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EXECUTIVE SUMMARY

According to Traveler opinion and perception survey of 2005, 107.4 million Amer-

icans use walking as regular mode of travel, which amounts to 51% of American

population. In 2009, 4092 pedestrian fatalities have been reported nationwide with

a fatality rate of 1.33 which totals 59,000 crashes. Also, pedestrians are over repre-

sented in crash data by accounting more than 12% of fatalities but on 10.9% of trips.

This makes a perfect case for understanding the causes behind such statistics, calling

for a continuous research on pedestrians walking behavior and their interactions with

surroundings.

Current research in pedestrian simulation focuses on surveys and mathematical sim-

ulation models such as macroscopic and microscopic dynamic models involves au-

tonomous entities. The surveys represent the perception of individual while math-

ematical simulation severely limits the capacity to capture effect of human factors

in the understanding of pedestrian interactions. Complicated psychological models

are used to a certain extent for understanding of such problems but are incapable to

estimate the diversity of human behavior. To capture tendencies of people, they need

to be a part of research, under a safe and controlled environment.

In this thesis, an attempt has been made to develop a module which can be used to

track human walk gesture and map it to actual human walk. Then, this module could

1
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be implemented in a system aimed to understand pedestrian behavior. Following are

the accomplishments of this thesis.

• Built an API to use with software interface to capture human motion

– Explored arduino based wearable interface to capture human motion.

– Explored Kinect based video interface to capture human motion.

– Defined gestures and identified configurations for least difficult setup and

calibration process.

– Wrote the software interface for a Kinect based system (video interface).

• Built a mathematical framework for abstracted dynamical system, for the pur-

pose of pedestrian interface in simulation engine.

– Obtained mathematical model for human walk.

– Obtained conversion to non-holonomical system for human walk.

– Programmed the mathematical model into the API.

Eventually this is expected to contribute towards state-of-the-art researches which

aim at understanding pedestrian dynamics in transportation safety and planning. The

module described is expected to work real-time as a separate entity.



CHAPTER 1

INTRODUCTION TO DRVING SIMULATOR

Traffic behavior analysis is an important aspect for traffic safety research. To

achieve this a consistent method of analysis is required. Driving behavior surveys are

a proven method to get an insight into a typical driving behavior. This allows for

understanding the upcoming trends in driving behavior. A very good example is the

introduction of mobile phones into daily lives of every individual. This gave rise to an

increase in texting while driving. We at TRC are proud that we were able to use our

driving simulator to put this point accross in various campaigns around Las Vegas,

and thus playing a significant role in the ‘No Texting While Driving‘ law in Nevada.

In the following sections a more detailed description of the setup is given.

Description of Hardware

The transportation research center(TRC) of UNLV wants to create a unique driving

simulator which could be taken to public and aims to provide driving do’s and dont’s.

At the same time, TRC also wanted to keep the realism of driving for the users.

Therefore, motion feedback was an important component of the unit. Based on these

two primary requirements TRC narrowed down the driving simulation hardware to

the one offered by Simcraft Technologies.

3
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The simcraft unit has multiple capabilities. It comes with a full-fledged 3DoF

motion simulator with fit in Recarro seat. Moreover the system comes with wheels

which allows it to be easily movable. This setup can be dis assembled in four parts

enabling it for easier assembly and disassembly aiding transportation of the unit ac-

cross the rooms.

The cage of the simulator is made of aluminnium which enables it to be light and

Figure 1.1: Simulator Hardware

strong. The display setup is composed of three monitors aimed to provide a 120 de-

gree fov. Associated steering joystick and pedals are equipped with motion feedback.
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These both together provide a more immersive environment for the user.

The 3DoF is achieved by 3 cylindrical pistons with an analog controller box. Each

piston is provided a seperate controller due to current requirement and easier trou-

bleshooting. The complete setup is controlled via usb ports on the provided computer.

The SimCraft Control Panel, CraftCon, allows you to access the SimCraft integra-

tions or modules that control the interaction between your SimCraft motion system

and the game/computer simulation you are using. A module is represented as a list

item in the CraftCon window containing the game/sim name and the game/sims

icon. Within CraftCon, each game/simulation has a corresponding module, and the

modules are all independently installed and managed. CraftCon allows you to con-

trol module activity and the configuration of the motion system with module specific

settings for each game/simulation.

Craftware is an Application Programming Interface (API) that provides the in-

terface for any SimRacing or FlightSim title to drive a SimCraft motion simulator

creating a synchronized, realistic motion element. The API provides an extracted

method of positional control for SimCraft motion platform products and it does so by

receiving available object state variables (physics or telemetry) from various physics

based systems and translating the real-time data into positional output to drive the

motion of the simulator.
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Description of Software

STISIM Drive is used to create driving scenarios that mimic real life driving sit-

uations but do so in a safe yet realistic environment. STISIM Drive is a personal

computer based, interactive driving simulator that allows the driver to control all

aspects of driving including the vehicles speed and steering. One can control what

the driver sees and when they see it. Unlike most simulation programs that come

with a fixed database that you can not easily manipulate without extensive CAD ex-

perience, STISIM Drive allows you to change most aspects of the driving scene with

simple ASCII text commands. This frees up time for designing and building various

roadway situations instead of just designing and building a roadway.

STISIM Drive is a product of over three decades of research by Systems Technol-

ogy, Inc. (STI) on low cost techniques for creating laboratory tasks relevant to the

psychomotor and cognitive demands of real world driving. Extensive past research

on vehicle dynamics and driver control behavior, driver decision making and divided

attention behavior and response to traffic control devices has been applied to the

creation of control tasks and cognitive scenarios typical of real world driving. A com-

bination of vehicle dynamics characteristics and compensation for CGI (Computer

Generated Imagery) transport delays have been employed to create an appropriate

stimulus-response relationship between steering inputs and visual display motions.

The composite vehicle dynamics/compensation characteristics have been carefully
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Figure 1.2: Simulator Software

integrated so that steering sensitivity is appropriate over the full range from rest to

top speed, and is not sluggish or oscillatory as is the case with many CGI based

driving simulations. Driver relevant vehicle dynamics attributes are easily specified

in a parameter file along with other simulator setup characteristics.

Driving tasks and scenarios are easily specified with simple commands listed in

an events file. A simple scenario definition language (SDL) has been developed to

minimize the effort required to specify experimental designs. The SDL frees the user

from having to program visual data bases as is the case with most CGI based simu-

lators. The SDL also simplifies the specification of scenario attributes that relate to
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driver psychomotor, divided attention and cognitive behavior, and permits the defi-

nition of road curvature, elevation, intersections, signal timing, interactive traffic, etc.

There are an infinite number of ways that STISIM Drive can be used. Although

we have tried to make the program and documentation as simple to use as possible,

we cant possibly foresee all of the application that it will be used for. Subsequently,

the documentation is written as generic as possible so that we can provide you with

general ideas on how to use the program and not how to solve specific problems.

Therefore, we highly recommend that you become familiar with the simulators con-

figuration options and the SDL before you begin creating your driving environment.

We understand that this will be a large undertaking on your part, but for the best

possible results in the shortest amount of time, you will need to know what the simu-

lation is capable of doing. In general, there are four basic components that make up

the STISIM Drive simulator, the graphics environment, the driver controls, the SDL

that controls the scenarios, and the STISIM Drive software that ties it all together.

The graphics environment includes the graphics card that generates the images,

the display system that displays the images, and the models that are used so that

images can be displayed. Supported graphics cards are discussed in the hardware sec-

tion of the help system, but in general STISIM Drive requires a specialized graphics

card that is capable of running accelerated OpenGL based graphics. Any graphics

display device that can handle a standard VGA graphics input can be used for the
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actual display device. These include computer monitors, head mounted display de-

vices, projectors and even televisions if a scan converter is used (however resolution

is lost with this type of arrangement). Finally, and most importantly, the images

that are displayed on the screen are simply rendered versions of polygonal models

that have been designed and built, then loaded into the simulator for display. Almost

every image that you see is created using a combination of polygons, texture maps

and shaded colors. A separate graphics package such as 3D Studio or NuGraph is

required to build the models that are displayed using the simulator. STISIM Drive

comes with a number of models that you can use directly with our SDL, but these

may not be sufficient for your application. If this is the case, you will need to build

some models on your own. STISIM Drive currently has numerous vehicle models,

buildings, pedestrians, roadway markers, barriers and road signs.

Before one can actually begin setting up and running a simulation scenario, you

must first become familiar with STISIM Drives capabilities. This next section lists

some of the most interesting tasks that the simulator will allow you to perform, but

to really understand the power of STISIM Drive, you will need to learn as much as

you can about the simulator’s configuration and the SDL. Additionally, you should

review the sample events files that are installed during program setup. These can be

found in the Projects directory under the STISIM Drive main directory.

The following is a list of some of the simulators general capabilities:
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• Wide screen (3 computer systems required), giving the driver a 135 degree field

of view

• Advanced vehicle dynamics (option sold separately, sounds like a commercial)

• Interactive vehicles in all lanes of traffic

• Traffic Control Devices (barrels, Jersey barriers, traffic signals, traffic signs,

etc.)

• Buildings, benches, billboards and other rectangular objects can be created with

the 3-D block event

• Animated pedestrians and cross traffic can be used to force drivers to maneuver

• Left and right hand turns at specified intersections

• Divided attention symbols located at the right and left of the display

• True rear view mirrors that display the roadway scene behind the driver so that

they can see and react to approaching traffic

• Several speedometer and car cab options

• Average and RMS response measures collected at specific defined intervals

• Auditory feedback including user defined files and sound effects (siren, car crash,

tire screech)
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• Game controller, Analog, or Optical Encoder Interface support for driver con-

trols and an active steering control system (not on all configurations) that feeds

roadway feel back to the driver

• Configurable for driving from either side of the road

• English or Metric units can be used when specifying inputs and outputs

• ”Autopilot mode” for scenario checkout

• High resolution graphics modes may be used to reduce dither and aliasing ef-

fects, and some display colors can be set manually

• Scenario parameters can be defined and saved in external files

• Various utility programs and examples are included to help you

• Configurable for input and output of digital signals from external devices

Before any simulation can be run, the hardware for your system must be installed

and all of the peripheral devices such as monitors and controllers must be connected

to their respective interface boards. In order to make these connections, you must

become familiar with the hardware that you will be using, and know which hardware

device connects to which controller board. If you ordered a complete system including

all of the hardware, then the interface cables and computer boards should be clearly

marked so that all you will need to do is plug each cable into the corresponding in-

terface board in the computer. If all you ordered was software and a graphics board,
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you will need to determine what connections need to be made. In any event, you

should look at the section on hardware and setup.

During the installation process several shortcuts to STISIM Drive were installed

on your computer system. One is installed directly in the start menu that appears

when you click on the Windows Start button. The second, appears on your desktop

so that you will have easy access by double clicking on a desktop icon. Either of

these options can be used to activate the program, or you can use Windows Explorer

to point at the STISIM Drive folder and run the software from there. When the

program is activated, the initial STISIM Drive screen will be displayed for several

seconds and then the program’s main window will be displayed. You are now ready

to start running simulations.

One aspect of the simulator that everyone looks at is speed. Having a constant

update rate (having the individual frames that are displayed to the user occur at the

same timing rate) is very important because it creates a more realistic environment,

reduces the chance of simulator sickness and provides for better data collection. How-

ever, this is one of the more difficult things to control in an interactive simulator. This

is generally due to the number and complexity of objects appearing in the roadway

scene.



CHAPTER 2

PUBLIC OUTREACH

TRC has been involved in various public outreach programs using the driving sim-

ulator. The primary objective has always been to encourage new drivers and educate

older drivers about the various issues of transportation safety. Having a tool like

Driving Simulator certainly helps the cause to put accross the point. It acts as means

to establish a live demo of many practices people do while driving. This eventually

aims towards achieving Zero Fatality goal of Nevada. The list of completed programs

is as follows:

• Driving Simulator taken to T-Bird Bar and Restaurant in Henderson, where

it was shown in public how much effect can they see in their normal driving

behavior after a couple of drinks. It was a 2 day event.

• Driving Simulator was taken to NDoT Conference at Paris Casino, where it was

used to showcase the usage and how people respond to drving simulator when

they are drunk. This was a 3 day event.

• Driving Simulator was an integral part of the ”No texting while driving” cam-

paign. It was used as the means of various demonstrations for Media.

13
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• Driving simulator was taken around to schools in Las Vegas area as an initiative

between Safe Community Partnership and UNLV TRC, during the no texting

while driving week for the purpose of Drivers Ed program established in the

schools to showcase why is using a phone while driving a wrong practice.

• Driving simulator has also been a part of excursions for STEM students at

UNLV every year. During such events the research side of transportation and

transportation safety were showcased to encourage students to choose STEM

as their future field of study.

• Driving simulator was part of 2nd Annual Science fair of Las Vegas. At this

event again ”No Texting While Driving” was campaigned for.

• Multiple Safe Community Partnership events were held in association with

TRC.



CHAPTER 3

INSTALLATION GUIDE - SIMCRAFT

Although CraftCon and the game/sim modules are two different pieces of soft-

ware, they rely on each other in order for the SimCraft motion system to work cor-

rectly. Obviously, they are separate from the game/simulation software. However,

the game/simulation software needs both CraftCon and the correct module for the

game/sim software to drive the motion chassis.

For this reason, the module and CraftCon installer are bundled together to assure

maximum compatibility between the two products. If you only have one module,

you can always download the latest module installer and it will contain the latest

CraftCon version. If you have multiple modules, updating one module will update

the CraftCon version for all of the modules installed.

It is not recommended to upgrade CraftCon software outside of the version provided

by the module, or use another module to manually update CraftCon. Each Craft-

Con/module combination is designed to work seamlessly with the SimCraft motion

system; any change to either the module or CraftCon outside of the installer could

result in improper operation of the motion system resulting in harm to the user or

bystanders or damage to the system.

15



CHAPTER 4

INSTALLATION GUIDE - STISIM DRIVE

Before installing the STISIM Drive software, you should always make sure that

your hardware is configured correctly for the type of system that you have. The

installation procedure will request a model number from you and also some informa-

tion about your graphics acceleration board and the type of controller card that is

being used (this is not required for all models). Based on this information, default

parameters are set such that you should be able to start the simulator and run any of

the example scenarios that are delivered with the simulator. If your hardware is not

configured correctly, then when you try and run the simulator you will have trouble.

In general the software comes pre-loaded and setup on the computer, however

for the model 100 and demonstration systems where just a disk is delivered or the

software is downloaded, you will need to install the software yourself. In the unfortu-

nate event of a catastrophic system failure, you may also need to reinstall the system

yourself. With these cases especially, you should always make sure that all of the

hardware requirements are handled before installing the software.

Software Installation:

16
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It is very important that before you go and install any of the software that you

have correctly setup and configured your computer system. If you have not already

done so, review the hardware configuration guide before continuing with the software

installation.

STISIM Drive uses a standard Windows installation routine that is similar to

most other Windows software packages. There are several ways to launch the instal-

lation process and generally the procedure is dependent on the way you obtained the

software:

Download:

Generally a download is used for either updating the software, or for demon-

strations, for whatever reason if you downloaded the software from our web site

(http://www.systemstech.com), select the Downloads option and then select the ap-

propriate files (generally Buildxxxxx.EXE) then the installation is a 2-step process:

1. Run the self extracting Buildxxxxx.Exe program. This will extract a group

of files that will then be used to perform the actual installation. If you run

the Buildxxxxx.Exe program, it will request the name of the folder where the

extracted files will be placed. Enter the name of a temporary folder and then

click on the Unzip button:
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Figure 4.1: Run BuildXXXX.exe

2. In the temporary folder that the files were extracted into, run the Setup.Exe

program and follow the prompts.

Note:

If you have a wide field of view system, you will also need to download the file

SideBuildxxxxx.Exe for use on the side computers. If you have an Open Module

system, you will need to download the OMBuildxxxxx.Exe file also.

If you will be installing an Advanced Dynamics system you will need to download

the following 2 files:

CoreInstallv7xxxx.exe

VDANLDriveInstallv7xxxx.exe

The file CoreInstallv7xxxx.exe contains the core dynamics kernel files and all of
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the help files and is required for both applications. VDANLDriveInstallv7xxxx.exe

contains the installation files for the real-time version of VDANL (VDANL Drive)

that is used with STIs real-time driver-in-the-loop driving simulator STISIM Drive.

