08	E7	None Detected								
08	C5	None Detected								
O8	A6	None Detected								

Edward Surbrugg

303 Irene Street

Helena, MT 59601

Phone: 406-442-5588

Tetra Tech

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

Customer ID: MAXI57
Customer PO: NA

Received: 6/17/2014 9:42

Date Sampled: 06/15/2014 08:00

EMSL Order: 041416997

Report Date: 07/03/14

Project: NDOT NOA / 10353259

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Customer Sample Number: BC-AA-03-00004 Air volume: 14400 Liters EMSL Sample Number: 041416997-0003 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD Grid Openings Analyzed: 51

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 06/17/2014
Result of Chi² Test: 47.00 Random Analyst: F. Craig

Analytical Sensitivity:	0.000040	Structure	e/cc		Limit of Detection:	0.000119	Structure/cc
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	4	-	5.94	0.000159	0.000043	- 0.000407
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (Regulated)	CD/ADX	4	-	5.94	0.000159	0.000043	- 0.000407
Total PCMe Structures (All)	CD/ADX	4	-	5.94	0.000159	0.000043	- 0.000407
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	4	5.94	0.000159	0.000043	- 0.000407
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	4	5.94	0.000159	0.000043	- 0.000407
Total PCMe Fibers and Bundles (All)	CD/ADX	-	4	5.94	0.000159	0.000043	- 0.000407
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	

Asbestiform Minerals Present:

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal governement as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Actinolite

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Sample collected on 0.8 um MCE filter.

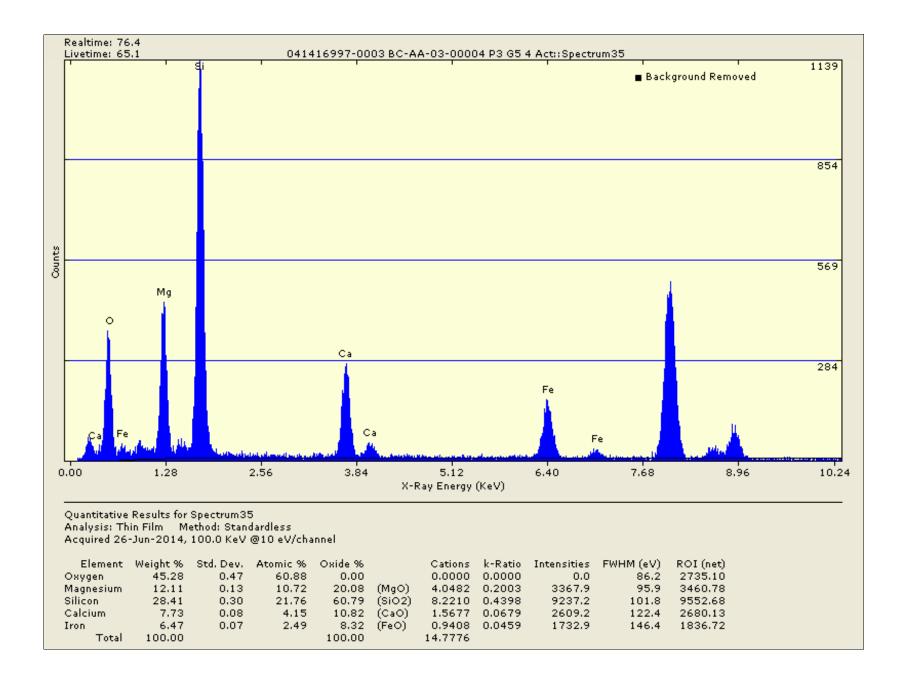
Robyn Denton
Approved Signatory

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech		Scope:	04-01	
EMSL Sample ID:	041416997-0003	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-03-00004	Grid Box :	0414-TetraTech-04: P	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	47.00-Random	Pore Size (micron):	0.8	Analysis Date:	06/25/2014 & 06/26/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	25%

		Structure Type	Structu Numb		Dimensi	ons (µm)	Level of	Mineral Type		Structure Comments
Grid ID	Grid Opening	Structure Type	Primary	Total	Length	Width	ID	wiinerar rype	Image Number	Structure Comments
P2	l1	None Detected								
P2	13	MD11	1		26.1	11.28	ADX	Actinolite		
P2	13	MF		1	20.4	2.62	ADX	Actinolite	010311D	
P2	15	None Detected								
P2	G7	None Detected								
P2	G5	None Detected								
P2	G3	None Detected								
P2	E3	None Detected								
P2	E7	None Detected								
P2	D6	None Detected								
P2	C5	None Detected								
P2	B4	None Detected								
P2	А3	None Detected								
P3	B2	None Detected								
P3	B4	None Detected								
P3	B6	MD11	2		6.7	6	ADX	Actinolite		
P3	B6	MF		2	6.7	2.04	ADX	Actinolite		
P3	D8	None Detected								
P3	D6	None Detected								
P3	D4	None Detected								
P3	F4	None Detected								
P3	F2	None Detected								
P3	H2	None Detected								
P3	15	None Detected								
P2	H2	None Detected								
P2	H4	MD11	3		26.1	11.88	ADX	Actinolite		
P2	H4	MF		3	7.1	0.84	ADX	Actinolite		
P2	H6	None Detected								
P2	H8	None Detected								
P2	H10	None Detected								
P2	D8	None Detected								
P2	D4	None Detected								
P2	D2	None Detected								
P2	B2	None Detected								
P2	B6	None Detected								
P2	В8	None Detected								
P3	A3	None Detected								
P3	A5	None Detected								
. 0		2 0100100								

