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EXECUTIVE SUMMARY 
This project proposes a Memetic Algorithm (MA) for the calibration of microscopic traffic flow 
simulation models. The proposed MA includes a combination of genetic and simulated annealing 
algorithms. The genetic algorithm performs the exploration of the search space and identifies a 
zone were a possible global solution can be located. After this zone has been found the simulated 
annealing algorithm refines the search and locates an optimal set of parameters within that zone. 
The design and implementation of this methodology seeks to enable the generalized calibration 
of microscopic traffic flow models. Two different CORSIM vehicular traffic systems were 
calibrated. All parameters after the calibration were within reasonable boundaries. The 
calibration methodology has been developed independently of the characteristics of the traffic 
flow models. Hence, it is likely to be easily used for the calibration of any other model. The 
proposed methodology has the capability to calibrate all model parameters considering multiple 
performance measures and time periods simultaneously. A comparison between the proposed 
MA and the SPSA algorithm was provided. The results are similar; however, the effort required 
to fine-tune the MA is considerably small compared to the SPSA. The running time of the MA-
based calibration is larger compared to the SPSA. The MA still requires some knowledge of the 
model in order to set adequate optimization parameters. The perturbation of the parameters 
during the mutation process must be large enough to create a measurable change in the objective 
function but not too large to avoid noisy measurements.  
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INTRODUCTION 
The calibration of traffic flow simulation models continues to be an open area of research. The 
various frameworks that have been proposed in the literature to address the associated 
optimization problem (1) are not general enough to provide adequate results for the large number 
of available simulation models and required traffic scenarios. Figure 1 illustrates the general 
conceptual calibration process where model inputs are adjusted between realistic boundaries 
until simulation results are reasonable close to field measurements (2).  That is, the optimization 
problem seeks for the values required by the parameters of the simulation model so as to 
minimize the difference between simulation outputs and the corresponding field measurements. 

 

  
FIGURE 1 Conceptual calibration process 

 
The solution space of the optimization problem is defined by the range of model 

parameters. A broad number of algorithms have been proposed to solve the optimization problem 
for a particular traffic flow system and/or simulation model. Some of the proposed algorithms 
include evolutionary approaches such as genetic algorithms (3)(4). Others claim that 
metaheuristics can provide better results  (5). The sequential simplex algorithm was used to 
calibrate parameters for car-following, acceleration/deceleration, and lane-changing behavior (6). 
However, only a subset of parameters was considered. Moreover, the required computational 
time is considerably high and the solution could be a local optima. Stochastic approximation 
methodologies were used for the simultaneous calibration of traffic flow model parameters 
(7)(8)(9). Although the methodology can provide adequate results, a complex fine-tune process 
of the algorithmic parameters is required for each model (10).  

Although the research community has produced a large number of approaches for the 
calibration of simulation-based traffic flow models, a single automated methodology capable of 
calibrating various simulation models and traffic scenarios is not yet available in the literature. 
The primary challenge is the lack of a generalized optimizer algorithm. Clearly, the lack of a 
generalized optimizer is not a problem exclusive of the calibration of traffic flow models. Many 
other engineering and designer problems face the same issue. This has motivated the 
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development of memetic algorithms (MA) which combine global and local research 
mechanisms. That is, memetic algorithms combine an extensive search of the best zones on the 
search space (exploration) and a more detailed search is performed on the zones with better 
possible solutions (exploitation). The equilibrium between exploration and exploitation improves 
the results (11). Hence, memetic algorithms are particularly convenient for problems involving 
large search space.  

Depending on the mechanisms chosen for global and local search, a memetic algorithm 
can be implemented and used relatively easy and with little need for fine-tuning of its model 
parameters. Hence for practical purposes, memetic algorithms can provide better results than 
other well established approaches such as genetic algorithms, tabu search, and simulated 
annealing(12).   