The first step is to download the 2 files. When downloading, simply save the files

to a temporary folder so that they can be used later. The second step is to create

folders so that you can keep track of the different installations. Using Windows Ex-

plorer, create a folder named VDANL Install in the root folder (C:). Now open this

folder and create the following folders:

VDANL Core

VDANL Drive

Now copy each of the downloaded files into the appropriate sub folder that was just

created and run the file. This will extract the individual installtion files that will be

discussed later.

CD-ROM:

If you are installing from a CD-ROM, then there are a couple of options for in-

stalling the software. When you place the disk in the CD-ROM drive and close it, a

dialog window similar to the following should be displayed:

Depending on the type of system that you have, you can select what you would like

to do by using the mouse to highlight the desired option (active options are displayed
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Figure 4.2: CD ROM Window

in yellow) and then clicking on the option to initiate the installation. If this option

does not appear after placing the CD in the drive, then you can run the installation

by finding the appropriate folder (Center System, Dynamics System, Open Module,

or Side System) and running the appropriate Setup.Exe file from the folder.

STISIM Drive has an installation procedure that should always be used when in-

stalling the software. This is required because of the number of DLL files and device

drivers that STISIM Drive requires in order to run. If all of the files are not located in

the proper folders STISIM Drive will crash and tracking the reason for the crash can

become extremely time consuming. Because of this, it is not recommended that you
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try to do a direct copy from one computer to another, instead, use the installation

disk provided. The installation itself is pretty easy. Log onto your computer with the

account where STISIM Drive will be used (make sure this account has administrative

privileges) and simply execute the installation from the installation disk and follow

the prompts that are presented to you. In general you will always choose the ”Next”

option. Once the program has been installed, you will be asked if you want to restart

the computer. Because several new device drivers have been installed it is always

best to restart the computer. Most of the files for STISIM Drive are also included

on the installation disk in a directory named Install Data. This allows you to copy

individual files onto your system if anything happens to the original installation files,

without having to re-install the entire program.

During the installation process several shortcuts to STISIM Drive will be installed

on your computer system. The first will be installed directly in the start menu that

appears when you click on Windows Start button. The second, will be setup on your

desktop so that you will have easy access by double clicking on a desktop icon. Fi-

nally, the installation will setup a STISIM Drive folder that contains a shortcut to

the STISIM Drive program as well as other programs that were installed during the

setup process. Any of these options can be used to activate the program.

Uninstalling the STISIM Drive program is also fairly straight forward. Simply

go to Windows Control Panel and use the Add/Remove Programs option and scroll
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down until you find the STISIM Drive reference. Selecting it and clicking on the

Change/Remove button will allow you to uninstall the software and its original files,

including any new device drivers and DLLs that were installed and are exclusive to

STISIM Drive.

Center System:

To install STISIM Drive on the center computer system, simply put the CD into

your drive and wait for the STISIM Drive Installation window to open. Move the

mouse cursor over the option Center System on figure 4.2 until it changes colors and

then use the left mouse button to click on it. This will start the installation process.

If after several seconds, the STISIM Drive Installation window does not appear,

use Windows Explorer to access the CD-ROM, open the Center System folder and

double click on the Setup.Exe application.

VERY IMPORTANT: If you have a USB hardware protection key (dongle) do

not plug it in until after you have completed the STISIM Drive installation.

Once the installation begins running you will be bombarded with various informa-

tion screens, such as the preparing to install screen which basically tells you that the

software is preparing to install.
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Side Systems:

If you have purchased a wide field of view system, you will have to perform a

software installation on each of the side machines. However, before installing the

software on the side computers, make sure that they have been properly setup and

configured correctly as specified in the Networking and DCOM sections of the hard-

ware configuration guide.

As with the Center System, when you place the CD-ROM into your disk drive,

after a few seconds the STISIM Drive Installation window should appear. Use the

mouse to move the cursor on figure 4.2 so that the Side Systems label is highlighted

(changes colors) and then click using the left mouse button to initiate the installation

process:

If after several seconds the STISIM Drive Installation window does not appear, you

can install the software directly by opening Windows Explorer, pointing to your CD-

ROM drive, opening the folder Side System, and double clicking on the file Setup.Exe.

At this point all you will need to do is follow the directions just like with the

Center system. The side system installation looks almost exactly the same as the

center system installation until you reach the end where you must select the type

of system being installed. Previously you selected the systems model number, now
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instead of the model number you must select the side system being installed.

Like with the Center display system you must also select if the nVidia advanced

monitor support is turned on or off. Clicking on the Apply button should then con-

figure your system. You should then reboot.

Unfortunately, this is not the end of the journey when installing a wide field of

view system because the side computers use Distributed Common Object Modules

(DCOM) in order for the center system to control them and this also needs to be setup.

Basically what DCOM provides is a way for the center computer to launch/terminate

software that will run on the side computersr computers, thus you do not have to go

to each computer and run the software yourself. When DCOM is successfully config-

ured, when you select to run a scenario the software will automatically be launched

on the side computers and communication between machines will commence. This

means that the side computers can basically sit there and require no interaction ex-

cept when booting up or shutting down. Refer to the hardware configuration section

for the intricacies of configuring DCOM.



CHAPTER 5

ROADWAY NETWORK GEOMETRY

For the driving simulation, the transportation scenario can be modeled as either

corridor-level or network-level. For example, STISIM Drive (12) supports only the

corridor-level scenario; that is, a users decision to take a turn at any intersection is

immaterial. As a result, a scenario required to capture a network of roads cannot

be modeled because it will provide the same road geometry and virtual environment.

The architecture developed in this current research aims at both corridor-based and

network-based scenarios.

In a driving simulator where microscopic models are used for surrounding traffic,

accurate network geometry is important. Small variations can affect speeds of the

vehicles in surrounding traffic. Traffic controls and signal timings have a considerable

influence on drivers behaviors due to their acceleration/deceleration actions. Impre-

cise representation of network components – such as the link length, left-turn and

right-turn bays etc., can significantly affect driving simulator application fidelity.

The actual road network data of a city can be obtained from Open Street Maps (OSM)

(14) in .xml format; it includes latitude, longitude, street names, intersection details,

and horizontal curve information. The OSM, which is a set of world maps maintained

by users across the globe, has all the freeways, major roads, and many minor streets
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of every major city. Since these maps belong to an open source community, they

are maintained by the users across the world by giving access to network data for

most of the cities. This expands the scope of the simulator software eventually to be

applicable worldwide. The OSM data can be used to generate the network of roads

in the VR of the simulator. Missing data, such as lane information, traffic control at

intersections, and signal timings, can be obtained from local or state agencies as well

as from any of the available simulation models; then this data can be merged with

the OSM data.

Implementation

In this research, the transportation network of Las Vegas, Nevada was created, based

on the data obtained from the OSM. Lane information data, traffic control, and signal

timings were mapped from the existing Las Vegas model in DynusT. To obtain the

correct mapping of a network, the coordinates of nodes from the OSM were matched

to coordinates of nodes of the Las Vegas DynusT model. The OSM data combined

with the DTA data gave the capability to automate the generation of networks for

the VR environment. A part of the Las Vegas roadway network created through this

approach is shown in Figure 13.1. This methodology reduced the time to generate a

roadway network by multiple folds, and can be used to generate VR for any city.

Details regarding this methodology are discussed in Chapter 6 of this section.
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Figure 5.1: Generated network on blender using open street map



CHAPTER 6

HYBRID SIMULATION MODEL

Primarily, driving simulators are used to study driver behavior and interactions of

the driver with surrounding traffic. This requires microscopic simulation of surround-

ing vehicles in the neighborhood of user-driven vehicle. The sophisticated microscopic

simulation models, such as CORSIM (21), AIMSUM (22), PARAMICS (23), VISSIM

(24), or MITSIM (25), are not required. Therefore, the microscopic model in a hybrid

simulation model implemented in this research considers only a car-following model

with lane changing and gap-acceptance characteristics.

Different driving simulators use microscopic simulation, depending upon the number

of vehicles travelling around the user-driven vehicle with the help of such survey data

as hourly volumes/distributions (12), the desired traffic density in the simulation at

the visible zone of the driver (26, 27). However, if a driver is involved in a crash, such

effects as congestion and queue spillback will affect the drivers road/link as well as the

network of roads nearby. Microscopic simulation can capture these effects; however,

the computational and time requirements will increase with the size of the network.

Therefore, in order to capture network dynamics as a result of a drivers behavior,

other than the road used by driver, an improved model is required. This can be

achieved by employing a mesoscopic simulation that involves less computational and
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time requirements by compromising simulation fidelity and detail (28). In order to

capture both the micro-level vehicle dynamics on a road where user-driven vehicle is

present and also the traffic dynamics at other places in network, a hybrid simulation

model that integrates a microscopic and mesoscopic simulation model was chosen for

the research. Integrating the microscopic with mesoscopic models concur with ag-

gregation/disaggregation of the flows because of the simulation of individual vehicle

dynamics, which otherwise becomes an issue with macroscopic model integration (29,

30).

To the best of our knowledge, so far, the only study that used a hybrid simulation

model for a driving simulator is research developed by Olstam et.al. (27). A hybrid

traffic simulation model was applied in a driving simulator to generate and simulate

surrounding vehicles that are realistic. The model that was developed only simulated

the closest area of the driving simulators vehicle. The area was divided into one inner

region and two outer regions. Vehicles in the inner region were simulated according

to a microscopic model, while vehicles in the outer regions were updated according

to a mesoscopic model. The authors mentioned that the further research is required

to address the following in their model:

• Arterials and freeways with three or more lanes;

• Ramps on freeways and intersections on rural roads;

• Simulation of urban traffic conditions; and

• Simulation on roadway networks.



30

The hybrid simulation model in development is aimed at addressing these limitations.

The critical steps to be considered while developing hybrid simulation models are the

compatibility of two different traffic flow models as well as the propagation of traffic

conditions at interfaces (31). Traffic propagation at interfaces should be analyzed

both at free-flow conditions and at congested conditions. At free-flow conditions,

conservation of vehicles can be easily achieved if traffic flows are satisfied at upstream

and downstream interfaces in both the models. Under congested conditions, shock

waves moving forward and backward can be formed, which can be produced from

both models individually (31).

Although mesoscopic models follow traffic flow theory, the vehicles move in an ag-

gregate level. However, in microscopic models, vehicles move according to individual

vehicle dynamics. So, at interfaces of meso to micro and micro to meso transitions,

traffic propagation both upstream and downstream has to be considered. Due to

integration of different resolution models, data exchange is required. Based on their

updating time steps, it is necessary to define times when both the models will know

the state of system simultaneously, thus controlling data exchange (32). These steps

will be considered during the development of the hybrid simulation model for the

simulation of surrounding vehicles in the driving simulator.

Implementation The proposed hybrid simulation model integrates the DynusT

(16), a simulation-based dynamic traffic assignment mesoscopic model, with a mi-

croscopic simulation model, a car-following model with lane changing behaviors and
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gap-acceptance characteristics. This approach considers the effects due to interaction

between the user and surrounding vehicles, not only in the microscopic simulation

region but also in other regions of the network. Integration is dependent upon iden-

tifying the region where the microscopic simulation model has to be implemented.

Identification of such a region is defined around the user-driven vehicle. The motion

of the users is not deterministic; that is, the users are not fixed to traverse in any

particular region of the whole network. The region governing the micro simulation,

called the Sim zone, has to move along with the user. This can be achieved by the

following methods:

• Method 1 (Moving Sim zone). Apply the microscopic simulation model only

on the roadway link where the user is present, but show the VR environment

to the extent of the drivers visibility limit. Apply mesoscopic simulation on

links other than that of the drivers link. In this method, the Sim zone will keep

moving over the link chosen by the user.

• Method 2 (Fixed Sim zone). Apply the microscopic simulation model for the

entire zone with reference to the position of the user, and show the VR environ-

ment to the extent of the drivers visibility limit. Apply mesoscopic simulation

on links other than those inside the fixed Sim zone. In this method, the Sim

zone is the fixed zone with respect to the user, and can intersect the links as

well as the surrounding area.
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Both the above methods will generate results; the best method can be decided

after the implementation. Once the region is identified, the problem of conserving

vehicles should be solved at the boundary of mesoscopic and microscopic integration.

The mesoscopic simulation network is assumed to be the parent, and the microscopic

simulation region is assumed as its child. The data generated by mesoscopic simula-

tion inside the Sim zone is updated based on microscopic models. The proposed data

exchange between mesoscopic and microscopic simulation regions reduces database

and communication overheads.



CHAPTER 7

USER-DRIVEN VEHICLE DYNAMICS MODEL

For driving simulators, realism of the experience is a key factor. A part of the real-

ism is the motion feedback that is generated to keep the user in the simulated reality.

This motivates the user to perform as they would in a real-life scenario. Therefore,

the user-driven vehicle in VR should be able to reproduce the effects of vehicle dy-

namics in actual reality. This also generates certain physiological and psychological

states of the driver, which is an interesting area of research. Motion-axis simulators

come in varying DOFs, typically ranging from two to fourteen DOFs (8-13, 26). Im-

plementation of the motion dynamics to such simulators implies understanding the

need for the user experience, thus weeding out unnecessary computations. This is the

primary reason to focus on 3-DOF and 6-DOF models for implementation of vehicular

dynamics.

Implementation

The simulation of vehicle dynamics is implemented on a 3-Degrees Of Freedom (DOF)

motion base, purchased from SimCraft. The orientation of the chassis for the user-

driven vehicle model in VR – and the reaction due to acceleration/deceleration –

is mapped to the 3-DOFs of the hardware. The hardware used in this study has a
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limited workspace, since it has only 3-DOFs, but can realistically reproduce most of

the vehicle dynamics. In the future, 6-DOF hardware will be implemented, popularly

known as Stewarts Platform. After realization, user-driven vehicle model will have

the capability to use 3-DOF and 6-DOF motion base.



CHAPTER 8

PEDESTRIAN, BICYCLE AND MOTORCYCLE SIMULATOR

Pedestrians are an integral part of any transportation project. Existing pedes-

trian models (33, 34) require detailed data collection for the analysis of the interac-

tion between pedestrians and vehicles. Recently, more studies (35) started to focus on

pedestrian and driver behaviors at crosswalk locations, where pedestrians and vehicles

often interact. These studies, intended to determine pedestrian and driver behaviors,

collected such pedestrian data as estimated age, gender, observing behavior (e.g.,

head movement), time spent on the road crossing, direction of travel, and location of

the pedestrian in or out of the crosswalk area. Likewise, studies also noted motorists

behaviors, including vehicle speed, type of vehicle, direction of travel, and pedestrian

activity within the drivers observation zone. With the help of such data, interaction

between pedestrian and drivers were modeled; however, these models could not re-

produce the reality. To overcome such problems and capture realistic interactions, a

pedestrian simulator networked with driving simulator was required. This necessity

motivated the authors to introduce a pedestrian simulator networked with a driving

simulator. This system was first of its kind in the field of driving simulators research.

Sensors that identify natural interactions are the key for implementation for a suc-

cessful pedestrian simulator. Natural Interaction (36) is defined in terms of experi-

35



36

ence: people naturally communicate through gestures, expressions, movements, and

discover the world by looking around and manipulating physical stuff; the key as-

sumption here is that they should be allowed to interact with technology as they

are used to interact with the real world in everyday life, as evolution and education

taught them to do.

According to a report by the National Highway Traffic Safety Administration (NHTSA)

(37), every year at least 50% of the motorcycle fatal crashes involve single vehicle

crashes; of that percentage, 41% had a blood alcohol concentration of .08 g/dL or

higher. Safety is the primary concern not only for car drivers but motorcycle riders

too. Motorcycles are a widely acclaimed mode of transport worldwide. In the last

decade, two wheeler crashes have been on the increase. Because driving simulators

enable researchers to perform behavioral studies under safe conditions, a motorcycle

simulator should be included in the network of the driving simulator. For the same

reason, the bicycle simulator can be built and networked to this driving simulator

system. The proof of concept study is in progress for motorcycle and bicycle simula-

tor components.

Implementation

The pedestrian simulator is composed of state-of-the-art Natural Interaction Sensors

(Microsoft KinectTM) coupled with a head-mounted display. MS KinectTM comes

with a 3D sensor which identifies joints, body structure, facial features and voice.

These basic elements can then be used to identify any human gesture. With the
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help of this technology, a gesture for on the spot walking can be identified and run

through the pedestrian simulation model (microscopic). The pedestrian (subject)

is immersed into VR environment using head mounted display and the pedestrian

simulation model of the system for the generated graphics and resulting interactions

are recorded. Such interactions between the pedestrian simulator and the traffic

simulations create variances due to individual user behavior on the road. Using such

interactions, the data collected through pedestrian simulator will lend insight in their

behavior.