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy


Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041416997-0003	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-03-00004	Grid Box :	0414-TetraTech-04: P	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	47.00-Random	Pore Size (micron):	0.8	Analysis Date:	06/25/2014 & 06/26/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	25%

		_	Struct Num		Dimensi	ons (µm)	Level of			
Grid	Grid	Structure Type	Primary	Total			ID	Mineral Type	Image	Structure Comments
ID	Opening		1 Illiary	TOtal	Length	Width	טו		Number	
P3	A7	None Detected								
P3	A9	None Detected								
P3	C9	None Detected								
P3	C7	None Detected								
P3	C5	None Detected								
P3	C3	None Detected								
P3	C1	None Detected								
P3	E1	None Detected								
P3	E3	None Detected								
P3	E5	None Detected								
P3	G1	None Detected								
P3	G3	None Detected								
P3	G5	MD11	4		7.1	3.56	ADX	Actinolite		
P3	G5	MF		4	5.7	0.72	ADX	Actinolite	010319D	
P3	13	None Detected								
P3	I 1	None Detected								
P3	J2	None Detected								

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy Structure Sketch Sheet for Direct Data Entry

EMSL Order ID: 041416	8997-0003	Client: <u>Tetra T</u>	•
Client Sample: BC-AA		Page	of
Primary Structure # / Prin	mary Structure #	Primary Structure # 3 Primary Structure #	Primary Structure #
Primary Structure # P	rimary Structure #	Primary Structure #	Primary Structure #
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #
Structure #	Structure #	Structure #	Structure# Scope: _09_01
Analyst:	Datew	CLIPH W	

AMPHIBOLE SAED INDEXING FORM

EMSL Order Number:

041416997

Date: Jun 25, 2014

Indexing of Image Number:

010311

Scope #: 04 - 01

Reference / Sample No:

0003-04-01

By: F Craig

Preliminary ID:

ACTINOLITE

Using Camera Constant of:

2.943e-003

1/A Pixels

Determined from Reference:

AuCal-062414_10304

Measured Inter-Row Spacing:

63.77

Pixels

Mean Distance between spots on Center row (d2):

100.5

Pixels

Mean Distance between spots on slant vector (d1):

68.99

Pixels

	Calculated	Ref	-5%	+5%
Inter-row Spacing (Angstroms):	5.328	5.278	5.014	5.542
d2 or hk0 (Camera K/zero row dist.):	3.381	3.385	3.216	3.554
d1 or hk1 (Camera K/slant vector dist.):	4.925	4.931	4.684	5.178
Ratio of hk0/hkl:	0.686	0.686	0.652	0.720
Angle of Slant Vector (Measured):	69.0	69.320	65.854	72.786

From SAED Reference Book, "unknown" diffraction pattern was found to

be that of:

Actinolite

By: F Craig

Miller Indice hk0:

1 -5 0

Miller Indice hkl:

1 -1 -1

With a Zone Axis of: [

514

Preliminary Identification was:

Χ

CORRECT

INCORRECT

Accelerating Voltage | Magnification | Film Number | Sample

Percent accuracy to date:

100 %

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

0.000004

Structurolog

Limit of Dotoction:

Edward Surbrugg MAXI57 Customer ID: Tetra Tech Customer PO: NA 303 Irene Street 6/17/2014 9:42 Received:

Helena, MT 59601 Date Sampled: 06/15/2014 08:00 Phone: 406-442-5588 EMSL Order: 041416997 Report Date: 07/03/14

Project: NDOT NOA / 10353259

Analytical Canaltivity

ISO 13794

International Standard for the Determination of Asbestos Fibers - Indirect Transfer TEM -Modified for PCMe Analysis

Customer Sample Number: BC-AA-04-00004 Air volume: 14400 Liters EMSL Sample Number: 041416997-0004 Grid Opening Area: 0.0132 mm² Minimum Level of analysis (chrysotile): CD Grid Openings Analyzed: 76 Minimum Level of analysis (amphibole): ADX Percent of filter ashed: 50 Magnification used for fiber counting: 10,000 Suspension volume: 100 mL Aspect ratio for fiber definition: 3:1 Volume Filtered: 25 Min Length/ Width to be counted (μm): EFA of second filter: 364.9 >5 / 0.25-none mm² Area of collection filter (mm²): 385 Analysis Date: 06/17/2014

Result of Chi² Test: 68.00 Random Analyst: F. Craig Churchinalas

0.000000

Analytical Sensitivity:	0.000202	Structure	e/CC		Limit of Detection:	0.000604	Structure/cc
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000604
PCMe Structures (Amph)	ADX	7	-	6.98	0.001415	0.000569	- 0.002915
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000604
Total PCMe Structures (Regulated)	CD/ADX	7	-	6.98	0.001415	0.000569	- 0.002915
Total PCMe Structures (All)	CD/ADX	7	-	6.98	0.001415	0.000569	- 0.002915
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000604
PCMe Fibers and Bundles (Amph)	ADX	-	7	6.98	0.001415	0.000569	- 0.002915
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000604
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	7	6.98	0.001415	0.000569	- 0.002915
Total PCMe Fibers and Bundles (All)	CD/ADX	-	7	6.98	0.001415	0.000569	- 0.002915
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	