In this study, a memetic algorithm is proposed to search for the values of the parameters 
used by the traffic flow simulation model so as to minimize the difference between simulation 
and the corresponding field measurements. Previous studies have either considered a subset of 
model parameters, a single performance measure was used, or fine-tune was required for the 
parameters used by the optimization algorithm. The proposed methodology implements a MA to 
determine an adequate set of all model parameters. To the best knowledge of the authors MAs 
have not been used for the calibration of traffic flow models. The proposed algorithm seeks to 
minimize user intervention during the calibration process. The parameters used by the proposed 
MA are relatively simple to fine-tune and independent of the characteristics of the traffic flow 
simulation model (13)(14). During the experiments, various simulation models and scenarios 
were calibrated with a memetic algorithm using the same values for its parameters. Optimization 
algorithms in the existing literature involve an extensive sensitivity analysis of the algorithm 
parameters. In addition, most methodologies require pre-calibrated model parameters and/or 
demand patterns to achieve adequate results (15)(16). 
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SECTION 1: METHODOLOGY 
Formulation of the Calibration Problem 
The calibration of the simulation model parameters, θ, is formulated using mathematical 
programing approach. The analysis period is divided into a number T of discrete time periods. 
The objective function, normalized root mean square (NRMS), is provided by Equation (1). The 
NRMS is the sum over all calibration time-periods of the weighted average of the sum over all 
links N of the root square of the square of the normalized differences between actual and 
simulated performance measurements. The normalization enables the consideration of multiple 
performance measures simultaneously. The calibration problem using vehicle counts and speeds 
as performance measures is formulated as follows: 
 
 
  (1) 

 

 

 
 
Subject to: 
 
Lower bound ≤ θ ≤ Upper bound 
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N = total number of links in the model, 
T = total number of time periods t, and 
W = weight used to assign more or less value to counts and speeds. 

Calibration criteria 
The guidelines provided by the Federal Highway Administration for CORSIM models were used 
in this study. The difference between actual and simulated link counts should be less than 5% for 
all links; and, the GEH statistic (17) should be less than 5 for at least 85% of the links. The GEH 
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Memetic algorithms 
Concepts from evolutionary optimizations such as population and individuals are used in the 
formulation. An individual θ represents a vector of parameters containing a solution of the 
optimization problem. Each individual has a measure of effectiveness, functional adaptation. The 
algorithm seeks to create a population through the generation and conservation of appropriate 
individuals (exploration). The best individuals are used to generate new populations through the 
iterative steps of the algorithm. Additionally, after the best individuals are selected the 
exploitation process refines the search in order to obtain better solutions (11).  

The proposed MA integrates a genetic (18) and simulated annealing (19) algorithm. The 
genetic algorithm is used for exploration and the simulated annealing algorithm is used for 
exploitation. After the stopping criteria are met, the best individual is stored and the population is 
reset. The generation of new populations helps the algorithm to avoid local optima.  
The MA is implemented using the following steps: 
 
Step 0: (Initial Population):  

Generate an initial population with 128 individuals. This population is randomly 
generated using constraints to avoid unrealistic values. 

Step 1: (Parents selection): 
Parent selection is performed using “roulette wheel selection” conserving and paring the 
best 60% individuals.  

Step 2: (Crossover): 
A crossover process is used to combine parents to generate new individuals (children).  

Step 3: (Mutation): 
Small perturbations (± 1%) are applied to approximately 30 % (mutation percentage) of 
the parameters of each child in order to explore nearby solutions. 

Step 4: (Population management strategy): 
 If the new child is better compared to older individuals, the new child will replace the 

worst individuals.  
Step 5: (Exploitation - Simulated Annealing (SA)):  

Step A: Create a neighbor around the best mutation. A sub-set (30%) of the parameters is 
randomly modified by adding +1% or -1% with a probability of 50% each.  

Step B: If the neighbor is better than the current best result, the neighbor replaces the best 
result and the algorithm goes to Step C. If the neighbor is not better, the 
temperature and the evaluation of the objective function are used to calculate the 
probability (Pro) of selecting or not the neighbor as the starting point for the next 
iteration of Simulated Annealing. Equation (3) provides the probability of 
selecting the neighbor.  

 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑒𝑒
𝑁𝑅𝑀𝑆_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟    −    𝑁𝑅𝑀𝑆_𝑏𝑒𝑠𝑡

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  
 

(3) 
 

 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

Step C: The stopping criteria is provided below. If stopping criteria is met, go to Step 6 of 
the GA. Otherwise, go to Step A.  
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Step 6: If the stopping criteria is met, store the best individual and go to Step 0; otherwise, go to 
Step 1. 

 
The initial population, selection, crossover, mutation, and replace percentages were assigned 
following recommendations in literature. (12)(13) (15).  

Stopping Criteria 
Equation (3) is used as stopping criteria. When this inequality is satisfied or a pre-specified 
maximum number of iterations is reached, the stopping criteria is met.  
 