CHAPTER 9

VIRTUAL REALITY ENVIRONMENT

A Virtual Reality environment is a simulated reality for any user. It is primarily

a visual experience shown on stereoscopic or computer displays. The seven differ-

ent concepts of virtual reality are: simulation, interaction, artificiality, immersion,

tele-presence, full-body immersion, and network communication (38). VR enables

interaction between simulations and users, thus providing an immersive experience

into an artificial world. Such an environment has the objective to be perceived realis-

tically within the bounds of the specifications defined by the hardware and software.

Visual perception in driving simulator is dependent primarily on graphically render-

ing a 3D world, including details like trees, buildings, landmark objects, and roadside

objects along with surrounding traffic. Generally, a 3D world is created by placing 3D

models by using a SDL (12) or else by editing the 3D world by means of GUI, using

imported 3D models (13). These methods have become a time-consuming process

as the size of the network and the number of 3D models grows, thus generating a

need to automate the process. A challenging problem in automation is creating and

deploying 3D models at exact locations without deforming their sizes and shapes.

Microscopic simulation model regulate creation of 3D vehicle and pedestrian objects

in users visibility limit, Driving characteristics for individuals change significantly due
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to different weather and light conditions, thus playing a vital role in drivers behaviors.

To capture such driving characteristics, visual implementation of these conditions is

very important.

Current research provides an insight into strategies that can be employed for au-

tomating the generation of a 3D world. This is achieved by exploiting the method to

generate a simulation network, and replaces traditional SDL and GUI editing-based

scenario generation with a data driven approach. The data-driven approach is made

of layered architecture in a hierarchical way; each layer corresponds to the generation

of specific objects of a 3D world, using data obtained from various sources. The as-

sociated tasks at each layer can run in parallel.

Implementation The layered architecture for the generation of a 3D VR world

used in this current research is shown in Figure 4. The user relates a virtual world to

a real world by the 3D virtual environment of the roadway system. In this research,

a list of landmarks is created and exported with the help of Google Earth. The 3D

models of the exported list are obtained from Google SketchUp (39) or else created in

Blender. Landmarks are those objects that are easily recognizable, such as popular

buildings or historical structures. The purpose for including landmarks is to provide

a perception of familiarity inside the 3D world. The placement of these models is

automated based on their latitudes and longitudes. The automation of other objects

like trees, buildings, and such roadside components as mailboxes, water pumps, fire

hydrants, bus stop shelters, and street lights, is generated and placed randomly, based
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on certain rules. These can be edited later, according to reality.

The hybrid simulation model creates car objects and pedestrians for simulation pur-

poses. Since the interaction of traffic and pedestrians with user-driven vehicles is

limited to the Sim region, the 3D objects generated in the VR world are to the

extent of users visibility limit. The region covered by the visibility limit extends

both front and behind the user-driven vehicle. This generated visualization, up to

a visibility limit, consists of pedestrians as well as different classes of vehicles, such

as cars, trucks, and semis. The vehicle objects are designed to operate intelligently

by following traffic lights and signs, yielding to pedestrians, and acting according

to surrounding objects. To obtain a realistic pedestrian distribution, the generated

pedestrian objects operate according to requirements of the pedestrian simulation

models. To save computational resources, all the graphical objects in the 3D VR will

be destroyed when they leave the user visibility limit. Different levels of visibility

occur due to conditions like sun, wind, snow, or fog and also day or night. These

conditions are reproduced in the 3D world using various rendering techniques like

shading, reflections, and shadows.
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Figure 9.1: Layer-architecture for virtual reality generation



CHAPTER 10

DATA COLLECTION

Generally, driving simulators collect data on human factors. High fidelity driv-

ing simulators also capture eye-tracking, psychological data, and physiological data.

This architecture aims at comprehensive data collection that includes vehicle char-

acteristics data, such as lateral position, vehicle path, vehicle heading angle; driving

behavior data, like acceleration, braking, time to collision; such psychological data as

that derived from electroencephalograms; and physiological data derived from elec-

trocardiograms, galvanic skin response, and body temperature.

The integrated hybrid simulation engine will collect data for traffic performance mea-

sures. This data can be post processed to calculate network level emission and safety.

Further, microscopic details on traffic performance can be collected on links that the

driver will traverse. The data collection module is integrated in every player which

will record their individual driving/walking behaviors. The server data collection

module groups data based on the motion type – car, bike, or pedestrian – and the

number of players. This data then can be processed and analyzed by means of built-

in analytical models, according to requirements. The entire simulation run can be

recorded at each player as well as at the server.
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CHAPTER 11

INTRODUCTION & LITERATURE SURVEY

A vast number of studies, for example (1-5), have illustrated the potential of driv-

ing simulators to analyze actual driver behavior for multiple purposes such as traffic

safety and information provision. The history of driving simulators can be traced

back to the 1920s, with research for various purposes (6). In the 1980s, Daimler-Benz

(7) developed a high-fidelity driving simulator, encouraging others to develop new

and even better simulators. Several researchers and commercial companies developed

driving simulators, starting from fixed-based simulators to the most advanced sim-

ulators known today. Some of the newest driving simulators include: the National

Advanced Driving Simulator (NADS), funded by NHTSA and maintained by the

University of Iowa (8); the Driving Environment Simulator (DES), developed by the

University of Minnesota (9) in collaboration with AutoSim and Realtime technolo-

gies; the VTI Simulator IV by the Swedish National Road and Transport Research

Institute (10); the DriveSafety driving simulator by the University of Michigan Trans-

portation Research Institute (UMTRI) (11); the STISIM Drive driving simulator by

System Technology Inc., (12) and the UC-win/Road driving simulator by FORUM8

(13).

The National Advanced Driving Simulator (NADS) Laboratory (8) at the University
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of Iowa has some very advanced driving simulators including: NADS-1, NADS-2, and

the MiniSim simulator. NADS-1 is an advanced motion-based ground vehicle simu-

lator. NADS-2 is similar to NADS-1 but fixed-based. The MiniSim is a PC-based,

high-performance driving simulator that uses the same technology as NADS-1. Min-

iSim can be used at a lower cost than NADS-1 and NADS-2 because it is portable,

and easy to set up and operate.

The Human Factors Interdisciplinary Research in Simulation and Transportation Pro-

gram (HumanFIRST) at the University of Minnesota (9) has the Driving Environ-

ment Simulator (DES). DES is an immersive driving simulator that provides high

fidelity simulation to generate a realistic presence within the simulated environment.

DES measure psycho-physiological responses, including brain activity – for example,

Evoked Response Potential (ERP). DES also includes highly accurate eye-tracker

software. HumanFIRST also has a portable, low-cost driving simulator that uses the

same technology as DES.

UCwin/Road (13) is a Virtual Reality (VR) environment where the driver can navi-

gate in a 3D space. The environment, including a traffic simulation and visualization

tool, uses ground texture maps and can include 3D building images. The environment

also includes traffic generation models to generate traffic on various lanes and roads.

Although the existing driving simulation models provide tremendous capabilities to

study driving behavior in a safe and controlled environment, there are multiple as-

pects of the real word that can be addressed to significantly enhance modeling realism.

This study proposes an architecture for an interactive motion-based traffic simulation
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environment. In order to enhance modeling realism, the proposed architecture inte-

grates multiple types of simulation, including: (i) a motion-based driving simulation;

(ii) a pedestrian simulation; (iii) a motorcycling and bicycling simulation; and (iv)

a traffic flow simulation. This integration enables the simultaneous and interactive

interaction between actual and simulated drivers, pedestrians, and bike riders. In

addition, the architecture provides capabilities to simulate the entire network at a

reasonable price; in this way, the drivers, pedestrians, and bike riders can navigate

anywhere in the system.

To increase modeling realism, the proposed architecture enables the actual humans

to experience background traffic while the effects of the actual human decisions are

also experience by the background traffic. To achieve this interaction, the background

traffic is modeled using a hybrid meso-microscopic traffic flow simulation modeling

approach. The mesoscopic traffic flow simulation module of the hybrid model loads

the results of a user equilibrium traffic assignment solution and propagates the cor-

responding traffic through the entire system. The microscopic traffic flow simulation

model provides background traffic around the vicinities where actual human beings

are navigating the system. The two traffic flow simulation models interact continu-

ously to update system conditions based on the interactions between actual humans

and the fully simulated entities. The interaction between actual and background

traffic has tremendous implications. For example, in the real world, an accident as

consequence of a human error, can affect a large portion of the traffic system. These

types of scenarios are of significant interest for a number of applications. They can
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be easily modeled using the proposed architecture.

Implementation efforts are currently in progress, and some preliminary tests of indi-

vidual components have been conducted.The implementation of the proposed archi-

tecture faces significant challenges ranging from multi-platform and multi-language

integration to multi-event communication and coordination. To address some of those

challenges and achieve the greatest benefits at the lowest cost, state-of-the-art tech-

nologies are currently been used to implement the proposed architecture. Some of

these technologies include: (i) Open Street Maps (OSM) (14); (ii) Blender (15); (iii)

DynusT (16); CORBA; and free SDKs, such as MS Kinect (17) and Ardunio (18). The

proposed architecture is here called Networked Motion-based Interactive PEdestrian

and Driving Simulator (n-MIPEDS). Although, particular suggestions to implement

the proposed architecture are provided here, the conceptual architecture is general

and can be implemented using multiple technologies. Appropriate modules can be

developed depending on available hardware. In particular, this study uses a SimCraft

three-axis motion-based driving simulator.



CHAPTER 12

SYSTEM ARCHITECTURE

At the core, a driving simulator is about collection of responses/behaviors for cor-

responding stimuli to users within a controlled environment. This research focuses

on a driving simulator and a simulation environment that recreates the real world

as well as motion simulation. In addition to developing the driving simulation, this

research integrates the pedestrian simulation, bicycle and motorcycle simulation and

traffic simulation onto one platform. Simulator associated with different simulation

can be called a player; thus, a multiplayer architecture evolves as each player is con-

nected over a communication network (LAN or internet). Therefore, defining a set of

requirements of such a system in terms of hardware and software is important. For

this, the system architecture diagram and data flow diagram are shown in Figure 12

and 12, respectively.

The different modules shown in Figure 12 are described as:

• Motion based driving simulator: With the help of a motion base, the

vehicle dynamics can be felt on driving simulation as vehicle traverses through

the system. The integration of the vehicle dynamics model for a user-driven
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vehicle was done on a motion base having 3 Degrees of Freedom (3DoF), bought

from SimCraft. This simulator consists of a computer CPU with graphics card,

a display setup comprising of Liquid Crystal Display (LCD) screen, a 3DoF

motion base, and joystick.

• Pedestrian Simulator: This is a unique approach to understanding the be-

havior of pedestrians by actually putting a user in various simulated conditions.

Proof of Concept (PoC) was tested using ArduinoTM, and implementation is

in progress using Microsoft KinectTM. This consists of a computer CPU with

graphics card, a HUD, and Microsoft KinectTM.

Figure 12.1: System architecture of n-MIPEDS. The images of bicycle and motorcycle
simulators are indicative only. Copyright: Honda
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• Bicycle and Motorcycle Simulator: This is also a unique approach for un-

derstanding the behavior of motorcycles and bicycles on the road. This simula-

tor has a motion base to simulate a self-powered or fuel-powered bike. Testing

for proof of concept to be done. This consists of a computer CPU with a graph-

ics card, a Head-Up-Display (HUD) setup or LCD screen, a motion base, and

a joystick.

• Simulation server: This server has a high end computer CPU with at least a

7200-rpm SATA Drive or SSD, and 8GB of RAM running Microsoft Windows

64bit edition. Networking hardware requires a 1000BaseT Gigabit Ethernet as

well as the necessary routers and switches to realize the network.

Figure 12.2: Data flow diagram.

The various modules of Figure 12 are described as follows:
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• Hybrid Simulation Model: In traffic simulation, a hybrid simulation model

will be used to capture the dynamics of surrounding vehicles over distributed

computing, creating a Multi-Agent System (MAS). A MAS is defined as a set of

combination of software and human entities which coordinate their knowledge,

goals and plans to act or solve problems (19).

• Virtual Reality (VR): This component creates a simulation world and asso-

ciated 3D graphics to generate images and audio, aiming to provide a means

of realistic association of the current situation. Hence, it guides the user and

provides necessary input for making a decision.

• Vehicle Dynamics: Vehicle dynamics determine the behavior of the vehicle in

the VR world, using a physics engine. It controls the motion base of a vehicle

as specified, and thus reproduces a realistic driving experience. This controls

the input-output for simulator.

• Data Collection and Analysis: This module collects various kinds of data

for analysis, including drivers and pedestrians behaviors and associated psycho-

logical and physiological data, along with traffic performance measures.

• Networking Module: This module is a distributed system consisting of multi-

ple autonomous computers that compute using communication over a network;

this is known as distributed computing. As shown in Figures 1 and 2, it can

be asserted that a distributed computation system has been envisioned, and

therefore a networking module is required. Various modules of software are in
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different development environments, therefore Common Object Request Bro-

ker Architecture (CORBA) is used because it allows interoperability since the

standard is independent of any development language or platform (20).



CHAPTER 13

ROADWAY NETWORK GEOMETRY

For the driving simulation, the transportation scenario can be modeled as either

corridor-level or network-level. For example, STISIM Drive (12) supports only the

corridor-level scenario; that is, a users decision to take a turn at any intersection is

immaterial. As a result, a scenario required to capture a network of roads cannot

be modeled because it will provide the same road geometry and virtual environment.

The architecture developed in this current research aims at both corridor-based and

network-based scenarios.

In a driving simulator where microscopic models are used for surrounding traffic,

accurate network geometry is important. Small variations can affect speeds of the

vehicles in surrounding traffic. Traffic controls and signal timings have a considerable

influence on drivers behaviors due to their acceleration/deceleration actions. Impre-

cise representation of network components – such as the link length, left-turn and

right-turn bays etc., can significantly affect driving simulator application fidelity.

The actual road network data of a city can be obtained from Open Street Maps (OSM)

(14) in .xml format; it includes latitude, longitude, street names, intersection details,

and horizontal curve information. The OSM, which is a set of world maps maintained

by users across the globe, has all the freeways, major roads, and many minor streets
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of every major city. Since these maps belong to an open source community, they

are maintained by the users across the world by giving access to network data for

most of the cities. This expands the scope of the simulator software eventually to be

applicable worldwide. The OSM data can be used to generate the network of roads

in the VR of the simulator. Missing data, such as lane information, traffic control at

intersections, and signal timings, can be obtained from local or state agencies as well

as from any of the available simulation models; then this data can be merged with

the OSM data.

Implementation

In this research, the transportation network of Las Vegas, Nevada was created, based

on the data obtained from the OSM. Lane information data, traffic control, and signal

timings were mapped from the existing Las Vegas model in DynusT. To obtain the

correct mapping of a network, the coordinates of nodes from the OSM were matched

to coordinates of nodes of the Las Vegas DynusT model. The OSM data combined

with the DTA data gave the capability to automate the generation of networks for

the VR environment. A part of the Las Vegas roadway network created through this

approach is shown in Figure 13.1. This methodology reduced the time to generate a

roadway network by multiple folds, and can be used to generate VR for any city.

Details regarding this methodology are discussed in Chapter 6 of this section.



54

Figure 13.1: Generated network on blender using open street map



CHAPTER 14

HYBRID SIMULATION MODEL

Primarily, driving simulators are used to study driver behavior and interactions of

the driver with surrounding traffic. This requires microscopic simulation of surround-

ing vehicles in the neighborhood of user-driven vehicle. The sophisticated microscopic

simulation models, such as CORSIM (21), AIMSUM (22), PARAMICS (23), VISSIM

(24), or MITSIM (25), are not required. Therefore, the microscopic model in a hybrid

simulation model implemented in this research considers only a car-following model

with lane changing and gap-acceptance characteristics.

Different driving simulators use microscopic simulation, depending upon the number

of vehicles travelling around the user-driven vehicle with the help of such survey data

as hourly volumes/distributions (12), the desired traffic density in the simulation at

the visible zone of the driver (26, 27). However, if a driver is involved in a crash, such

effects as congestion and queue spillback will affect the drivers road/link as well as the

network of roads nearby. Microscopic simulation can capture these effects; however,

the computational and time requirements will increase with the size of the network.