Asbestiform Minerals Present: Actinolite

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal governement as

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Sample collected on 0.8 um MCE filter. Analytical Sensitivity not met. Stopping rule of 1.0 mm² envoked

Obyn Denton
Approved Signatory

International Standard for the Determination of Asbestos Fibers-Indirect Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041416997-0004	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-04-00004	Grid Box :	0414-TetraTech-05: S	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	68.00-Random	Pore Size (micron):	0.8	Analysis Date:	07/02/2014 & 07/03/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	10%

		Christian Time	Struc Num		Dimension	ons (um)	Level of	Minoral Type		Christian Commonate
Grid ID	Grid Opening	Structure Type	Primary	Total	Length		ID	Mineral Type	Image Number	Structure Comments
S1	I 1	None Detected								
S1	13	None Detected								
S1	15	None Detected								
S1	17	None Detected								
S1	19	F	1	1	19.7	1.92	ADX	Actinolite	010344D	
S1	H10	None Detected								
S1	H8	None Detected								
S1	H6	None Detected								
S1	H4	None Detected								
S1	H2	None Detected								
S1	G1	None Detected								
S1	G3	None Detected								
S1	G5	MD11	2		60.4	8.13	ADX	Actinolite		
S1	G5	MF		2	58	2.38	ADX	Actinolite		
S1	G7	None Detected								
S1	G9	None Detected								
S1	F10	None Detected								
S1	F8	MD11	3		10.7	3.56	ADX	Actinolite		
S1	F8	MF		3	10	3.33	ADX	Actinolite		
S1	F6	None Detected								
S1	F4	F	4	4	5.1	0.72	ADX	Actinolite	010346D	
S1	F2	None Detected								
S1	E1	MD11	5		18.2	5.94	ADX	Actinolite		
S1	E1	MF		5	18.2	2.38	ADX	Actinolite		
S1	E3	None Detected								
S1	E5	None Detected								
S1	E7	None Detected								
S1	E9	None Detected								
S1	D10	None Detected								
S1	D8	None Detected								
S1	D6	None Detected								
S1	D4	F	6	6	9.7	1.68	ADX	Actinolite		
S1	D2	None Detected	-	-						
S1	C1	None Detected								
S1	C3	None Detected								
S1	C5	None Detected								
S1	C7	None Detected								
S1	C9	None Detected								

International Standard for the Determination of Asbestos Fibers-Indirect Transfer Transmission Electron Microscopy

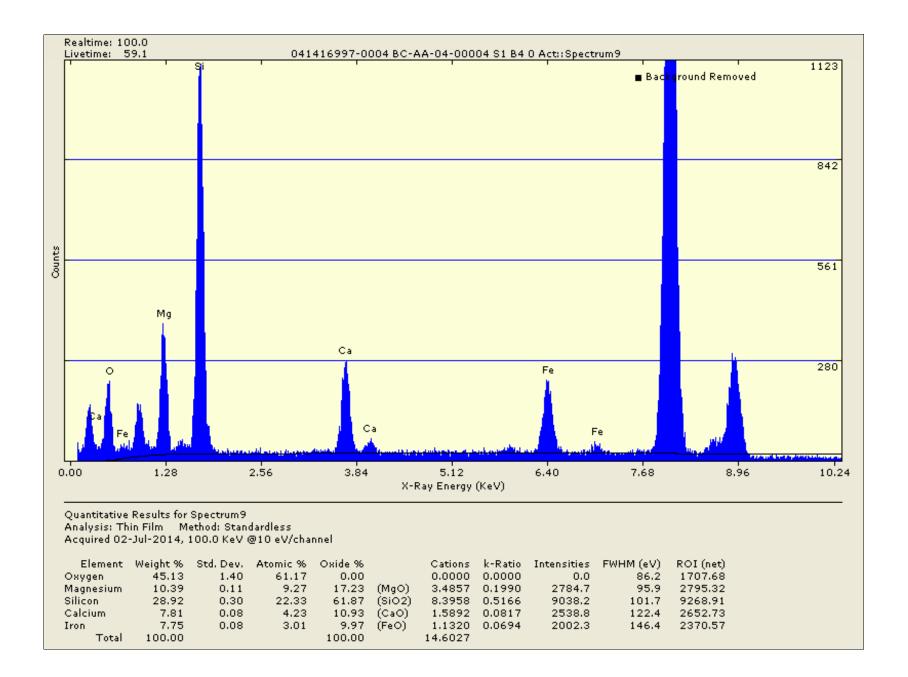
Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041416997-0004	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-04-00004	Grid Box :	0414-TetraTech-05: S	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	68.00-Random	Pore Size (micron):	0.8	Analysis Date:	07/02/2014 & 07/03/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	10%