∑ �(𝑁𝑅𝑅𝑀𝑆𝐴𝑉 − 𝑁𝑅𝑅𝑀𝑆𝑘)2𝑘
𝑘−𝑛+1

𝐶𝐶
< 𝜌 

(3) 
 

 
where, 
 
𝑁𝑅𝑅𝑀𝑆𝐴𝑉= average NRMS of the last n iterations,  
𝑁𝑅𝑅𝑀𝑆𝑘 = NRMS at k iteration, 
k = iteration counter, 
n = pre-specified integer = 10, and 
ρ = pre-specified convergence condition = 0.015. 
 
At least 10 iterations are required before Equation (3) can be used and the stopping criteria can 
be evaluated. The experiments conducted as part of this research required no more than three 
population resets.  
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SECTION 2: EXPERIMENTS AND RESULTS 
Micro-simulation Model 
The proposed methodology was tested using CORSIM models. CORSIM integrates FRESIM 
(Freeway simulation) and NETSIM (Arterial simulation) to represent the complete traffic 
environment (20)(21). The Traffic Analysis Toolbox Volume IV: Guidelines for Applying 
CORSIM Micro-simulation Modeling Software (22) describes a manual procedure for the 
calibration of CORSIM micro-simulation models. However, these guidelines do not suggest a 
particular methodology to perform the calibration in an efficient and effective manner. Issues 
associated with convergence and stability of the solutions during the calibration are not 
discussed. Nonetheless, alternative studies have proposed and developed practical procedures to 
accelerate the calibration process, which is typically time consuming (23).  

Calibration Parameters for CORSIM Models 
CORSIM involves driver behavior and vehicle performance parameters (20)(21). These 
parameters can be global or local (individual links). In addition, they are defined for arterial, 
freeways, or both simultaneously. Table 1 shows the different parameters that can be used for the 
calibration of CORSIM models (24). Several studies have conducted sensitivity analysis for the 
calibration of CORSIM models (25). The calibration parameters have different effects for 
specific networks and conditions. The interaction between these parameters is very complex and 
varies from model to model. As a starting point, the proposed methodology uses a randomly 
generated set of CORSIM values for the parameters listed in Table 1. These values are generated 
within realistic bounds. A random generation of these values decreases the human effort during 
the calibration setup. During calibration, the value of the selected parameters is adjusted while 
constraining their boundaries.  

Experimental Setup and Results 
Two experiments are used to test the proposed methodology. The first experiment uses a model 
for a portion of the Pyramid Highway in Reno, NV. The second experiment uses a hypothetical 
network provided by McTrans. A software tool was developed to implement the proposed 
calibration methodology. The tool uses a basic layered architecture were each layer handles a 
group of related functions. The entire software was developed in Java and it includes more than 
5086 lines of code. Java was chosen due to its capability to handle complex data structures and 
implementing complex mathematical functions. The specifications of the equipment used to 
perform the calibrations are mentioned below.  
 
System specifications 
Operative System: Windows Server, Standard Edition, 2007, Service Pack 2 64Bit  
System: Intel Xeon CPU E7450 2.4GHz (4 processors) 
Ram memory: 32 GB 

 
The parameters used in the experiments are as follows: 
Exploration and exploitation algorithmic parameters: 
Genetic Algorithm:  

Initial population = 128 
Selection Percentage = 60 
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Crossover Percentage = 50/50 
Mutation Percentage = 30 
Change Percentage = 1% 

 
Simulated Annealing:  

Initial Temperature = 0.045 
Final Temperature = 0 
Cooling Rate = 0.000135 

 
TABLE 1 Calibration Parameters for NETSIM and FRESIM Models 

NETSIM Model – Surface streets 
Driver Behavior Vehicle Performance Demand Patterns 
• Queue discharge headway 
• Start-up lost time 
• Distribution of free-flow speed by driver type 
• Mean duration of parking maneuvers 
• Lane change parameters 
• Maximum left and right turning speeds 
• Probability of joining spillback 
• Probability of left turn jumpers and laggers 
• Gap acceptance at stop signs 
• Gap acceptance for left and right turns 
• Pedestrian delays 
• Driver familiarity with their path 