Therefore, in order to capture network dynamics as a result of a drivers behavior,

other than the road used by driver, an improved model is required. This can be

achieved by employing a mesoscopic simulation that involves less computational and
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time requirements by compromising simulation fidelity and detail (28). In order to

capture both the micro-level vehicle dynamics on a road where user-driven vehicle is

present and also the traffic dynamics at other places in network, a hybrid simulation

model that integrates a microscopic and mesoscopic simulation model was chosen for

the research. Integrating the microscopic with mesoscopic models concur with ag-

gregation/disaggregation of the flows because of the simulation of individual vehicle

dynamics, which otherwise becomes an issue with macroscopic model integration (29,

30).

To the best of our knowledge, so far, the only study that used a hybrid simulation

model for a driving simulator is research developed by Olstam et.al. (27). A hybrid

traffic simulation model was applied in a driving simulator to generate and simulate

surrounding vehicles that are realistic. The model that was developed only simulated

the closest area of the driving simulators vehicle. The area was divided into one inner

region and two outer regions. Vehicles in the inner region were simulated according

to a microscopic model, while vehicles in the outer regions were updated according

to a mesoscopic model. The authors mentioned that the further research is required

to address the following in their model:

• Arterials and freeways with three or more lanes;

• Ramps on freeways and intersections on rural roads;

• Simulation of urban traffic conditions; and

• Simulation on roadway networks.
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The hybrid simulation model in development is aimed at addressing these limitations.

The critical steps to be considered while developing hybrid simulation models are the

compatibility of two different traffic flow models as well as the propagation of traffic

conditions at interfaces (31). Traffic propagation at interfaces should be analyzed

both at free-flow conditions and at congested conditions. At free-flow conditions,

conservation of vehicles can be easily achieved if traffic flows are satisfied at upstream

and downstream interfaces in both the models. Under congested conditions, shock

waves moving forward and backward can be formed, which can be produced from

both models individually (31).

Although mesoscopic models follow traffic flow theory, the vehicles move in an ag-

gregate level. However, in microscopic models, vehicles move according to individual

vehicle dynamics. So, at interfaces of meso to micro and micro to meso transitions,

traffic propagation both upstream and downstream has to be considered. Due to

integration of different resolution models, data exchange is required. Based on their

updating time steps, it is necessary to define times when both the models will know

the state of system simultaneously, thus controlling data exchange (32). These steps

will be considered during the development of the hybrid simulation model for the

simulation of surrounding vehicles in the driving simulator.

Implementation The proposed hybrid simulation model integrates the DynusT

(16), a simulation-based dynamic traffic assignment mesoscopic model, with a mi-

croscopic simulation model, a car-following model with lane changing behaviors and
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gap-acceptance characteristics. This approach considers the effects due to interaction

between the user and surrounding vehicles, not only in the microscopic simulation

region but also in other regions of the network. Integration is dependent upon iden-

tifying the region where the microscopic simulation model has to be implemented.

Identification of such a region is defined around the user-driven vehicle. The motion

of the users is not deterministic; that is, the users are not fixed to traverse in any

particular region of the whole network. The region governing the micro simulation,

called the Sim zone, has to move along with the user. This can be achieved by the

following methods:

• Method 1 (Moving Sim zone). Apply the microscopic simulation model only

on the roadway link where the user is present, but show the VR environment

to the extent of the drivers visibility limit. Apply mesoscopic simulation on

links other than that of the drivers link. In this method, the Sim zone will keep

moving over the link chosen by the user.

• Method 2 (Fixed Sim zone). Apply the microscopic simulation model for the

entire zone with reference to the position of the user, and show the VR environ-

ment to the extent of the drivers visibility limit. Apply mesoscopic simulation

on links other than those inside the fixed Sim zone. In this method, the Sim

zone is the fixed zone with respect to the user, and can intersect the links as

well as the surrounding area.
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Both the above methods will generate results; the best method can be decided

after the implementation. Once the region is identified, the problem of conserving

vehicles should be solved at the boundary of mesoscopic and microscopic integration.

The mesoscopic simulation network is assumed to be the parent, and the microscopic

simulation region is assumed as its child. The data generated by mesoscopic simula-

tion inside the Sim zone is updated based on microscopic models. The proposed data

exchange between mesoscopic and microscopic simulation regions reduces database

and communication overheads.



CHAPTER 15

USER-DRIVEN VEHICLE DYNAMICS MODEL

For driving simulators, realism of the experience is a key factor. A part of the real-

ism is the motion feedback that is generated to keep the user in the simulated reality.

This motivates the user to perform as they would in a real-life scenario. Therefore,

the user-driven vehicle in VR should be able to reproduce the effects of vehicle dy-

namics in actual reality. This also generates certain physiological and psychological

states of the driver, which is an interesting area of research. Motion-axis simulators

come in varying DOFs, typically ranging from two to fourteen DOFs (8-13, 26). Im-

plementation of the motion dynamics to such simulators implies understanding the

need for the user experience, thus weeding out unnecessary computations. This is the

primary reason to focus on 3-DOF and 6-DOF models for implementation of vehicular

dynamics.

Implementation

The simulation of vehicle dynamics is implemented on a 3-Degrees Of Freedom (DOF)

motion base, purchased from SimCraft. The orientation of the chassis for the user-

driven vehicle model in VR – and the reaction due to acceleration/deceleration –

is mapped to the 3-DOFs of the hardware. The hardware used in this study has a
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limited workspace, since it has only 3-DOFs, but can realistically reproduce most of

the vehicle dynamics. In the future, 6-DOF hardware will be implemented, popularly

known as Stewarts Platform. After realization, user-driven vehicle model will have

the capability to use 3-DOF and 6-DOF motion base.



CHAPTER 16

PEDESTRIAN, BICYCLE AND MOTORCYCLE SIMULATOR

Pedestrians are an integral part of any transportation project. Existing pedes-

trian models (33, 34) require detailed data collection for the analysis of the interac-

tion between pedestrians and vehicles. Recently, more studies (35) started to focus on

pedestrian and driver behaviors at crosswalk locations, where pedestrians and vehicles

often interact. These studies, intended to determine pedestrian and driver behaviors,

collected such pedestrian data as estimated age, gender, observing behavior (e.g.,

head movement), time spent on the road crossing, direction of travel, and location of

the pedestrian in or out of the crosswalk area. Likewise, studies also noted motorists

behaviors, including vehicle speed, type of vehicle, direction of travel, and pedestrian

activity within the drivers observation zone. With the help of such data, interaction

between pedestrian and drivers were modeled; however, these models could not re-

produce the reality. To overcome such problems and capture realistic interactions, a

pedestrian simulator networked with driving simulator was required. This necessity

motivated the authors to introduce a pedestrian simulator networked with a driving

simulator. This system was first of its kind in the field of driving simulators research.

Sensors that identify natural interactions are the key for implementation for a suc-

cessful pedestrian simulator. Natural Interaction (36) is defined in terms of experi-
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ence: people naturally communicate through gestures, expressions, movements, and

discover the world by looking around and manipulating physical stuff; the key as-

sumption here is that they should be allowed to interact with technology as they

are used to interact with the real world in everyday life, as evolution and education

taught them to do.

According to a report by the National Highway Traffic Safety Administration (NHTSA)

(37), every year at least 50% of the motorcycle fatal crashes involve single vehicle

crashes; of that percentage, 41% had a blood alcohol concentration of .08 g/dL or

higher. Safety is the primary concern not only for car drivers but motorcycle riders

too. Motorcycles are a widely acclaimed mode of transport worldwide. In the last

decade, two wheeler crashes have been on the increase. Because driving simulators

enable researchers to perform behavioral studies under safe conditions, a motorcycle

simulator should be included in the network of the driving simulator. For the same

reason, the bicycle simulator can be built and networked to this driving simulator

system. The proof of concept study is in progress for motorcycle and bicycle simula-

tor components.

Implementation

The pedestrian simulator is composed of state-of-the-art Natural Interaction Sensors

(Microsoft KinectTM) coupled with a head-mounted display. MS KinectTM comes

with a 3D sensor which identifies joints, body structure, facial features and voice.

These basic elements can then be used to identify any human gesture. With the
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help of this technology, a gesture for on the spot walking can be identified and run

through the pedestrian simulation model (microscopic). The pedestrian (subject)

is immersed into VR environment using head mounted display and the pedestrian

simulation model of the system for the generated graphics and resulting interactions

are recorded. Such interactions between the pedestrian simulator and the traffic

simulations create variances due to individual user behavior on the road. Using such

interactions, the data collected through pedestrian simulator will lend insight in their

behavior.



CHAPTER 17

VIRTUAL REALITY ENVIRONMENT

A Virtual Reality environment is a simulated reality for any user. It is primarily

a visual experience shown on stereoscopic or computer displays. The seven differ-

ent concepts of virtual reality are: simulation, interaction, artificiality, immersion,

tele-presence, full-body immersion, and network communication (38). VR enables

interaction between simulations and users, thus providing an immersive experience

into an artificial world. Such an environment has the objective to be perceived realis-

tically within the bounds of the specifications defined by the hardware and software.

Visual perception in driving simulator is dependent primarily on graphically render-

ing a 3D world, including details like trees, buildings, landmark objects, and roadside

objects along with surrounding traffic. Generally, a 3D world is created by placing 3D

models by using a SDL (12) or else by editing the 3D world by means of GUI, using

imported 3D models (13). These methods have become a time-consuming process

as the size of the network and the number of 3D models grows, thus generating a

need to automate the process. A challenging problem in automation is creating and

deploying 3D models at exact locations without deforming their sizes and shapes.

Microscopic simulation model regulate creation of 3D vehicle and pedestrian objects

in users visibility limit, Driving characteristics for individuals change significantly due
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to different weather and light conditions, thus playing a vital role in drivers behaviors.

To capture such driving characteristics, visual implementation of these conditions is

very important.

Current research provides an insight into strategies that can be employed for au-

tomating the generation of a 3D world. This is achieved by exploiting the method to

generate a simulation network, and replaces traditional SDL and GUI editing-based

scenario generation with a data driven approach. The data-driven approach is made

of layered architecture in a hierarchical way; each layer corresponds to the generation

of specific objects of a 3D world, using data obtained from various sources. The as-

sociated tasks at each layer can run in parallel.

Implementation The layered architecture for the generation of a 3D VR world

used in this current research is shown in Figure 4. The user relates a virtual world to

a real world by the 3D virtual environment of the roadway system. In this research,

a list of landmarks is created and exported with the help of Google Earth. The 3D

models of the exported list are obtained from Google SketchUp (39) or else created in

Blender. Landmarks are those objects that are easily recognizable, such as popular

buildings or historical structures. The purpose for including landmarks is to provide

a perception of familiarity inside the 3D world. The placement of these models is

automated based on their latitudes and longitudes. The automation of other objects

like trees, buildings, and such roadside components as mailboxes, water pumps, fire

hydrants, bus stop shelters, and street lights, is generated and placed randomly, based
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on certain rules. These can be edited later, according to reality.

The hybrid simulation model creates car objects and pedestrians for simulation pur-

poses. Since the interaction of traffic and pedestrians with user-driven vehicles is

limited to the Sim region, the 3D objects generated in the VR world are to the

extent of users visibility limit. The region covered by the visibility limit extends

both front and behind the user-driven vehicle. This generated visualization, up to

a visibility limit, consists of pedestrians as well as different classes of vehicles, such

as cars, trucks, and semis. The vehicle objects are designed to operate intelligently

by following traffic lights and signs, yielding to pedestrians, and acting according

to surrounding objects. To obtain a realistic pedestrian distribution, the generated

pedestrian objects operate according to requirements of the pedestrian simulation

models. To save computational resources, all the graphical objects in the 3D VR will

be destroyed when they leave the user visibility limit. Different levels of visibility

occur due to conditions like sun, wind, snow, or fog and also day or night. These

conditions are reproduced in the 3D world using various rendering techniques like

shading, reflections, and shadows.
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Figure 17.1: Layer-architecture for virtual reality generation



CHAPTER 18

DATA COLLECTION

Generally, driving simulators collect data on human factors. High fidelity driv-

ing simulators also capture eye-tracking, psychological data, and physiological data.

This architecture aims at comprehensive data collection that includes vehicle char-

acteristics data, such as lateral position, vehicle path, vehicle heading angle; driving

behavior data, like acceleration, braking, time to collision; such psychological data as

that derived from electroencephalograms; and physiological data derived from elec-

trocardiograms, galvanic skin response, and body temperature.

The integrated hybrid simulation engine will collect data for traffic performance mea-

sures. This data can be post processed to calculate network level emission and safety.

Further, microscopic details on traffic performance can be collected on links that the

driver will traverse. The data collection module is integrated in every player which

will record their individual driving/walking behaviors. The server data collection

module groups data based on the motion type – car, bike, or pedestrian – and the

number of players. This data then can be processed and analyzed by means of built-

in analytical models, according to requirements. The entire simulation run can be

recorded at each player as well as at the server.
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INTRODUCTION TO PEDESTRIAN SIMULATOR

Pedestrian safety is a primary concern in traffic situations since they are in the

most vulnerable position. According to a report by NHTSA, 4092 pedestrians were

killed and an estimated 59000 were injured in traffic crashes in United States in 2009.

The numbers are very high as they account for 12% of fatalities in crash data [18].

Each pedestrian injury or fatality has many facets to it, in terms of cost to those

affected directly and indirectly.

Traffic congestion is a very important aspect of travel planning inside city networks.

The costs attributed to any congestion are at multiple levels and can be broadly clas-

sified in direct and indirect costs. Direct costs include delays and fuel consumption,

while the indirect costs include inability to calculate precise travel time and pollu-

tion. But the buck doesnt stop here and creates tertiary effects like road rage and

slow emergency vehicle response [17].

Traditionally, larger part of travel planning is done with aim to minimize travel

time with preference to vehicle traffic over pedestrian traffic [10]. Some studies have

attempted to plan for reducing traffic congestion by optimizing travel time costs to

both pedestrians and vehicles. These studies are more relevant to traffic in heavily
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travelled areas, but point towards a more subtle area of pedestrian safety. After the

completion of planning, study on pedestrian safety is required to understand the effect

of the new improvements. Such studies are incomplete in a broader sense of safety

unless actual human subjects experience such systems. Some methods used for study

of pedestrian safety are surveys and observations on an actual implemented system,

over the course of time.

Pedestrian safety is also attributed to drivers of vehicles travelling through the traffic

system. In this way pedestrian safety is a bi-party relationship where it is a respon-

sibility of both driver and pedestrian. If any of the two does not understand it or fail

to respect others right, eventually affect both. The study of such issues is under the

broad topic of Human Factors Research.

Studies show that the demographics of an area affect the transportation behavior

there. Transportation behavior here covers the interaction between transportation

system and people ranging from mode choice to trip frequency and distance as well

as the ways citizens affect the transportation policy. Demographics is a broad term

and has many variables. With respect to the transportation behavior, certain vari-

ables have been found in high correlation such as age distribution, race and ethnicity,

education level etc [8]. Statistically, a set of individuals can be identified as the rep-

resentative of demographics for a region to conduct human factors research. Such

research is an important topic in the field of transportation since it assesses effects on

transportation systems subject to variations in user behavior due to their personal

traits.
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Though, individual behavior cannot be truly studied or analyzed for the entire

population, due to the complexity involved between transportation behavior and de-

mographics. Statistical methods provide the capability to represent demographical

information with a smaller set of individuals, thereby creating a significant represen-

tation of the population inhabiting in that region. Such methods are based on surveys

in a safe and controlled environment of a lab and have widely been accepted for study

of human factors research.

As mentioned above, till now pedestrian safety has been mostly studied on es-

tablished transportation systems by surveys and observations at the locations/site.

Such methods though address in understanding many real life problems, have certain

implied assumptions and therefore lack on a few grounds. For example, since such

surveys and observations are taken on an existing system and the results are used for

suggesting modifications to it, implies the system might be running in a potentially

unsafe condition.

The standard in conducting pedestrian Level of Service (LOS) analysis is laid out

by Highway Capacity Manual (HCM) in USA. Although, a standardized set of prac-

tices is defined for data collection and quantifying congestion in pedestrian facilities,

many studies identify amendments and new methods for HCM to analyze LOS, re-

spectively [4].
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According to HCM, LOS for pedestrian part of a transportation system can be

improved upon three primary areas viz. pedestrian characteristics, sidewalk environ-

ment and flow characteristics; relationship between these categories have emerged in

the literature for pedestrian studies and can be illustrated as in figure 19.1 [4].