		a –	Struct Numb		Dimensi	ons (µm)	Level of			
Grid ID	Grid Opening	Structure Type		Total	Length		ID	Mineral Type	Image Number	Structure Comments
S1	B10	None Detected								
S1	B8	None Detected								
S1	В6	None Detected								
S1	B4	F	0	0	14.3	1.2	ADX	Actinolite		
S1	B2	None Detected								
S2	J2	None Detected								
S2	J4	None Detected								
S2	J6	F	7	7	7.1	0.84	ADX	Actinolite		
S2	J8	None Detected								
S2	J10	None Detected								
S2	19	None Detected								
S2	17	None Detected								
S2	15	None Detected								
S2	13	None Detected								
S2	l1	MC11	8	8	12.4	3.52	AX	Actinolite		
S2	H2	None Detected								
S2	H4	None Detected								
S2	H6	None Detected								
S2	H8	None Detected								
S2	H10	None Detected								
S2	G9	None Detected								
S2	G7	None Detected								
S2	G5	None Detected								
S2	G3	None Detected								
S2	G1	None Detected								
S2	F2	None Detected								
S2	F4	None Detected								
S2	F6	None Detected								
S2	F8	None Detected								
S2	F10	None Detected								
S2	E9	None Detected								
S2	E7	None Detected								
S2	E5	None Detected								
S2	E3	None Detected								
S2	E1	None Detected								
S2	D2	None Detected								
S2	D4	None Detected								
S2	D6	None Detected								
S2	D8	None Detected								
S2	D10	None Detected								
					_		.t. 400 k			

International Standard for the Determination of Asbestos Fibers-Indirect Transfer Transmission Electron Microscopy

Bench Sheet Data

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041416997-0004	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-04-00004	Grid Box :	0414-TetraTech-05: S	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	68.00-Random	Pore Size (micron):	0.8	Analysis Date:	07/02/2014 & 07/03/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	10%


01	0:1	Structure Type	Structi Numb	-	Dimensi	ons (µm)	Level of	Mineral Type		Structure Comments
Grid ID	Grid Opening	71	Primary	Total	Length	Width	ID		Image Number	

S2 C5 None Detected

International Standard for the Determination of Asbestos Fibers-Indirect Transfer Transmission Electron Microscopy Structure Sketch Sheet for Direct Data Entry

EMSL Order ID: 04	11416997-0004	Client: Tetra Tech					
Client Sample: Bo		Page					
Primary Structure # (Primary Structure # 2	Primary Struct 3	Primary Structure # 4				
Primary Structure # 5	Primary Structure # 4	Primary Structure # 0	Primary Structure # 7				
Primary Structure # 8	Primary Structure #	Primary Structure #	Primary Structure #				
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #				
Structure #	Structure #	Structure #	Structure #				
Analyst:	Date:	3/11	Scope: <u>04 0/</u>				

AMPHIBOLE SAED INDEXING FORM

EMSL Order Number: 041

041416997

Date: Jul 02, 2014

Indexing of Image Number:

010344

Scope #: 04 - 01

Reference / Sample No:

0004-04-01

By: F Craig

Preliminary ID:

ACTINOLITE

Using Camera Constant of:

2.968e-003

1/A Pixels

Determined from Reference:

AuCal-070114 10341

Measured Inter-Row Spacing:

66.4

Pixels

Mean Distance between spots on Center row (d2):

99.65

Pixels

Mean Distance between spots on slant vector (d1):

68.48

Pixels

	Calculated	Ref	-5%	+5%
Inter-row Spacing (Angstroms):	5.075	5.278	5.014	5.542
d2 or hk0 (Camera K/zero row dist.):	3.381	3.385	3.216	3.554
d1 or hk1 (Camera K/slant vector dist.):	4.920	4.931	4.684	5.178
Ratio of hk0/hkl:	0.687	0.686	0.652	0.720
Angle of Slant Vector (Measured):	81.3	80.860	76.817	84.903

From SAED Reference Book, "unknown" diffraction pattern was found to

be that of:

Actinolite

By: F Craig

Miller Indice hk0:

150

Miller Indice hkl:

-111

With a Zone Axis of: [

5 -1 6

Preliminary Identification was:

Χ

CORRECT

INCORRECT

Accelerating Voltage | Magnification | Film Number | Sample | O. 5 t/A

Percent accuracy to date:

100 %

AMPHIBOLE SAED INDEXING FORM

EMSL Order Number: 041416997

Date: Jul 02, 2014

Indexing of Image Number:

010346

Scope #: 04 - 01

Reference / Sample No:

0004-04-01

By: F Craig

Preliminary ID:

ACTINOLITE

Using Camera Constant of:

2.968e-003

1/A Pixels

Determined from Reference:

AuCal-070114 10341

Measured Inter-Row Spacing:

63.87 Pixels

Mean Distance between spots on Center row (d2):

66.01

Pixels

Mean Distance between spots on slant vector (d1):

68.54

Pixels

	Calculated	Ref	-5%	+5%
Inter-row Spacing (Angstroms):	5.275	5.278	5.014	5.542
d2 or hk0 (Camera K/zero row dist.):	5.104	5.099	4.844	5.354
d1 or hk1 (Camera K/slant vector dist.):	4.916	4.931	4.684	5.178
Ratio of hk0/hkl:	1.038	1.034	0.982	1.086
Angle of Slant Vector (Measured):	67.4	67.810	64.419	71.201

From SAED Reference Book, "unknown" diffraction pattern was found to

be that of:

Actinolite

By: F Craig

Miller Indice hk0:

1 -3 0

Miller Indice hkl:

1-1-1

With a Zone Axis of: [

3 1 2

Preliminary Identification was:

Χ

CORRECT

INCORRECT

Accelerating Voltage | Magnification | Film Number | Sample | 1900 x 0 0 0 0 0 0 0 0 1/A