• Speed and 
acceleration 
characteristics 

• Fleet distribution 
and passenger 
occupancy 

• Surface street 
turn movements 

FRESIM Model – Freeways 
Driver Behavior Vehicle Performance Demand Patterns 

• Mean start-up delay at ramp meters 
• Distribution of free flow speed by driver type 
• Incident rubbernecking factor 
• Car-following sensitivity factor 
• Lane change gap acceptance parameters 
• Parameters that affect the number of 

discretionary lane changes 

• Speed and 
acceleration 
characteristics 

• Fleet distribution 
and passenger 
occupancy 

• Maximum 
deceleration  

• Freeway 
turn 
movements 

First Experiment: Pyramid Highway in Reno, NV 
In the first experiment, a CORSIM model of the pyramid Highway in Reno, NV was calibrated. 
The calibration was performed using vehicle counts and speeds as field measurements. This 
model includes a total of 126 arterial links. Data was available for 45 of these links. Figure 2 (a) 
shows a Google map screenshot and the (b) CORSIM model of the Pyramid highway.  
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                                       (a)                                                  (b) 
FIGURE 2 Pyramid Highway, Reno, NV, (a) Google Map, (b) CORSIM Model. 

 
Figure 3 shows the improvement of the objective function during the calibration process. 

The concept of improvement rather than iteration is used here to illustrate the results. An 
improvement is achieved every time that the objective function provides a smaller NRMS 
compare to the existing best result. This removes all the noise associated with the random 
component of the search process. The initial value of the objective function was 0.42. After 77 
improvement steps, the NRMS decreased to 0.10.   

Figure 4 represents vehicle counts before and after calibration. The 45 degree line 
represents the state where model counts and field measurements perfectly match for each link. 
The initial values are far from the 45 degree line especially for higher counts. After the 
calibration, the counts were improved for all the links and the model represents field counts more 
accurately.     

Similarly to Figure 4, Figure 5 shows the speed values before and after calibration for the 
45 links with data available. The speed vales were improved specially for the lower values in 
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Figure 5 (a).  The proposed MA algorithm was able to modify the more biased values at higher 
rates than values closer to the 45 degree line. This capability is important for the calibration of 
networks with zones under congested conditions.    

 

 
FIGURE 3 Objective function improvement. 

  
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 

         
(a)                                                                     (b) 

FIGURE 4 Vehicle counts before (a) and after (b) calibration. 
 

Figure 6 illustrates the GEH statistic for the model before and after the calibration 
process. The dotted line represents the initial condition of the model for the 45 links. The initial 
GEH value was less than 5 for approximately 11% of the links. The solid line represents the 
model condition after the calibration. The GEH was improved considerably, it got smaller than 5 
for 89% of the links.   
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         (a)                                                                      (b)  
FIGURE 5 Speed values before (a) and after (b) calibration. 

 
 

 
FIGURE 6 GEH Statistics. 

Table 2 provides the summary of the calibration results. The NRMS and the GEH 
statistic were improved considerably. In addition, the total link counts are closer to the actual 
values after the calibration. The calibration criteria were met for this model.  

 
TABLE 2 Summary of results for the first experiment 

 NRMS Total link counts GEH 
Before calibration 0.42 45,359 < 5  for 11% of the cases 
After calibration 0.10 55,956 < 5 for 89% of the cases 
Actual  59,610  
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Second Experiment: Example from McTrans data files 
A network provided the McTrans was calibrated. The default parameters for this model were 
taken as the calibrated condition. The outputs from this default model were assigned as the field 
data for the experiment. Subsequently, all the calibration parameters were randomly modified. 
This modified model was used as a starting point for the calibration. This model includes a total 
of 20 arterial links. Vehicle counts and speed were simultaneously used to perform the 
calibration. Figure 7 shows the model used in this experiment.  
 

 
FIGURE 7 McTrans data files CORSIM model.  

 
Figure 8 shows the improvement in the evaluation of the objective function during the 

calibration process for the second experiment. The initial value of the objective function was 
0.36. After 94 improvement steps, the NRMS decreased to 0.05.  
 

  
FIGURE 8 Objective function improvement. 
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Vehicle counts before and after calibration are shown in Figure 9. Even though the initial 
condition of the model was close to meet the calibration criteria, the proposed methodology 
improved the results for all the links in the network.  
 

  
                                                   (a)                                                                          (b) 

FIGURE 9 Vehicle counts before (a) and after (b) calibration. 
 