Figure 19.1: Relationship between pedestrian and traffic environment

Pedestrian characteristics identified can be broadly classified as personal character-

istics, trip purposes & expectations and behavior. Personal characteristics relate

variables like pedestrian speed and sidewalk widths with age, gender, group size and

other demographic factors [5], [12], [26]. Trip purpose and expectations with pedes-

trian perceptions like safety, comfort and convenience have also been found to affect

their behavior, though have not been addressed by HCM. Researchers have con-

firmed that pedestrians perception of environment affect their behavior significantly

[21], [11], [16]. In general, have a tendency to put a cost to each sidewalk facility for
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a destination on their personal expectations [9]. Similarly, individual behaviors like

use of music players and mobile handsets during walk, has been criticized by various

writers [2] but researchers merely have anecdotal evidences for the same and wish to

understand it more.

In this thesis, we propose a methodology alongwith hardware and software de-

velopment to quantify and study the effect of individual differences on pedestrian

transportation system. A parallel to this methodology has existed in principle as

human centered simulation studies for driving and has been proven helpful. A result

expected from this work is to develop a module using which a platform can be con-

structed for conducting studies on pedestrian related transportation systems.

The thesis is structured by starting with introduction to theory of abstraction

which forms an important pillar of the complete work, this is followed by explanation

of how the human walk is studied and what are the important parameters involved.

This is followed by details on hardware implementation of a system for capturing

human walk and associated parameters as a proof of concept. Later a Kinect based

solution is studied with software and hardware capabilities and limitations for pro-

totype implementation. In the end we discuss about the problems, limitations and

future applications.



CHAPTER 20

SYSTEM ABSTRACTION

Capturing massive data and computing it to obtain values for necessary model

which can simulate a complex system is tedious, resource intensive, and complicated.

For reducing the complexity of analysis for such systems, simplified models which

can capture the behaviour of interest in the original system can be obtained. Such

models, called abstractions, are easier to analyze as compared to the complex model.

Therefore, a mathematical framework is required to filter unnecessary data and utilize

the necessary information as per requirement. This chapter studies an important

mathematical ideology and framework which would form the basis behind the choice

of modeling in subsequent chapters.

20.1 Abstraction of Systems

The webster’s dictionary define abstraction as ”the act or process of separating

the inherent qualities or properties of something from the actual physical object or

concept to which they belong”. In system theory, the objects are usually dynamical

or control systems, the properties are usually the behaviors of certain variables of

interest and the act of separation is essentially the act of capturing all interesting

behaviors. Thus, the Webster’s definition can be modified to define the abstraction
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of a system as another system which captures all system behavior of interest [20].

This set of behaviors are captured by an abstracting map α and are dependent on

what information is of interest (figure 20.1).

Therefore, the classic model reduction techniques can be explained as approximate

Figure 20.1: Relation between Systems and Abstractions

abstractions under this framework. It is not necessary that the abstracted and the

original systems are similar from a modeling perspective. An example, can be that the

original model be an ordinary differential equation but the abstracted system may be

a discretized system. Therefore, under this definition, the problem can be rephrased

as the following: Given an original system and an abstracting map, find an abstracted

system which generates the abstracted behaviors either exactly or approximately.
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20.2 Mathematical Preliminaries

Differential geometry takes an important part in understanding the following.

Multiple texts can be used as reference for better understanding [22], [1].

Tangent Space: Let there be a differentiable manifold M . The set of all tangent

vectors at pεM is called the tangent space of M at p and is denoted by TpM .

Tangent Bundle: The collection of all tangent spaces of the manifold M is called a

tangent bundle. mathematically it can be represented as

TM =
⋃
pεM

TpM (20.1)

Projection Map: the projection map is defined from tangent bundle to manifold

as π : TM → M taking a tangent vector XpεTpM ⊂ TM to the point pεM . The

tangent space TpM can then be thought of as π−1(p). The tangent space can be

considered as special case of an object called fibre bundle.

Fiber Bundles[19]: A fiber bundle is a five-tuple (B,M, π, U, {Oi}iεI) whereB,M,U

are smooth manifolds called total space, the base space and the standard fiber respec-

tively. The map π : B → M is a surjective submersion and {Oi}iεI is an open cover

of M such that for every iεI there exists a diffeomorphism φi : π−1(Oi) → Oi × U

satisfying

πo ◦ φ = π (20.2)

where πo is the projection from Oi × U to Oi. The submanifold π−1(p) is called the

fiber at pεM . If all the fibers are vector spaces of constant dimension, then the fiber



78

bundle is called a vector bundle.

Let M and N be smooth manifolds and f : M → N be a smooth map. Let pεM

and let q = f(p)εN . We push forward tangent vectors from TpM to TqN using the

induced push forward map f∗ : TpM → TqN . If f : M → N and g : N →M then

(g ◦ f)∗ = g∗ ◦ f∗ (20.3)

A vector field or dynamical system on a manifold M is a continuous map F which

places at each point p of M a tangent vector from TpM . Let I ⊆ R be an open interval

containing the origin. An integral curve of a vector field is a curve c : I → M whose

tangent at each point is identically equal to the vector field at that point. Therefore

an integral curve satisfies for all tεI,

c′ = c∗(I) = X(c) (20.4)

f-related Vector Fields: Let X and Y be vector fields on manifolds M and

N respectively and f : M → N be a smooth map. Then X and Y are f -related iff

f∗ ◦X = Y ◦ f .

20.3 Abstracting Maps

For system analysis, reduction in complexity is associated with a avoidance of

unnecessary information, thereby working with a simplified model with reduced com-
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plexity. So, if M is the state space of a system, the state pεM is thus mapped to an

abstracted state qεN . It can be safely said that the complexity reduction requires

that the dimenaion of N should be lower than the dimension of M .

The relevant information for mapping M is dependent on the required properties from

the system under consideration (M). The desired specification can be quite different

even in the same system as functionality may be different in various modes of its

operation. Hence we cannot obtain a system abstraction without prior knowledge

of the system functionality. For example, a person can move forward on two limbs

or all four limbs or even a single limb. Therefore, depending on mode of operation

functionality changes and hence the system specification will change.

This functionality of the system helps in identifying the states of interest for informa-

tion extraction. Once the functionality of the system is identified, a set of equivalent

states can be defined in the form of an equivalence relation on the state space. Thus,

the quotient space M/ ∼, determined by the chosen equivalence relation, is the state

space of the abstracted system.

For this quotient space to have a manifold structure, the equivalence relation must

be regular [1]. The surjective map α : M →M which sends each state pεM/ ∼ to its

equivalence class [p]εM/ ∼ is called the quotient map and is the mapping from each

state to its abstracted state. Therefore it can be defined as following [20]

Abstracting Maps: Let M and N be given manifolds with dim(N) ≤ dim(M). A

surjective map α : M → N from the state space M to the abstracted space N is

called an abstracting map.
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20.4 Abstraction of Dynamical Systems

The interesting portion after determining the abstracting map α is obtaining the

evolution of dynamics obtained from the state evolution on M goverened by a vector

field X on M . This is characterized by integral curves and is defined as following.

Definition: Let X and Y be vector fields on M and N respectively and let α : M →

N be a smooth abstracting map. Then vector field Y is an abstraction of vector field

X with respect to α if and only if for every integral curve c of X, α ◦ c is an integral

curve of Y (figure 20.4).

M
N

α

c

α o c

Figure 20.2: Mapping Between Spaces

i.e.

c′ = c∗(I) = X(c)

implies
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(α ◦ c)′ = (α ◦ c)∗(I) = Y (α ◦ c)

Moreover, it also implies from the definition that two different abstracting maps

α1 and α2 over some vector field X do not create same abstracted vector field Y .

When modeling large scale systems, a hirerarichal approach may be chosen, thereby

modeling at many levels of abstraction. Therefore, the following proposition:

Transitivity of Abstractions: Let X1,X2,X3 be vector fields on manifolds M1, M2

and M3 respectively. If X2 is an abstraction of X1 with respect to the abstracting

map αl : M1 → M2 and X3 is an abstraction of X2 with respect to abstracting map

α2 : M2 → M3 then X3 is an abstraction of X1 with respect to abstracting map

α2 ◦ α1.

Theorem. Vector field Y on N is an abstraction of vector field X on M with

respect to the map α if and only if X and Y are α-related.

The above theorem is equivalent to the definition of abstraction of dynamical systems.

It is important because rather than explicit computation of integral curves, it allows

to check condition on vector fields. Also, the α-relatedness of two vector fields is a

very restrictive condition as it limits cases where one dynamical system is an exact

abstraction of another.

20.5 Abstractions of Control Systems

In this section, the theory of abstraction for dynamical systems is extended to

control systems.

Control System [6]: A control system S = (B,F ) consists of a fiber bundle π :
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B → M called the control bundle and a smooth map F : B → TM which is fiber

preserving and hence satisfies

π′ ◦ F = π

where π′ : TM →M is the tangent bundle projection.

Essentially, the base manifold M of the control bundle is the state space and

the fibers π−1(p) are the state dependent control spaces. In a local coordinate chart

(V, x), the map F can be expressed as ẋ = F (x, u) with uεU(x) = π−1(x).

Integral Curves of Control Systems [20]: A curve c : I → M is called an

integral curve of the control system S = (B,F ) if there exists a curve cB : I → B

satisfying

π ◦ cB = c

c′ = c∗(I) = F (cB)

Abstractions of Control Systems [20]: Let SM = (BM , FM) with πM : BM →

M and SN = (BN , FN) with πN : BN → N be two control systems. Let α : M → N

be an abstracting map. Then control system SN is an abstraction of SM with respect

to abstracting map α iff for every integral curve cM of SM , α ◦ cM is an integral curve

of SN .
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In the above definition of abstractions of control systems, it is clear that two

abstracting maps for same abstraction may or may not be different. However, it is

difficult to decide whether one control system is the abstraction map of other by

directly using the definition since it would require integration of the system. There-

fore, a set of conditions for such identification were derived as following theorem. It

is analogous to the theorem about abstraction of the dynamical system detailed above.

Conditions for Control System Abstractions [20]: Let SN = (BN , FN) and

SM = (BM , FM) be two control systems and α : M → N be an abstracting map.

Then SN is an abstraction of SM with respect to abstracting map α iff:

α∗ ◦ FM ◦ π−1M (p) ⊆ FN ◦ π−1N ◦ α(p)

at every pεM .

But this theorem does not require the commutativity. This allows the theorem

to be applied in every control and dynamical system and concludes that they can be

abstracted by another control system. This can be seen in following corollaries:

• Abstractable Control Systems: Every control system SM = (BM , FM) is

abstractable by a control system SN with respect to any abstracting map α :

M → N .

• Abstractable Dynamical System: Every dynamical system on M is ab-

stractable by a control system with respect to any abstracting map α : M → N .
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Once a system abstraction has been obtained, it is useful to propagate properties

of interest from the original system to the abstracted system. For control systems,

one of those properties is controllability. Controllability: Let S = (B,F ) be a

control system. Then S is called controllable iff given any two points Pl, P2εM , there

exists an integral curve c such that for some tl, t2εI we have c(tl) = pl and c(t2) = p2.

Controllable Abstractions: Let control system SN = (BN , Fv) be an abstrac-

tion of SM = (BM , FM) with respect to some abstracting map α. If SM is controllable

then SN is controllable.

Other properties, such as local accesibility, also propagate. Stability, however,

does not propagate since the abstracted system allows redundant evolutions which

could be unstable.



CHAPTER 21

THE HUMAN WALK

In this chapter we Analyze the primary objective of the module under considera-

tion for development, i.e. The Human Walk. This chapter explains an actual human

walk and associated kinematics, discusses the challenges of simulating a human walk,

then defines a simulated human walk, analyses it and eventually provides a method

of mapping to actual human walk from a simulated motion.

21.1 Bio-Mechanics of Human Movement

In this section we assume that the reader is familiar with basic concepts of force,

energy, momentum and laws of motion and methods for their analysis. We start here

from analyzing the pattern of human motion in terms of angular rotation of joints

and translation.

In general, a typical walk involves rotation of limbs to achieve a motion through space.

This motion is usually curvilinear in nature due to fixed length of rotating arm at

every joint. This rotation reduces effective height of that particular joint from the

ground. The following figure[21.1] shows the same for a human walk [24]. It shows a

single step in a sequence of ankle(b), hip (a’) and ankle (b“) rotation providing for

the forward progression of the body.
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Figure 21.1: A Single Step shown for the forward progression of body

21.1.1 Movement Analysis

Majority of human movements are quite complex due to movement of body parts

relative to each other and environment. A quantitative analysis of movement can

clarify the muscles required to be active during that period in context of forces acting

on the body. For this purpose, Inverse Dynamics is an often used technique, and two

types of models are used for studies, namely Free Body Diagram and Link-segment
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Model. They view the entire system for locomotion as a whole and in its parts,

respectively. Eventually this calculation translates into joint forces and torques.

Figure 21.2: Free Body diagram of a foot

Such analysis requires three types of information:

• Anthropometric information on the segments (mass, length etc).

• Kinematic information like linear and angular moment information for each

segment.

• External forces acting on body.

With the following assumptions for link segment models:
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Figure 21.3: Link Segment Model

• Each segment has a fixed mass located at its center of mass.

• The joints are considered as hinge joints.

• The moment of inertia is fixed during movement.

• The length of each segment is constant.

21.2 Gait

Gait is defined as pattern of movement of limbs for locomotion for animals includ-

ing humans. Every mammal follows a set of different gaits corresponding to different

type of motion (walking, jogging, running etc.). However in this text we are discussing
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the human walk and henceforth, gait will be used in reference to human gait only.

Characteristics of a gait are defined by differences in point of contact with surface,

potential and kinetic energy cycles, overall velocity and forces experienced. Of these,

the most popular and referenced is the identification of various parts of a gait by

point of contact of foot with the surface.

Generally, a gait is classified as normal or pathological. The pathological gait is

different from normal gait because of certain factors about the concerned subject. The

deviation from normal gait can be permanent or transient and is a field of research

for bio-mechanics aimed towards individuals requiring help with their walking ability.

Many factors affecting a gait are identified in the literature and hence can be classified

as follows [3]:

1. Extrinsic

2. Intrinsic

3. Physical

4. Psychological

5. Physiological

6. Pathological

On basis of point of contact of foot, a complete gait consists of total analysis of

all the body movements, the associated mechanics and related muscle activity, for



90

overall pattern of limbs between re-contact of initial reference point of the foot, with

the surface. To study a gait, following parameters are taken into account [23]:

1. Step length

2. Stride length

3. Cadence

4. Speed

5. Dynamic base

6. Progression line

7. Foot angle

Essentially a gait is a repetitive motion of the limbs, each sequence of this cyclic

movement of limbs is called a gait cycle and is an essential derived parameter of any

gait. It is an important parameter because various phases of a typical gait are defined

in terms of percentage of gait cycle completed since it provides a common reference

method. This will be discussed in detail during kinematic analysis of the gait.

21.3 Kinematics Analysis of Gait

Kinematics is the branch of classical mechanics describing motion of a point or

a collection of points or a rigid body or group of rigid bodies and does not consider

force. It is the method for quantifying and measuring the kinematic quantities for
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analysis of gait. Kinematic quantities for any point or rigid body are described as

position, velocity and acceleration of concerned points on it. Thus, it describes the

motion of human body by studying the trajectories of various important points and

lines identified by careful observation.

The requirement from the kinematic analysis of gait is defined by the objective of

the problem. In the considered problem, we need the information about movement

of a subject in space and time. Determination of clinical aspects of gait are not in

scope of the problem. Therefore, the requirement from kinematic analysis is in terms

of following parameters:

• Speed of subject

• Instantenous acceleration of subject

• Distance travelled by the subject

21.4 Simulating an Actual Human Walk

Walking is a method of transportation wherein one moves from point A to point B

by following a set of movements repeatedly. This repeated pattern called the gait is an

important action to be captured as it contains requisite information for the analysis

of the walk. In past, solution to this problem has been attempted by many methods.

Video recording of small walks, Marker based data collection via video camera and

infrared sensors, treadmills etc. have been used for data collection to analyze gait.
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All these methods attempt to capture a complete gait and then extract the relevant

information from it for further analysis.