Percent accuracy to date:

100 %

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

 Edward Surbrugg
 Customer ID:
 MAXI57

 Tetra Tech
 Customer PO:
 NA

 303 Irene Street
 Received:
 6/17/2014 9:42

Helena, MT 59601 Date Sampled: 06/15/2014 08:00
Phone: 406-442-5588 EMSL Order: 041416997
Report Date: 07/03/14

Project: NDOT NOA / 10353259

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Grid Openings Analyzed: 51

Customer Sample Number: BC-AA-02-00004 Air volume: 14400 Liters EMSL Sample Number: 041416997-0005 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD

Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 06/17/2014
Result of Chi² Test: 48.00 Random Analyst: P. Harrison

nalytical Sensitivity: 0.000040 Structure/cc		Limit of Detection:	0.000119	Structure/cc			
						Poisson 95 % (Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	(Str/cc)	(Str/cc)	(Str/cc)
PCMe Structures (Chrys)	CD	0	-	0.00	0.000000	0.000000	- 0.000119
PCMe Structures (Amph)	ADX	3	-	4.46	0.000119	0.000025	- 0.000308
PCMe Structures (NRA)	ADX	0	-	0.00	0.000000	0.000000	- 0.000119
Total PCMe Structures (Regulated)	CD/ADX	3	-	4.46	0.000119	0.000025	- 0.000308
Total PCMe Structures (All)	CD/ADX	3	-	4.46	0.000119	0.000025	- 0.000308
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	0.000000	0.000000	- 0.000119
PCMe Fibers and Bundles (Amph)	ADX	-	3	4.46	0.000119	0.000025	- 0.000308
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	0.000000	0.000000	- 0.000119
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	3	4.46	0.000119	0.000025	- 0.000308
Total PCMe Fibers and Bundles (All)	CD/ADX	-	3	4.46	0.000119	0.000025	- 0.000308
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	

Asbestiform Minerals Present: Actinolite

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal government as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated Amphiboles

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Comment: Sample collected on 0.8 um MCE filter.

Robyn Denton
Approved Signatory

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech	Scope:	JEOL-1200-EX (04-03)		
EMSL Sample ID:	041416997-0005	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-02-00004	Grid Box :	0414-Tetra Tech-05: A	Analyst(s):	P. Harrison
Chi ² Test for Uniformity:	48.00-Random	Pore Size (micron):	0.8	Analysis Date:	06/25/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	25%

		Structure Type	Struct Numl		Dimensi	ons (µm)	Level of	Minoral Typo		Structure Comments
Grid ID	Grid Opening	Structure Type	Primary	Total	Length	Width	ID	Mineral Type	Image Number	Structure Comments
A1	A2	None Detected								
A1	A4	None Detected								
A1	A8	None Detected								
A1	B9	None Detected								
A1	B5	None Detected								
A1	В3	None Detected								
A1	C2	None Detected								
A1	C4	F	1	1	12.9	1.7	ADX	Actinolite	4400	
A1	C6	F	2	2	5.7	8.0	ADX	Actinolite		
A1	C10	None Detected								
A1	D7	None Detected								
A1	E4	None Detected								
A1	E6	None Detected								
A1	E8	None Detected								
A1	F7	None Detected								
A1	G8	None Detected								
A1	G6	None Detected								
A1	G4	None Detected								
A1	G2	None Detected								
A1	H3	None Detected								
A1	H5	None Detected								
A1	H7	None Detected								
A1	H9	None Detected								
A1	16	MD11	3		8	1.6	ADX	Actinolite		
A1	16	MF		3	6.7	1.2	ADX	Actinolite		
A1	14	None Detected								
A1	12	None Detected								
A1	J5	None Detected								
A1	J7	None Detected								
A2	A8	None Detected								
A2	A6	None Detected								
A2	A4	None Detected								
A2	B5	None Detected								
A2	C8	None Detected								
A2	C6	None Detected								
A2	C4	None Detected								
A2	D5	None Detected								
A2	D7	None Detected								

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech	Scope:	JEOL-1200-EX (04-03)		
EMSL Sample ID:	041416997-0005	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	BC-AA-02-00004	Grid Box :	0414-Tetra Tech-05: A	Analyst(s):	P. Harrison
Chi ² Test for Uniformity:	48.00-Random	Pore Size (micron):	0.8	Analysis Date:	06/25/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	25%

Grid ID	Grid Opening	Structure Type	Structure Number Primary Total	Dimension Length	\\ /	Level of ID	Mineral Typ	e Image Number	Structure Comments
A2	D9	None Detected	•						
A2	E10	None Detected							
A2	E8	None Detected							
A2	E4	None Detected							
A2	F5	None Detected							
A2	F7	None Detected							
A2	F9	None Detected							
A2	G8	None Detected							
A2	G4	None Detected							
A2	H5	None Detected							
A2	H7	None Detected							
A2	H9	None Detected							
A2	I10	None Detected							
A2	18	None Detected							

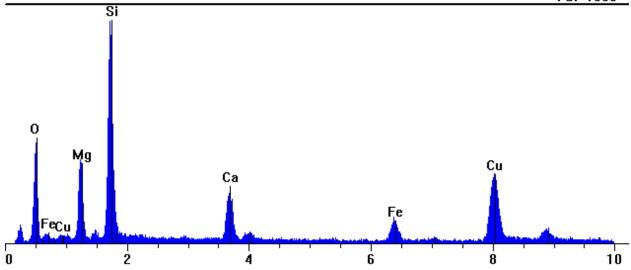
International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy Structure Sketch Sheet for Direct Data Entry

EMSL Order ID: 04	1416997-0005	Client: Tetra Tech					
Client Sample: BC		Page	of				
Primary Structure # /	Primary Structure # 2	Primary Structure # 3	Primary Structure #				
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #				
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #				
Primary Structure #	Primary Structure #	Primary Structure #	Primary Structure #				
Structure #	Structure #	Structure #	Structure #				
Analyst:	Date: 6/2	15/4	Scope: Oy-O3				

Energy Dispersive X-Ray Analysis Quantitative Spectra & Data

EMSL ANALYTICAL, INC.

File: L:\EDS Spe...Spectra\Scope 04-03\2014\041416997-0005 A1 C4 1 AC.pgt


Collected: June 25, 2014 08:21:46

Live Time: 9.97 Count Rate: 13391 Dead Time: 66.86 % Beam Voltage: 20.00 Beam Current: 2.00 Takeoff Angle: 31.00

Thickness limit: 26801.96

041416997-0005 A1 C4 1 AC.pgt

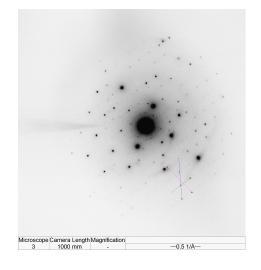
FS: 1600

Element	Line	keV	CL Ratio	Wt%	At%	At Prop	Compound	Cmpd Wt%
Mg	KA1	1.254	1.4000	15.63	14.63	6.7	MgO	25.91
Si	KA1	1.740	1.0000	33.76	27.36	12.6	SiO	52.99
Ca	KA1	3.691	1.0500	10.62	6.03	2.8	CaO	14.87
Fe	KA1	6.403	0.9900	4.85	1.98	0.9	FeO	6.23
Cu	KA1	8.046	0.0000	0.00	0.00	0.0		
О	KA1	0.523	0.0000	35.14	50.00	23.0		
Total			0.0000	100.00	100.00	46.0	Total	100.00

Element	Line	Gross (cps)	BKG (cps)	Net (cps)	P:B Ratio
Mg	KA1	782.8	67.5	715.3	10.6
Si	KA1	2249.0	86.3	2162.7	25.1
Ca	KA1	734.4	86.1	648.3	7.5
Fe	KA1	376.5	62.9	313.6	5.0
Cu	KA1	1300.4	81.3	1219.1	15.0
О	KA1	750.6	27.5	723.0	26.3

AMPHIBOLE SAED INDEXING FORM

Image Number: 04400

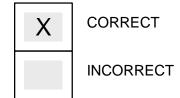

Reference / Sample Number: 0005

Preliminary ID: ACTINOLITE

Camera Constant: 1.873e-003 1/A Pixels

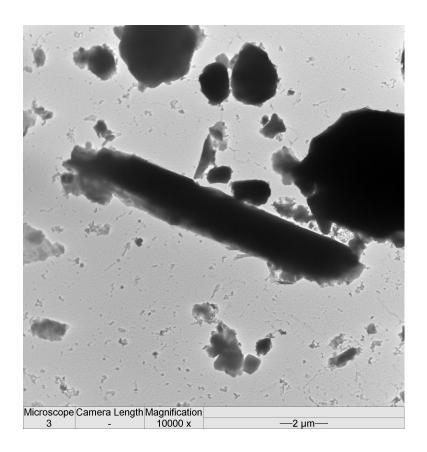
Calibration Reference: 062314-04-03-04397_C

	Measured	Reference	-5%	+5%
Inter-row Spacing:	5.044	5.278	5.014	5.542
d2 or hk0 (Camera K/zero row dist.):	5.036	5.099	4.844	5.354
d1 or hkl (Camera K/slant vector dist.):	4.315	4.482	4.258	4.706
Ratio of hk0/hkl:	1.167	1.138	1.081	1.195
Vector Angle:	57.34	57.320	54.454	60.186



From SAED Reference Book, "unknown" diffraction pattern was

found to be that of: ACTINOLITE


With a Zone Axis of: [3-12]

Preliminary Identification was:

EMSL Analytical, Inc. Photomicrograph Report

Micrograph Information

Sample ID:	0005
Order ID:	041416997
Image Number:	04401
Mineral Type:	ACTINOLITE
Date:	6/25/2014
Magnification:	10000
Microscope:	3

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

Customer ID: MAXI57
Customer PO: NA

Grid Openings Analyzed: 10

 Received:
 6/17/2014 9:42

 Date Sampled:
 06/30/2014 08:00

 EMSL Order:
 041416997

Report Date: 07/03/14

Edward Surbrugg Tetra Tech 303 Irene Street Helena, MT 59601 Phone: 406-442-5588

Project: NDOT NOA / 10353259

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Customer Sample Number: Ashing Blank Air volume: 0 Liters EMSL Sample Number: 041416997-0006 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD Minimum Level of analysis (amphibole): ADX

Minimum Level of analysis (amphibole): ADX

Magnification used for fiber counting: 10,000

Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μ m): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 06/30/2014
Result of Chi² Test: N/A N/A Analysis F. Craig