Though these methods for capture of complete gait are quite robust, there are cer-

tain limitations to them. Most of these methods face the problem of limited space of

operation and hence are unable to work if gait capture is required for longer period of

time. Some methods can capture long walks, but are unable to capture motion in two

dimensions. Those systems which can capture have very complex and large setups,

which limit their capability for easy and movable installation. Also such systems are

quite expensive to procure.

Thus the challenges in simulating a human walk from the actions performed by a

human can be listed as follows:

1. Limited space against longer time duration walks

2. Amount of setup required

3. Cost of setup required

4. Trade off between straight line walks and walk with turns

21.5 Abstraction of Human Walk

As discussed above, a human walk is composed of multiple components. Moreover

a human subject has multiple degrees of freedom which create a capability for highly

dextrous movements which are complex in nature. Each movement is associated with
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multiple muscles and joints coordinating to provide a reliable motion.

Capturing such massive data and computing it to obtain necessary model which can

simulate a human gait is tedious, resource intensive, and complicated. For reducing

the complexity of analysis for such a system, simplified models which can capture

the behaviour of interest in the original system can be obtained. Such models, called

abstractions, are easier to analyze as compared to the complex model. Therefore, a

mathematical framework is required to filter unnecessary data and utilize the neces-

sary information as per requirement. Such a framework for abstraction of a dynamical

system is discussed in previous chapter.

The proposed pedestrian simulator will capture the walk of subject and then

identify the gait information from it for recreating the movements of subject in the

simulated reality. This can be visualized as an abstraction of the subject’s walk in

the real world to simulated world. Looking at the limitations in previous setion, a

much simpler, cost effective approach was required so that it can be setup and reused

easily. To address this problem we first defined the gesture that can be used for long

walks and hence forth identify the solution for its implementation and analyze it.

21.5.1 Definition of on the spot walk

The solution visualized was defining an on the spot walk pattern, using which

certain parameters can be defined and extracted which were then transformed into

gait parameters to simulate the walking. This motion is hereby defined as:
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the alternating motion of taking one foot up in air, while keeping the

other foot on the ground, and returning it back to ground at the same

point where it was before lifting off. The knee and hip joints will rotate

appropriately to allow the thigh to come as closely parallel to the surface

as anatomically feasible, thereby raising the knee joint close to waistline.

Hence an on the spot walk can be visualized as a continuous sequence of above defined

gesture in figure 21.4.

Figure 21.4: On The Spot Walk
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21.5.2 Analysis of on the spot walk

The on the spot walk or rather the simulated walk is divided into two phases the

Lift when one foot is rising, while the other phase is called Fall which occurs when

the risen foot is coming back on the surface. This nomenclature implies that there

are two lift phases and two fall phases in each simulated gait for any person. Various

parameters are extracted from this simulated walk, which enable it to be mapped to

an actual gait. The relationship between the phases of an actual gait and simulated

walk are shown in figure 21.5.

21.6 Model of Virtual Entity in 3D World

Since the final objective of the pedestrian simulator is to interface between the

physical subject and their representation, it is an important aspect to define the en-

tity in the 3-Dimensional virtual world.

The pedestrian in the virtual world is assumed to operate under following bounda-

tions:

• A pedestrian always moves in a straight line.

• A pedestrian can move forward, backward and rotate by any angle.

• A pedestrian is able to vary speed and stride length.

• A pedestrian never takes side steps.
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Figure 21.5: Mapping of walking phases
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The above assumptions define that the pedestrian is non holonomic in nature

with linear and angular motion only. To model the assumptions mathematically, a

pedestrian can be assumed as a rolling disc. Since the disc cannot side step itself,

i.e. the disc cannot move in the direction of its area vector, hence, it becomes a non-

holonomicaly constrained system. Moreover, now the disc can have linear velocity,

and angular velocity along the direction of vector in the plane containing the disc.

Therefore the disc can reach any point on the 2D plane.

The rolling disc model can be described as follows: Consider a disk of radius

ρ, that rolls without slipping on a plane, as shown in figure 21.6, while keeping its

midplane vertical. Its configuration is completely described by four variables: the

position coordinates (x, y) of the point of contact with the ground in a fixed frame, the

angle θ characterizing the disk orientation with respect to the x axis, and the angle φ

between a chosen radial axis on the disk and the vertical axis.[7]

Therefore, the disc must satisfy the kinematic constraints

ẋ− ρcosθφ̇ = 0 (21.1)

ẏ − ρsinθφ̇ = 0 (21.2)

These dynamic constraints are not integrable, therefore disk can reach any point

in its state space from any point in it, by any path. It is due to this reason this can
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Figure 21.6: The rolling disc

be assumed as the appropriate model for a pedestrian as each point of the virtual

world is reachable.

21.7 Abstracting Map

Hence our state space M can be considered as state space that belongs to the

motion of a skeleton in physical world. This state space has multiple dimensions

and encomapsses many complex interactions. Moreover, this motion is required to be

translated into the motion of a virtual entity in the 3D virtual world as the rolling

disc model discussed above. Hence we can say that a particular higher dimensional,

dynamical control system is being abstracted into a lower dimension dynamical control

system.

For the reasons discussed before, this abstraction is the key to simplification of analysis

and control for navigation by human subjects for the entities in the virtual world.
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21.8 Conclusion

Though above explained approach is an inexpensive way and addresses all the

limitations listed in previously tested approaches, It has a major drawback of com-

paring on the spot walk gait to an actual gait/walk. It is a limitation because it takes

a user away from how they actually walk to a different approach which is less natural

and more monotonous. This takes a user from their usual behavior and demands

efforts in a continuously different situation thereby creating a greater psychological

divide from reality. Therefore, it still cannot be taken without proof that eventual

experience will not be engaging.



CHAPTER 22

CAPTURING HUMAN WALK

Before moving on to a project, we need to do a feasability study and identify

the possible challenges in the project. This chapter details the requirements for the

prototype implementation of capturing the walking gesture and its analysis.

22.1 Simulated Human Walk

In the last chapter a gait was defined and analysis methods were identified and

thus defined a simulated walk for a person to be performed inside a lab environment

and associated mathematics was discussed. In short, the simulated walk can be de-

scribed as on the spot walking. The motion is defined as lifting the knee up to above

a certain position to be classified as a step. Thus each virtual step is established by

a spot gesture and relevant definitions for various parameters of a gait are defined by

it and calculated accordingly.

The definition of such gesture is an important objective to prove the simulation of

a Human walk and is required to be validated. For validation of this definition and

the concept, a prototype was made which has been discussed in this chapter. This

prototype was built using Arduino and IR sensors.

100
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22.2 Mapping actual to simulated walk

As observed in previous chapters, an actual gait is composed of many parameters,

variables, motions and patterns. Hence, it is a complicated series of events. There-

fore there is a need to filter the available information for efficient computation and

implementation of pedestrian simulator. For this reason, we decided to map certain

parameters of an actual walk to be implemented by the above defined on the spot

walking genture (Definition 21.5.1). This mapping has been given as below.

On The Spot Walk Gesture Simulated Gait

Maximum Knee Height Step Length
Knee Lift Frequency Speed

Knee Position Gait Position Cycle

Table 22.1: Gesture Parameter mapping

22.3 Extracted Parameters

For development of proof of concept, the requirement was to ensure a feature

extraction for the defined action of walking. The primary problem in such situation

is to sense physical movements, process them, and extract features and gestures and

map their values into parameters in real time. As per the mapping defined in table

22.2, information about speed of walking, stride length and position with reference to

gait cycle has to be extracted. This created a problem of identifying the right sensors,
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and appropriate locations for tracking simultaneously minimizing the computations

for fast and efficient response from the system.

The solution to this problem was implemented with the use of Infrared Sensors, placed

on the feet of the subject, and two panels both in front and back of subject till knee

height. The sensors on the feet were placed pointing in three directions bottom, front

and back. The sensor facing towards ground was required to measure the rise of the

foot and those towards front and back were to measure distance from their respective

panels. The placement of sensors was aimed at recording the height of foot and the

distance of foot from the front and rear panel. These features helped in computing

all the required information for simulated gait as follows:

Distance between front and rear panel = L

Height of foot = h

Position from front panel = x

Step Length (s) = k ∗ x/L

frequency of steps (f) = No. of times foot raised above ground/second

Speed = f ∗ s

22.4 Construction

This section explains the construction for proof of concept for pedestrian simula-

tor. The architecture is explained followed by the hardware construction and software

design.
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22.4.1 Architecture

The overall architecture has been divided into two parts viz hardware and soft-

ware architecture. The architecture has also been detailed with respect to semantic

breakdown of information flow and trigger actions. The complete flow of information

can be visualized as follows:

Complete: The complete system can be visualized (figure 22.1) as a data acquisition

and processing system where the sensor feedback is classified and assigned with rela-

vant gestures to compute appropriate information. Actions and information: The

Figure 22.1: Flowchart of complete system

information flows from user’s actions into the system. Here a single action of ’on the

spot walking’ is further broken into constituent actions as follows:

• Walking
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• Stride Length

• Direction of Movement

The information flows from the actions to sensors. The data of these sensors is ac-

quired by a microcontroller and then processed to classify between the above three

actions as well as compute related information. This information flow can be visual-

ized as in figure 22.2 .

Figure 22.2: Information Flow

Hardware

The hardware architecture is explained as follows: As shown in figure 22.3. There are

three infrared sensors for each foot amounting to six sensors in total. These sensors

are pasted along the feet in various orientations. two sensors are facing front and back

respectively and one sensor is facing downwards. Each of the sensor is connected to

an analog input channel in the micro-controller from where the information goes to
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the software.

Figure 22.3: Flowchart of hardware system

Software

The software architecture is explained as follows: The software reads the data avail-

able at the analog input channel of the microcontroller and computes the formulae.

Since the microcontroller has a single core, sequential instruction execution, we first

read all inputs, compute all formulae and then store and display data and identify

status of the user as displayed in the figure 22.4.
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Figure 22.4: Flowchart of software system
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22.4.2 Hardware Construction

The hardware has been constructed using readily available infrared sensors, ar-

duino uno prototyping board, wireframe to hang the sensors on a foot and some

cardboard boxes for localized location reference.

Installation Positions

Positioning sensors is always crucial in a setup as they minutely affect the calibration

for the system software. For this setup also sensors required special installation

positions. Sensors were placed at following positions (figure 22.5):

• In the gap between feet and ankle in the subjects shoe.

• At the toe of the shoe, facing outward, aligned perpendicular to the foot

• At the ankle of the shoe, facing outward, aligned perpendicular to the foot and

parallel to toe sensor.

Circuit diagram and Components

The following components were used for the construction of the system. These com-

ponents constitute the data acquisition and processing modules from the flowchart

(figure 22.1).

1. IR Sensors, part number

2. Arduino UNO board
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Figure 22.5: Placement of sensors

3. 1 usb A to B cable for Arduino

4. A wireframe to hold sensors.

5. Front and rear reference panels

6. Scotch tape and connecting panels

The infrared sensors give an analog signal as output, which need an ADC to

convert to digital value which can be used for execution of decisions in the micropro-

cessor. This ADC is included in the Arduino prototyping board. Thus it completes

the necessary requirement. Similarly, the board is required to be connected to a PC

for display and storage of values. This has been accomplished via usb connection to
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the computer system which displayed the data in a text window.

Positioning of sensors

Setup of a sensor system is an important step as it affects the calibration values which

in turn will affect the calculations via code and hence affects the recorded values for

gait conversion. For this reason a wireframe was designed to be hooked into any shoe

of any size. The sensors were able to slide and the ideal condition is depicted in figure

22.5.

The sensors at toe and heel are required to be parallel and facing outwards, while the

sensor at the side of the foot is facing down and may or maynot be perpendicular to

the plane of sensors at toe or heel.

22.4.3 Software Design

There are two parts to the software design viz data acquisition and processing

and frontend display of information. The software was written for Arduino and the

output was observed on the serial console of a computer for the same. This output

to serial port was then used in another software for display of calculated heading and

speed of the subject based on theory discussed in previous chapters.

Platforms used

The platform used for programming the micro controller is called Arduino and the

display platform used is called Processing. Both the programming platform are de-
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veloped in java but the code developed in them follows C programming style and

structure. The installation of these platforms is very simple and detailed instructions

can be found at [ref] and [ref].

Files

The code for the software developed is attached in the appendix. It is divided into

three primary parts as calibration code for microcontroller, running code for the mi-

crocontroller and frontend visualization.

Calibration

The hardware sensors do not behave same during their liffetime. Moreover two units

do not always give the same output The calibration algorithm is written inside the mi-

crocontroller along with the computational code. For process of calibration, a switch

determines the state of execution for the code. This is implemented on microcon-

troller by setting PIN# as “HIGH” for calibration mode, and low implied the regular

data acquisition and procesing mode.

The calibration mode is to determine the initial point of reference as well as the

range for the data acquisition by defining central position of the subject and stopped

feet condition when both are resting on ground. Once the subject is in position
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as shown in figure 22.6 while the calibration pin (PIN#) is switched to LOW, it

calibrates the sensor values to the existing situation. It sets the minimum value for

the bottom foot sensor and sets the center between the front and rear panel.

Figure 22.6: Calibration Position

22.5 Limitations

After completion of this process, three main limitations were observed which can

create problems in the pedestrian system.
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1. The downside of this procedure is to calibrate the setup for every subject man-

ually.

2. The detection of turn is not natural and requires push button input.

3. The system is bulky and clunky, and requires carefulness even during operation.

22.6 Testing and Results

This system was attached with shoes of a subject and then the results were ob-

tained on the screen. Since this was a prototype, not much emphasis was given on

visualization, except raw data on console.

Eventually the result was that we were able to successfully capture the walking

behavior of person performing a walking gesture using a microcontroller and sensor

based system. These parameters were enough to model a human gait.

There were two main conclusions drawn out of it:

1. We can easily extract the information and employ them to generate gait pa-

rameters; therefore, the features have been correctly identified.

2. An attached sensor based system is difficult to calibrate and monitor. Also

such system will take time to setup for every subject. Moreover the system

becomes clunky due to involvement of multiple wires. Therefore such systems

are impractical in nature.



CHAPTER 23

IMPLEMENTATION USING NATURAL INTERACTION

This chapter studies about natural interaction, its benefits and the implementation

details using ms kinect for the purpose of implementation of pedestrian simulator.

23.1 What is natural interaction

In general, our method of communication is through gestures, expression and

movements and which may also be aided with audio or speech. In this process they

may interact with each other or with the environment. There is no need to wear

any devices or learn some new instruction, it is completely intuitive and is considered

natural mode of interaction with environment. Thus Natural interaction is defined in

term of experience as

People naturally communicate through gestures, expressions, movements,

and discover the world by looking around and manipulating physical stuff;

the key assumption here is that they should be allowed to interact with

technology as they are used to interact with the real world in everyday

life, as evolution and education taught them to do [25].
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23.2 Why is natural interaction required

Natural interaction capable devices have a number of advantages to traditional

button and sensor based interfaces as follows:

1. They eventually remove complicated user interfaces.

2. They are easier to maintain.

3. They are considerably lower in cost

4. They, above all are intuitive, hence have a really fast learning curve

Natural Interaction is a design methodology for the next generation devices and

physical interaction spaces, and provides capability to general users for using what

is intuitive and leave the bulky and complicated interfaces. Mostly this in itself is a

research topic which has been researched heavily for many different usage scenarios

under the subject of user interaction design. We have identified and covered those

during earlier chapters.

23.3 Available options

Currently market has two major options available capable of defining natural

interactions viz, Microsoft Kinect and Nintendo Wii. One third option is development

using a video camera and OpenCV based solution. Effectively this brings us to a

situation of selecting the most cost effective and durable device among the available

options.
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23.3.1 Why MS Kinect

are available in market currently To identify the device fitting our requirements,

Table 23.3.1 shows a comparison on list of features among the three alternatives.

Features MS Kinect Nintendo Wii OpenCV

Sensor type
Multiple Video
Camera

Accelerometer Video Camera

Controller Not required
Atleast one
controller

Configurable

Setup Plug and play Plug and play
Various
configurations

Depth
Perception

Available Not available
Algorithm &
hardware
dependent

Development
Support

Excellent Moderate
Open source
community

Special
Skeleton & face
detection

fast movements none

Precision High High medium
Speed High High Slow

Table 23.1: Comparision Table of Available Products

Based on the above table, we selected MS Kinect because of the various features

available as well as simplicity in setting up. Moreover the Kinect is backed up by

software giant Microsoft, hence a good support both online and community is at

disposal as well as a trouble free sdk is available for use. Moreover, Kinect is a

commercial grade product aimed to provide many aspects of game development for

the developers. This opens a wide window of opportunities for a better product in

every aspect.
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23.4 Setting up kinect

This section gives a technical walkthrough of how to install a kinect on a PC and

then how to install the kinect for pedestrian simulator.