Analytical Sensitivity:	7.575758	Structure	e/ mm²		Limit of Detection:	22.651515	Structure/ mm ²
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	Str/ mm ²	Str/ mm ²	Str/ mm ²
PCMe Structures (Chrys)	CD	0	-	0.00	NA	0.000000	- 22.651515
PCMe Structures (Amph)	ADX	0	-	0.00	NA	0.000000	- 22.651515
PCMe Structures (NRA)	ADX	0	-	0.00	NA	0.000000	- 22.651515
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	NA	0.000000	- 22.651515
Total PCMe Structures (All)	CD/ADX	0	-	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	NA	0.000000	- 22.651515
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	NA	0.000000	- 22.651515
Total PCMe Fibers and Bundles (All)	CD/ADX	-	0	0.00	NA	0.000000	- 22.651515
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	_

Asbestiform Minerals Present: None Detected

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal government as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated Amphiboles

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Robyn Denton
Approved Signatory

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041416997	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	Ashing Blank	Grid Box :	0414-TetraTech-05: R	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	07/01/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	1%

		Structure Type	Struct Num		Dimensi	ons (µm)	Level of	Mineral Type		Structure Comments
Grid ID	Grid Opening		Primary	Total	Length	Width	ID	Willional Type	Image Number	Structure Comments
R1	В7	None Detected								
R1	D10	None Detected								
R1	E5	None Detected								
R1	G7	None Detected								
R1	16	None Detected								
R2	В3	None Detected								
R2	E4	None Detected								
R2	C6	None Detected								
R2	G3	None Detected								
R2	12	None Detected								

EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 856-303-2500 www.EMSL.com

 Edward Surbrugg
 Customer ID:
 MAXI57

 Tetra Tech
 Customer PO:
 NA

 303 Irene Street
 Received:
 6/17/2014 9:42

Helena, MT 59601

Phone: 406-442-5588

EMSL Order: 041416997

Report Date: 07/03/14

Project: NDOT NOA / 10353259

ISO 10312

International Standard for the Determination of Asbestos Fibers - Direct Transfer TEM - Modified for PCMe Analysis

Grid Openings Analyzed: 10

Customer Sample Number: Filtration Blank Air volume: 0 Liters
EMSL Sample Number: 041416997-0007 Grid Opening Area: 0.0132 mm²

Minimum Level of analysis (chrysotile): CD
Minimum Level of analysis (amphibole): ADX
Magnification used for fiber counting: 10,000

Magnification used for fiber counting: 10,000
Aspect ratio for fiber definition: 3:1

Min Length/ Width to be counted (μm): >5 / 0.25-none

Area of collection filter (mm²): 385 Analysis Date: 06/30/2014
Result of Chi² Test: N/A N/A Analysis F. Craig

Analytical Sensitivity:	7.575758	Structure	e/ mm²		Limit of Detection:	22.651515	Structure/ mm ²
						Poisson 95 % C	Confidence Interval
Structure Class	Min	Primary	Total	Density	Concentration	LCL	UCL
	ID Level	Str.	Str.	Str/mm ²	Str/ mm ²	Str/ mm ²	Str/ mm ²
PCMe Structures (Chrys)	CD	0	-	0.00	NA	0.000000	- 22.651515
PCMe Structures (Amph)	ADX	0	-	0.00	NA	0.000000	- 22.651515
PCMe Structures (NRA)	ADX	0	-	0.00	NA	0.000000	- 22.651515
Total PCMe Structures (Regulated)	CD/ADX	0	-	0.00	NA	0.000000	- 22.651515
Total PCMe Structures (All)	CD/ADX	0	-	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (Chrys)	CD	_	0	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (Amph)	ADX	-	0	0.00	NA	0.000000	- 22.651515
PCMe Fibers and Bundles (NRA)	ADX	-	0	0.00	NA	0.000000	- 22.651515
Total PCMe Fibers and Bundles (Regulated)	CD/ADX	-	0	0.00	NA	0.000000	- 22.651515
Total PCMe Fibers and Bundles (All)	CD/ADX	-	0	0.00	NA	0.000000	- 22.651515
Non Asbestos Mineral Structures	NAM	0	0	-	-	-	_

Asbestiform Minerals Present: None Detected

Explanation of Results

NRA = Non-Regulated Amphibole. A suspected mineral fiber that is a member of the Amphibole group, but is currently not regulated by the Federal government as asbestos.

PCMe structure (modified)= A fibrous structure of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 um with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

PCMe Fiber or Bundle (modified) = A Fiber or Bundle of of aspect ratio > 3:1, longer than 5 um, and which has a diameter ≥ 0.25 microns with no upper width boundary. This definition has been modified from the method to meet the client's project requirements.

Concentration (Reg) = include all federally regulated asbestos types. Currently Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite

Concentration (all) = include all federally regulated asbestos types (Chrysotile, Amosite, Actinolite, Tremolite, Anthophyllite and Crocidolite) and any Non-regulated Amphiboles

Min ID Level = the minimum level of analysis that must have been met to be included in the reportable structure count. If any fibrous structure did not meet the minimum ID level, it would not be included in the concentration.