• Setting up Kinect Sensor: Open the kinect from the box.

Attach the power cord to sensor and main power supply.

Figure 23.1: Out of the box

Mount the sensor on a stable surface above or below the display.

• Install Kinect SDK

Download latest Kinect SDK from Microsoft Kinect for Windows website http://www.microsoft.com/en-

us/kinectforwindows/develop/developer-downloads.aspx

Go through the guided installation steps. Please note that it works only with



117

Figure 23.2: Power Cord

Figure 23.3: Mounting the Kinect Sensor
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Visual Studio 2011 and upwards. connect the usb to PC and wait for all the

sensors to get installed

Done, The Microsoft Kinect is set up and ready to use.

23.5 Kinect Interaction Space

The interaction space is defined as the area in front of the kinect sensor where the

infrared and color sensors have unblocked view of everything in front of the sensor.

The Assumption is that the lighting is not too bright and not too dim, and that

the objects being tracked are not too reflective. While a Kinect is often placed in

front of and often at the level of a users’s head, the sensor can be placed in a wide

variety of positions [14]. Eventually this is defined by the field of view of the kinect

cameras. Moreover this is also supported by tilt angle which greatly increases the

interaction space. This tilt angle is controlled by a motor inside the sensor. This can

be visualized in figure 23.5.
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Figure 23.4: Kinect Interaction Space [14]
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23.6 Kinect for Windows Architecture

The hardware software interaction using a kinect sensor can be visualized as shown

in figure 23.5. Kinect is a complex device and provides video image, depth image(using

IR camera) and audio signal. These are interfaced with Natural User Interaction li-

brary provided by Kinect SDK, which is eventually used by the application to perform

programmed actions. The Kinect for windows SDK has three broad types of compo-

Figure 23.5: Kinect Architecture [15]

nents which can be visualized in its architecture and is shown in figure 23.6

These components include the following:

1. Kinect hardware - The hardware components, including the Kinect and the

USB hub through which the sensor is connected to the computer.

2. Kinect drivers - The Windows drivers for the Kinect, which are installed as part

of the SDK setup process as described in this document. The Kinect drivers

support:

• The Kinect microphone array as a kernel-mode audio device that you can

access through the standard audio APIs in Windows.



121

Figure 23.6: Kinect SDK Components Architecture [15]

• Audio and video streaming controls for streaming audio and video (color,

depth and skeleton).

• Device enumeration functions that enable an application to use more than

one Kinect.

3. Audio and Video Components Kinect Natural User Interface for Skeleton Track-

ing, Audio, Color and Depth Imaging

4. DirectX Media Object (DMO) for microphone array beam-forming and audio

source localization.

5. Windows 7 standard APIs - The audio, speech, and media APIs in Windows 7,

as described in the Windows 7 SDK and the Microsoft Speech SDK.
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23.7 Programming Models

[the programming architectures followed by SDK] Kinect operates using two cam-

eras viz RGB and Infrared. Each camera is composed of a Charge Coupled Device

(CCD) which acts as a screen to capture an image and transfer the relavent bits and

bytes of information for processing. Each such snapshot of a subject in front of kinect

sensor is called a frame.

Application using Kinect sensor retrieves image frames from it. The process of re-

tireval involves requesting a frame from the sensor where each frame is passed to a

buffer whenever requested. A frame is passed only when it is completely captured

inside the CCD of sensor. The sensor data stream never provides the same frame to

the application more than once. To get the frame there are two programming models

followed viz Polling Model and Event Model [13].

23.7.1 Polling Model

It is the simplest model for reading data frames. The application opens the image

stream and then requests the frame after every predefined time interval. The request

method returns a new image frame when it is ready or at the expiry of wait time,

whichever comes first.

On successful return the new frame obtained is ready for processing. If the time-out

value is set to zero, the application code can poll for completion of a new frame while

it performs other work on the same thread [13].
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23.7.2 Event Model

In this approach, the code passes an event handle (a pointer to a function) to image

retireval method from SDK. Its processing can be visualized as when the image is

ready to be read from the buffer of the sensor, it is termed as an event and the

associated function in the code is called for processing the data. During this data

processing, the event is reset by the NUI Image Camera API.

The event model in Kinect SDK supports the ability to integrate retrieval of a skeleton

frame into an application engine with more flexibility and accuracy [13].

23.8 Software architecture

Objective of pedestrian simulator is to track a walking human gesture and then

process data to draw inferences for creating simulation of a walking human. This code

structure has the flowchart as shown in figure 23.7 below. The architecture primarily

consists of three layers Data Extraction, Data Processing and Event Generation where

each of these semantic layers specify a classification of objectives addressed in the code

structure:

23.8.1 Skeleton identification

Natural User Interface (NUI) library provides a built-in class to extract skeleton

related information as the embedded algorithms inside the Kinect sensor can detect

and track two human skeletons at the same time.

In our scenario, we always assume that we are tracking only a single skeleton at
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Figure 23.7: Pedestrian Data Extraction Architecture
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a given time and there are no more skeletons present in the picture. The Kinect

sensor sends a signal and the skeleton data every time it confirms one and finishes

the computation for it. On this signal skeleton data is read and then transferred

to the data reading function where gesture identification is done and appropriate

information is extracted.

23.8.2 Gesture definition

The skeleton data is actually tracking a set of points mapped in two dimensions

and providing real time location of 21 joints. Each of these joints is accessible by using

a macro defined in the SDK and hence are easily tracked. As discussed in chapter

2 and 3, we defined the gesture to be an on the spot walk to map the parameters

for a human walk. It is this gesture that we have defined earlier, is what we want to

extract.

We also define an intent to walk occurrence as a small lifting of the foot as to the

situation where the subject might be thinking of taking the next step but then stops

right in the middle of it. If he brings it back before a certain position or height, we

can call it intent to walk and ignore to avoid the subject taking an unintentional step.

23.8.3 Feature extraction

This on the spot walk gesture is defined by the knee movements up and down where

their height determines the step length and the frequency of up down determines the

speed of the pedestrian. These features are extracted from the gesture by continuous
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monitoring of the knee joints from the available skeleton data. These values are

then de-noised to remove false positives. Also the intent to walk occurrences are also

detected and ignored by not triggering and changing the values for gait parameter

conversion.

23.8.4 Gait parameters conversion

The feature extraction from the skeleton data is used to convert to gait param-

eters. Recall that a gait is defined as the pattern of movement of limbs. For this

pattern to continue, we identified the parameters in chapter 2. These parameters of

an actual gait are then related to the on the spot walk gesture and the relations were

introduced in chapter 2.

These generated parameters are continuously updated in the walking pedestrian

model (rolling disc model) to generate current state of the pedestrian which will

be required for a detailed graphical modelling.

23.8.5 Step event generation

When a subject takes a step, it is characterized by one full lift of the foot and

then back to the resting position. Therefore we call that a subject has taken a step

only when the foot goes up and down, and this generates a step event. A step event

marks the completion of feature extraction and then triggers the computation of the

subject’s global parameters like current speed, location etc.
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23.8.6 Global parameters conversion

Global parameters are those which define the state of individual pedestrian in the

complete visualization world. These parameters are speed, direction of heading and

current location. They effectively point a state of pedestrian but are updated by the

computed gait parameters over time.

23.9 Conclusions and limitations

[for this approach] This approach makes the development of this simulator modular

and thereby allowing it to be integrated in any software and application framework.

However this architecture has limitations as follows:

• Cannot observe direction of motion using Natural Interaction.

• Requires calibration for each new user.

In further chapters we attempt to address these limitations.



CHAPTER 24

NAVIGATION ON 2D PLANE

Kinect is a versatile sensor which can be used in multiple scenarios. In this the-

sis, it was used to extract information about the gestures performed by a subject to

help them navigate through a virtual network. The algorithm discussed in previous

chapter allows to extract information related to human gait. But navigation in 2D

plane is an important aspect and such a framework should be able to address it. In

this chapter methodologies are discussed to be able to perform the same.

24.1 Current Limitations

Movement in single dimension or a curve implies motion in forward or backward

direction. But on a two dimesnional plane it also requires taking perpendicular turns

or turning on a curve. With these things in perspective, the current framework is

able to capture the walking gesture, but is incapable of the following

• Inability to distinguish between walking backward and forward.

• Taking left and right turns during walking gesture.

• Taking a graduated turn along some curvilinear path.

128



129

It is imperative to have a solution to solve these problems in the framework, which

otherwise will be fall short of providing access to multiple possible paths and motions.

Therefore following three methods have been identified:

• Method 1: Using multiple(two) kinect sensors to track

• Method 2: Tracking decrement in body constants (hip width, etc. )

• Method 3: Usage of secondary gestures with hand.

24.2 Method 1

Kinect for Windows support multiple kinect sensors to be connected to a same

system, being governed by the the same application. This allows for many wonderful

and new interaction spaces that can be thought of, hence, leading to new application

architectures that can be applied to many problems.

In case of recreating two dimensional motion, inside a virtual network with the in-

puts by the subject, it is important to detect the position and degree of rotation(turn)

taken by the subject. Since motion is two dimensional, it is intuitive to keep the two

kinects perpendicular to each other as shown in figure 24.1.

This method will help in generating more accurate detection of how much the

subject has turned, as evident from the figure 24.1. This is accomplished with skele-

ton detection and face detection from the video stream from the kinect sensor. This
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Figure 24.1: Perpendicular kinect sensors scenario 1

will help to identify that towards which kinect sensor is the subject facing and sub-

sequently feature extraction will be from that sensor. Although this approach will

also suffer from the problem of differentiating between forward and backward motion.

Another arrangement for perpendicular placement of two kinect sensors can be

seen in figure 24.2. This arrangement will again help in generating a more accurate

detection of the turn taken by the subject. As seen in figure 24.2, in this approach one

kinect sensor is mounted over the head facing the floor. This kinect sensor will be used

to identify the direction in which the subject is facing by using a directional marker

on their head. This directional marker can be color coded, or shape coded. Also it

is not necessary to use a kinect sensor over the head, and another video camera can

be placed for the same. But since kinect sdk is being used already, it would greatly

simplify the programming and hence using a kinect sensor is more sensible approach.
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Figure 24.2: Perpendicular kinect sensors scenario 2

The limitation of this method is more practical in nature. Due to involvement

of multiple kinect sensors, the setup of the interaction space will be difficult. The

sensors will have to be placed accurately and calibration will require repositioning

them. Hence the setup of this will require a lot of time and will be susceptible to any

accidental movement of the sensors.

24.3 Method 2

For every subject, while performing on the spot walk gesture in front of kinect

sensor, the plane containing the shoulder and the hip region (plane of subject) is

parallel to that of the sensor (plane of sensor). This information can be used to

define whether the plane of subject is parallel to the plane of sensor. Therefore, the
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hip and shoulder width observed is a result of taking a projection of the plane of

subject on plane of sensor (refer figure 24.3). This will accurately define the tilt of

the subject with respect to the sensor and hence the direction of movement.

To check whether the subject is moving towards the sensor or away from the sensor,

Figure 24.3: Geometry of relating body constants

face detection can be used. If the face is found in the video stream, it will imply that

user is moving in a specified direction in the virtual world, let it be North. In case if

is not found and the projection value of shoulder width is nearly same as that when

the planes are parallel, the subject is assumed to be moving South.

This points to the limitation of this approach as it becomes difficult to point whether
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the subject is moving east or west while turning. In other words left and right turns

cannot be distinguished. An alternative solution to this limitation can be wearing

colored markers perpendicular to the plane of subject, placed on each shoulder.

24.4 Method 3

With the advent of gesture based control, each interaction is nowadays thought of

in terms of gestures. Similarly we have defined and used an on the spot walk gesture

for obtaining information for the gait parameters for any person. Hence, it is intuitive

to define another gesture for turning while walking.

In this method, a new set of gestures is defined as follows (and seen in figure ??):

To turn left, raise the left hand above torso. The turn command

will be relayed till the hand remains above torso, in constant increments.

This will be independent of whether the person is performing on the spot

walking gesture or not. Similarly, the gesture for right turn is defined.

Therefore, this method will allow to turn with ease with a limitation on the speed of

turn. A way to dynamically alter the speed of turn as per the requirement of subject

is desired. Also, such a method constrains a subject to behave in a non-intuitive

manner as it is more intuitive to turn left yourself, rather than raise hand to turn.
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24.5 Selected Final Method

After the above analysis, a number of issues for selection of final method surfaced.

The primary being ease of deployment and complexity of setup, followed by ease of

development and number of kinect sensors. Also this linked to an indirect part of

problem, the calibration. Calibration is most important procedure for any system as

it makes the system adaptable to varing conditions.

Based on these issues, method 3 was selected as it was easiest and most robust

implementation strategy. Although this method is less intuitive in nature, but given

the increase in cost and complexity of the system in other two methods, it seems to

be a worthy trade-off.
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FINAL IMPLEMENTATION

This chapter details the development and execution of the final software frame-

work, based on the research detailed in previous chapters. At the end of chapter

suture work and limitations are also discussed.

25.1 System Architecture

This project is aimed at development of an application programming interface

(API) for user interface engine of a pedestrian simulator, to allow a subject navigate

through a virtual network. The output is aimed to be generic, returning various gait

parameters in realtime, the number of steps taken and turning values.

As mentioned, the api has to be realtime, maintaining total and instantaneous param-

eters. For this the system architecture is as shown in figure 25.1. This architecture

has been explained in following subsections. updates various object parameters. Such

parameters are called instantaneous parameters.
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Figure 25.1: Complete Architecture of Pedestrian Simulator API
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25.1.1 Intitialization

This part of the API architecture is called to initialize various functions necessary

for tracking skeleton and hand genstures. In this function a thread is initialized which

communicates to NUI SDK for Kinect sensor to update skeleton data. This function

also initializes another thread which updates current values for a pedestrian object

from the seleton data.

This initialization is a part of the constructor for the object. A constructor is that

part of the program which is invoked on creation of an object. This part ensures that

default values are loaded into the variables inside the pedestrian object and avoid the

problem of loading garbage value in them. Hence it ensures smooth functioning of

the program.

25.1.2 Calibration

This part of the API architecture is called immediately after initialization or at any

point during processing to define certain setup dependent variables for computation

of various gait parameters. These variables are shoulder width, hip width, maximum

and minimum knee height and wrist height from ground.

This method ensures that subject of all body types can participate and navigate.

This ensures the independence from height, width and similar body features. Hence

it allows for all kinds of subjects in every age group. It also allows to switch subjects

during a single run if needed.

The calibration process is guided in nature, and hence the API will only support
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calibration on a handshake type protocol. The method to communicate with user has

to be built around it.

25.1.3 Get Current Gait Values

A gait has various parameters which can be called as instantaneous parameters.

These define the current phase of the gait for a subject. The mapping can be seen

in figure 21.5. Using the value returned from this module, the graphics engine can

represent the status of the subject in one of these phases.

This module returns the current phase of walking i.e. stance or swing phase and the

percentage completion of that phase. Therefore a suitable graphics engine can render

appropriate views in the 3D environment for the subject.

25.1.4 Get Pedestrian Data Values

A subject while walking has many important secondary data points. These in-

clude, but are not limited to, instantaneous speed, a complete step taken, deviation

from geographic North of virtual environment etc. This data is required to be fetched

at every point of time while the application is running. Therefore, it is important to

keep this method in a thread associated with graphics.

25.2 Test Case Implementation

To employ the above mentioned API, a text based user interface was implemented

which printed various parameters on the screen. The following screenshots show the
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implemented solution using the pedestrian API built during this project.

Figure 25.2: User in front of Kinect Sensor
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Figure 25.3: User in changing heading

Figure 25.4: User stepping and increasing distance travelled



CHAPTER 26

DISTRACTED DRIVING

26.1 Introduction

The reason behind the majority of the roadway crashes in the United States

has been attributed to so many different factors such as driving under influence,

speeding, distracted driving, fatigue etc. But all these various factors converge to a

single behavioral attribute, i.e. inattention as shown in figure 26.1. All the above

mentioned factors affect drivers reaction time which in turn increases chances for

accidents and roadway fatalities.

Figure 26.1: Accident contributing factors leading to inattention
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Several studies have been conducted in the past to model driver’s road behavior

based on the road performance and the parameters obtained from the vehicle. This

chapter explains in brief about the studies that have been conducted so far.