NAM = Non Asbestos Mineral. A mineral fiber that has been rejected from being either Amphibole or Chrysotile

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Robyn Denton
Approved Signatory

International Standard for the Determination of Asbestos Fibers-Direct Transfer Transmission Electron Microscopy

Client:	Tetra Tech			Scope:	04-01
EMSL Sample ID:	041416997-0007	GO area (mm²):	0.0132	Mag.	10,000
Customer Sample:	Filtration Blank	Grid Box :	0414-TetraTech-05: R	Analyst(s):	F. Craig
Chi ² Test for Uniformity:	N/A	Pore Size (micron):	0.8	Analysis Date:	07/01/2014
Project ID:	NDOT NOA / 10353259			Particulate Loading:	<1%

		Structure Type	Struct Numl		Dimensi	ons (µm)	Level of	Mineral Type		Structure Comments
Grid ID	Grid Opening	Otradiare Type	Primary	Total	Length	Width	ID	Willional Type	Image Number	Structure Comments
R6	B8	None Detected								
R6	D9	None Detected								
R6	F4	None Detected								
R6	G10	None Detected								
R6	17	None Detected								
R7	C5	None Detected								
R7	E2	None Detected								
R7	F6	None Detected								
R7	H3	None Detected								
R7	18	None Detected								

OrderID: 041416997

Asbestos Chain of Custody EMSL Order Number (Lab Use Only):

WISL Order Number (Lab C

EMSL ANALYTICAL, I	NC.
200 ROUTE 130 NO	RTH
CINNAMINSON, NJ 08	077

PHONE: (800) 220-3675 FAX: (856) 786-5974

Company : TETRE	TECH				ill to: X Same 🔲 Derent hote instructions in (
Street: 7 West (te. (017	2_	Third Party Billing red	quires written authoriza	tion from third party			
city: Helena			rovince: UT	Zip/Postal Code: 59(00) Country: USA					
Report To (Name):	d Surba			Telephone #: 40(0-441-3291)					
Email Address:Edux	and Suchaus	0011	atreh.com	Fax #: 406- 442 - 7182 Purchase Order:					
Project Name/Number	r: 10233	259	IN ILLUITORY	Please Provide Results: ☐ Fax 其 Email ☐ Mail					
U.S. State Samples T	aken: NA			Connecticut Samples: Commercial Residential					
				T) Options* - Please Che	ck				
		24 Hour	48 Hour		6 Hour 1 We				
				nium charge for 3 Hour TEM AH noe with EMSL's Terms and Cor					
PCM - Air Check i				4.5hr TAT (AHERA only)	TEM- Dust				
☐ NIOSH 7400			AHERA 40 C	FR, Part 763	☐ Microvac - AST	M D 5755			
w/ OSHA 8hr. TW/	A		☐ NIOSH 7402		☐ Wipe - ASTM D	6480			
PLM - Bulk (reporting	limit)		☐ EPA Level II	Sensitivity to	☐ Carpet Sonicati	on (EPA 600/J-93/167)			
☐ PLM EPA 600/R-93	A STATE OF THE STA		ISO 10312	O OCCO	Soil/Rock/Vermic				
☐ PLM EPA NOB (<1	%)		TEM - Bulk	0.0000		5 - A (0.25% sensitivity)			
Point Count						i - B (0.1% sensitivity)			
	☐ 400 (<0.25%) ☐ 1000 (<0.1%) ☐ NYS NOB				E TO THE SECOND CONTRACTOR OF THE SECOND CONTR	5 - B (0.1% sensitivity)			
Point Count w/Gravimetric Chatfield S					The state of the s	5 - C (0.01% sensitivity)			
				nalysis-EPA 600 sec. 2.5		Filtration Technique			
☐ NYS 198.1 (friable									
					Waste Drinking Other:				
☐ NIOSH 9002 (<1%			All Fiber Sizes						
			-276		N1				
Check For Positiv	e Stop - Clearly	y Identify	y Homogenous G	roup Filter Pore Size (A	(ir Samples):	-8μm 🗌 0.45μm			
Samplers Name:	JU DANO)		Samplers Signature	De)				
Sample #			Sample Descripti	on	Volume/Area (Air HA # (Bulk)	Date/Time Sampled			
BC-AA-01-00004	Sitel				14 14 7 1	6-15-14			
					17.700 2	615-14			
Reld Blank owny	Field Bla	nk				6758			
BC-AR-03-00004	Site 3				14, 400 L	6.15-14			
BC-4A-04-00004	Site 4				14, 400 L	6.15.14 0F35			
20-AM-02-00004	Site 2				14,400 L	6.15.14			
					116	V8.7/			
Client Sample # (s):	Client Sample # (s): - Total # of Samples: 5								
Relinquished (Client)	The De	PHY IS)AV) Date:	10-11-14	Tin	ne: \200			
	1	BECKLI		(0-10-14					
Received (Lab): Comments/Special In	Amollo	HOUS		6/17/2014		ne: 1200 ne: 9: 42 am			
Received (Lab):	Amollo	- LINGS		1 1					
Received (Lab):	Amollo		Date:	1 1	Tin				
Received (Lab):	Structions:		Date:	1 1	Tin B E C	1e: 9: 42 am E I V E D			
Received (Lab):	Structions:		Date:	6/17/2014	Tin	1e: 9: 42 am E I V E D			
Received (Lab):	Structions:		Date:	6/17/2014	Tin B E C	1e: 9: 42 am E I V E D			
Received (Lab):	Structions:		Date:	6/17/2014	Tin DE C	1e: 9: 42 am E I V E D			