The influence of driver’s impairment in motor vehicle crashes is already well estab-

lished. To analyze driving profile and to be able to predict potential dangers based

on the driving pattern, vehicle based sensing techniques have attracted significant

attention. The underlying idea is to capture data through various sensors embedded

in the vehicle and then to use data processing techniques to characterize the data

and identify different levels of impairment and then to find a relationship between

the levels of impairment and driver’s data characteristics. Depending upon the type

of sensor used to capture data, driver impairment detection and monitoring technique

can be classified as follows:-

• By capturing driver’s physiological signals such as Electroencephalogram (EEG),

Electrocardiogram (ECG), eye tracking, postural stability etc. one can get sig-

nificant and highly reliable information about the driver’s current state of mind.

Various studied have been conducted to monitor driver’s performance by captur-

ing these signals and thereby studying distraction. As these signals are directly

obtained from driver, the information about driver’s physiological condition is

very rich. However these sensors are highly sophisticated and are not so com-

monly found in existing commercial vehicles, it becomes difficult to employ the

setup without posing additional discomfort to the driver.
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• Signals obtained from vehicle motion such as vehicle speed, lateral position and

time headway are widely used in various collision avoidance systems. In addi-

tion, these signals have also been used to model and monitor driver’s behavior

behind the wheel. Sezikawa have used distance between cars on the road to

model human driving behavior. Similarly Toledo used lane changing informa-

tion and acceleration rate to model human driving behavior behind the wheel.

• The most readily available signals are the driver’s input such as steering wheel

angle, gas/brake pedal activity etc. These signals are most easily available in

most of the modern vehicles. As these signals are direct output from the driver

and are not affected by the vehicle dynamics, thereby act as better indicators of

driver conditions compared to the earlier mentioned signals. These signals have

been used in various studies as measures of driver performance measurement.

Desai proposed a measure of sharp changes in the driving signal to estimate

drowsiness of the driver. Similarly entropy of the steering wheel has been em-

ployed as a measure of driver workload and driver performance.

The connection between the motor vehicle crashes and alcohol has been very well

established. According to studies it has been noted that when BAC goes beyond

0.08,the probability of a serious crash increases dramatically. Several studies have

been conducted in the past to analyze the effects of alcohol on a driver’s performance.

The main hindrance for conducting the study in actual field setting, has been

attributed to the safety hazards and also due to the procedural problems. As the
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alcohol intake of an individual is very specific and varies from person to person, the

results obtained are relatively generalizable. From these studies it has been concluded

that the performance of a driver on a divided attention task is sensitive to alcohol.

Moreover, alcohol seems to cause a tunneling effect such that the information is either

missed, ignored or the reaction time of the driver had increased.



CHAPTER 27

EXPERIMENTAL SETUP

27.1 Driving Simulator and Scenario Design

Driving Simulator are the most popular and safe way to carry out an experimental

research as it gives a close enough real world feel with in the safe environment. In

addition, it also offers low cost, high control and safety on the experiments.

A ”driving simulator” is a virtual reality tool which gives a driver on board impres-

sion that he/she drives a real time actual vehicle by predicting vehicle motion caused

by driver input and feeding back corresponding visual, motion, audio, prepriocep-

tive cues to the driver. It includes a real time system to simulate vehicle dynamics,

visual/audio systems to recreate an actual driving setting, an interface between the

driver and the simulator, an operator monitoring system, data collectors and syn-

chronization system. Driving simulators have been widely used for safety studies,

understanding vehicle dynamics, human factor study etc.

In this study a STISIM R© Drive Simulator Version 10 was used to acquire data.

STISIM R© Drive is a personal computer based interactive driving simulator devel-

oped by Systems Technology, Inc.. It includes a vehicle dynamics model, visual and

auditory feedback, steering wheel feedback and a driver performance measurement

system. To create driving scenarios a unique Scenario Definition Language (SDL)
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can be used. SDL provides user with the freedom to design an arbitrary sequence of

tasks, events and performance measurement intervals. The STISIM R© has been used

in various research projects.

The scenario simulates a 3 mile drive on an outskirts of a city with the speed limit of

Figure 27.1: Simcraft Driving Simulator

45 miles/hr. By varying the overall light level of the simulation, color and brightness

of the surrounding the time and day of the simulation can be adjusted. The normal

drive time is around 4-5 minutes. Figure 27.1 shows the basic setting of the exper-
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iment with a driving simulator. The data was collected for three different settings

which were:-

• Normal Driving

• Alcohol-impaired Driving

– Driving with Moderate BAC (0.01-0.07)

– Driving with High BAC (0.17-0.20)

• Driving with Distraction

– Talking on Cellphone

– Texting on Cellphone

To make a person comfortable with the simulator 2-3 practice sessions were pro-

vided to each participant before starting the data collection. After each driving

session participants were provided with a break to relax and to avoid the study being

monotonous. To remove biases, each participant was asked to perform a driving task

for three times, hence making the overall driving for 15 minutes for each setting.

Various parameters were recorded during each session which includes lateral distance

from the centerline, steering wheel angle input, brake/gas pedal input, speed of the

vehicle and speed limit of the roadway. The sampling rate for the recording was about

4 samples per second.
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27.2 Subject Selection

The subjects of the study were recruited from the staff and students in Transporta-

tion Research Center (TRC). The only requirement for participating in this study was

to have a valid US driving license and belonging to the age group 20-30. The main

objective of selective subjects from TRC was to minimize unfamiliarity bias from the

study as the subjects were already well aware about the working of the simulator.

27.3 Procedure

The entire study for one participant was conducted in one day. To avoid monotony

in the study, participants were given breaks in between and the study. In addition,

different settings were shuffled instead of recording three driving for one setting. To

measure alcohol-induced behavior, driver’s were provided with Fatal Vision R© goggles

with equivalent BAC in moderate (0.01-0.07) and high (0.17-0.20) ranges. Figure 27.2

shows a fatal vision goggles which were used in the study.

To study driver’s performance with distraction, cellphone was used as a medium of

Figure 27.2: Fatal Vision R© Goggles
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distraction. Both talking and texting were used to distract the driver separately as

driver’s performance was recorded.



CHAPTER 28

ANALYSIS: DISTRACTED DRIVING

28.1 Data Recording

Five subjects were recruited from Transportation Research Center at University

of Nevada, Las Vegas. Each subject completed six sessions on a driving simulator

(i.e. one familiarization trial, one normal driving without any hindrance, two alcohol-

impaired driving trials and two distraction-impaired driving trials). Duration for

each trial was approximately 5 minutes. Four different kinds of data was recorded

in each trial. Moreover, each trial was conducted for three times to remove any bias

whatsoever. The STISIM R© driving simulator recorded all information as specified in

the scenario file.

28.2 Data Pre-processing

There are two main reasons for doing data pre-processing. Firstly, it enables

to demonstrate that there is a relationship between the driver’s performance and

the driver’s physiological condition caused by various measures employed during the

study. The measures which are being tested here are alcohol-impaired driving and

driving with distraction. Secondly, the data obtained from the study need to be
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reduced so that significant conclusions can be reached. Data in its current form

contains a lot of information which needs to be extracted to be able to use it further.

Among the various channels of data recorded, steering wheel angle (SWA), lateral

lane position (LLP), speed of vehicle (SOV), brake/ gas pedal input are the most

important in the analysis of the data. The lateral lane position and speed of vehicle

directly relates to the risks of being in an accident on the road while steering wheel

angle and brake/ gas pedal input reflects the driving behavior. Thus the fist task is

to find any relationship between these two sets of data.

28.3 Time Domain Analysis

28.3.1 Standard Deviation analysis of LLP and SWA

A time window approach is applied to the analysis as single data points do not

convey much information about the data set. The raw data from the LLP and SWA

channel were grouped into 4-seconds window. Each window thus includes 16 sam-

pling points. For each window, various analysis tools can be used to identify a basic

pattern among the data set. The tools can be basic statistical measures such as mean,

standard deviation and histogram etc. The standard deviation was selected as a tool

for this study because it tells how tightly all the various sampling points are clustered

around the mean in the window. It also explains the variation of the data in a selected

window, which related to the objective of the study. Hence, the mean and standard

deviation of all windows are calculated and compared.

Equations 28.1 - 28.4 shows the calculation of mean and standard deviation of
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LLP and SWA over a window. Here N is the length of the window.

µLLP =
1

N

N∑
i=1

LLPi (28.1)

σLLP =

√√√√ 1

N − 1

N∑
i=1

(LLPi − µLLP )2 (28.2)

µSWA =
1

N

N∑
i=1

SWAi (28.3)

σSWA =

√√√√ 1

N − 1

N∑
i=1

(SWAi − µSWA)2 (28.4)

The standard deviation of all the lateral lane positions (σLLP ) of all windows were

calculated and the windows were sorted in an ascending order based on the value of

σLLP . The steering wheel angle behavior of the corresponding window (the standard

deviation of steering wheel angle, σSWA) were also compared.

The mean σSWA of normal driving sessions and driving with fatal vision goggles

with moderate and high equivalent BAC are shown in figure 28.1. Similarly, the mean

σLLP for the respective sessions are shown in figure 28.2.

The results indicate that µσSWA
increases when the thresholds increases. Thereby

indicating at a close relationship between σLLP and σSWA. As mentioned earlier, that

lateral lane position is directly associated with the risks where as steering wheel angle

is direcly associated with the driver’s physiological status.

From figure 28.1 it can be seen that the µσSWA
in moderate and high BAC con-

ditions is significantly higher than that in normal driving conditions with different
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Figure 28.1: µσSWA
with varying σLLP Ranges

thresholds. When the thresholds are smaller, i.e. the deviation in the lateral lane

position is small, the driver maintains lower steering wheel movements to control the

vehicle where as in the other settings when a fatal vision goggles are provided to

induce the effect of alcohol to maintain the lane position, driver has to provide higher

steering wheel movements. This can be explained as follows: in normal situations,

subjects recognized lane deviations more quickly and made small and precise steering

wheel movements to correct it. However, due to the induced alcoholic effect from

fatal vision goggles, subjects had delayed responses to the lane deviations and hence

required larger wheel movement to correct the lane drift. A similar analogy also exists

for the driver’s behavior between moderate BAC and high BAC. For high BAC, sub-
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jects had to make even larger wheel adjustments to keep the vehicle in its lane. This

shows that an alcohol influenced driver can maintain the lane of the vehicle (σLLP is

small) and can control the vehicle successfully, but he/she has to move the steering

wheel more often (µσSWA
is large).

However, for scenarios involving distraction using cellphone (i.e. texting and talking),

it can be observed from figure 28.1 that texting while driving has a very high µσSWA

compared to the other scenarios indicating a larger steering wheel input by the driver

to keep the vehicle lateral lane deviation as low as possible. Similarly while talking

on the cellphone the µσSWA
of the subject is more than it is in the normal driving

situation.

Figure 28.2: µσLLP
with varying σSWA Ranges



155

Similarly from figure 28.2 it can be seen that the µσLLP
values in alcohol influenced

sessions are higher than those in normal sessions with different thresholds. It also

indicates that under similar steering wheel control behavior, the lane deviation are

larger in alcohol influenced session than in normal session. This means that alcohol

influenced drivers have poor lane keeping ability than regular drivers. Moreover for

texting while driving scenario even with a little deviation in the steering wheel input

causes a significant deviation in the lateral lane position.

Figure 28.3: µσLLP
with varying σSOV Ranges
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A similar analysis has been performed for lateral lane position (LLP) and steering

wheel angle (SWA) with respect to speed of vehicle (SOV). Figure 28.3 and 28.4 shows

the µσLLP
with varying σSOV ranges and µσSWA

with varying σSOV respectively. For

lower deviation in the speed of the vehicle, deviation in the lateral lane position and

steering wheel angle is higher for when the driver is influenced with moderate BAC

fatal vision goggles and when the driver is texting while driving. For texting session

the deviation in the lateral lane position increases drastically as compared to the rest

of the scenarios to maintain respective deviation in the speed of the vehicle.

Figure 28.4: µσSWA
with varying σSOV Ranges
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28.4 Frequency Domain Analysis

A signal can be represented in an infinite number of different ways depending on

the application. The most popular, important and fundamental representation is time

and frequency domain represenatation of signals. The time domain indicates how a

signal changes with time and the frequency domain indicates how often these changes

takes place. The time domain signal was converted to frequency domain using fourier

transform as shown in equation 28.5. The Fourier Transform involves decomposition

of a signal as the sum of weighted sinusoidal functions of varying frequencies. Hence,

the projection of the values of these signals forms the Fourier Transform of the origi-

nal signal. As the lateral lane position is a discrete signal, discrete fourier transform

(DFT) was applied to the signal to obtain a frequency domain signal.

X(w) =
∞∑

n=−∞

x[n]e−iwn (28.5)

Figure 28.5 shows the lateral lane position of Subject 1 in time domain. It is

evident from figure 28.5 that, scenario where subject was texting while driving shows

a lot of oscillation from the driving lane than in the normal driving scenario. In mod-

erate BAC, the performance of the subject was better than the texting scenario but

that can be attributed to the fact that even while driving with fatal vision goggles,

driver is conscious and can focus on the road, but while texting, attention and eyes of

the driver were mostly off the road. It was also interesting to note that the oscillation

in the lane position when the driver was talking on the cellphone was more than the
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normal driving scenario but significantly less as compared to other distraction based

scenarios. Figure 28.6 shows the single sided frequency spectrum of the standard

deviation of lateral lane position (LLP) of subject 1.

Figure 28.5: Time variation of Lateral Lane Position (LLP) of Subject 1(in feet)

Similarly, figure 28.7 shows the variation of steering wheel angle with time. When

the subject was texting while driving, the oscillations in the steering wheel angle

was exceptionally large. However, during the other distraction based scenarios the

oscillation is slightly lower than texting but was in the relative decreasing order of

HIGH BAC, MOD BAC, Talking and Normal Driving Scenarios. Figure 28.8 shows

the single side spectrum of the standard deviation of steering wheel angle (SWA) of
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Figure 28.6: Single Sided Spectrum of Lateral Lane Position (LLP) of Subject 1

subject 1.
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Figure 28.7: Time variation of Steering Wheel Angle (SWA) of Subject 1(in radian)
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Figure 28.8: Single Sided Spectrum of Steering Wheel Angle (SWA) of Subject 1
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Figure 28.9: Time variation of Speed of Vehicle (SOV) of Subject 1
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Figure 28.10: Single Sided Spectrum of Speed of Vehicle (SOV) of Subject 1



162

28.5 Entropy Based Analysis

In electrical engineering, entropy is defined as a function which conveys infor-

mation about the behavior or attributes of a physical system. In thermodynamics,

entropy is associated with the chaos or randomness in a given system. A system

with higher entropy is considered more random or chaotic than the system with lower

entropy. It has been used as a performance measure to assess driving performance

of the subjects in various research environments. The main objective of this study

was to monitor the effects of various scenarios involving distraction and driving under

influence on the driver. Entropy as a performance measure was found appropriate to

calculate the randomness introduced in the system due to different scenarios. More-

over, it also measures driver’s efforts to bring the system back to its normal state

as quickly and closely as possible. Hence it reduces the randomness and the overall

entropy of the system.

For a discrete random variable X, the measure of uncertainty associated with the

value of X is defined as entropy H. For a discrete signal X, entropy is defined as

H =
∑
x∈X

−p(x)log(p(x)) (28.6)

where p(x) gives the probability for any x ∈ X.

Lateral lane position (LLP), steering wheel angle (SWA) and speed of vehicles

(SOV) all are directly related to the driver’s driving pattern. As this study was
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Figure 28.11: Entropy variation of LLP for Subject 1

conducted on a driving simulator with the scenario involving driving on a straight

road under various distractions and influence, the main objective was to study the

randomness in the driving pattern. The degree of randomness is shown in this section

in figures 28.11, 28.12 and 28.13.

From figure 28.12, it can be seen that when the driver was texting while driving,

lateral lane position has high degree of randomness as compared to the normal driving

scenario. Similarly, for the scenario involving HIGH BAC the randomness is higher

than normal but slightly lower than the texting while driving scenario. This explains

the amount of distraction a driver may face on the road if engaged in these activities.

It should also be noted that as these experiments were performed in a laboratory
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controlled environment, the actual behavior on the road could be different for different

drivers.
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Figure 28.12: Entropy variation of SWA for Subject 1
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