For the second experiment the speed values were considerably improved compared to the 
results from the first experiment. Figure 10 shows the speeds for the before and after calibration 
conditions of the model. This improvement is due the accuracy of the model used.  

 

 
                                               (a)                                                                   (b) 

FIGURE 10 Speed values before (a) and after (b) calibration. 
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Figure 11 illustrates the GEH statistic for the model before and after the calibration 
process. The dotted line represents the initial condition of the model for the 20 links. The initial 
GEH value was less than 5 for 30% of the links. The solid line represents the model condition 
after the calibration. The GEH was improved considerably. It was lower than 5 for 100% of the 
links.   

 

 
FIGURE 11 GEH Statistics. 

Table 3 illustrates the summary of the calibration results for the second experiment. The 
NRMS and the GEH statistic were improved. In addition, the total link counts are closer to the 
actual values after the calibration. The calibration criteria were met for this model.  
 
 

TABLE 3 Summary of results for the second experiment 

 NRMS Total link counts GEH 
Before calibration 0.361231 8,040 < 5  for 30% of the cases 
After calibration 0.057464 12,072 < 5 for 100% of the cases 
Actual  12,224  
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SECTION 3: COMPARISON BETWEEN MA AND SPSA 
ALGORITHMS 
In order to illustrated the advantages of the proposed MA, a comparison with the Stochastic 
Perturbation Simultaneous Approximation (SPSA) (26) algorithm is provided. That is, the 
performance of the two algorithms for the calibration of microsimulation traffic flow models is 
compared. The running time, efforts during both algorithms fine-tune process, and overall results 
are compared. A clear pattern to fine-tune the optimization parameters was not found for the 
SPSA. Hence, empirical methods were used to find a set of proper parameters. On the other 
hand, the selection of parameters for the MA is considerable simpler. Knowledge from previous 
studies was used to select proper parameters. In addition, it is highly likely that the parameters 
founded for the MA can be used for any other CORSIM model because they were determine 
without using any information about the simulation and the same parameters worked well for the 
two tested models. The results in terms of GEH and NRMS are slightly better for the SPSA 
algorithm. Running time is larger for the MA. However, the effort required to fine-tune the MA 
was considerably small compared to the SPSA algorithm. Considering that analyst time is very 
valuable, the MA appears to be superior for this particular application because its fine-tuning 
process is very short compared to the fine-tuning for the SPSA. Table 4 provides a summary of 
the approximate time and results for both algorithms.  
 
 

TABLE 4 Comparison between MA and SPSA  

 
Experiment/Criteria 

MA SPSA 
Reno 

Network 
McTrans Reno 

Network 
McTrans 

Running Time 20.76 hours 13.3 hours 25.5 minutes 10 minutes 
Root Mean Square 0.108 0.057 0.10 0.09 

GEH < 5 for  89% 
cases 

< 5 for 100% 
cases 

< 5 for 100% 
cases 

< 5 for 100% 
cases 

Time required for fine-tuning 
parameters 

1 hour 20 hours 
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SECTION 5: CALIBRATION TOOL USER’S GUIDE 
 
CORSIM categorizes all inputs into sets named, record types. Geometry, traffic flow, and 
calibration parameters are grouped in different record types. Inputs are stored in text files with 
extension .trf. A calibration tool was developed to implement the proposed calibration 
methodology to update all parameters in the .trf file. A graphical user interface (GUI) is used to 
facilitate the calibration process, which involves five steps as depicted below.  
 
Step 1: Network Selection 
The first step requires locating the .trf file with the corresponding CORSIM model. From the 
main menu, click on ‘Select a .trf File’ and browse to the location of the file in the disk.   

 
Step 1: GUI - Calibration Tool -Main Menu 

 
 

Browser 
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Step 2: Parameter Selection 
In this step, the parameters for calibration are selected along with their initial values. Default 
values are available through ‘Use Default Parameters’. However, these parameters can be edited 
as desired or required by using the editor menu, as shown below. 
 

Parameter Selection 

 
 

Parameters Editor 
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Step 3: Loading of Actual Data 
This step involves loading the actual vehicle counts and/or speeds for calibration. An editable 
table is provided for the user to enter manually the available data. This table allows saving and 
modifying values at any time.  
 

Actual Data 

 
 

Data Editor  
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Step 4: Search of Parameters 
Once the actual data is uploaded, ‘Run Calibration’ is used to execute the proposed calibration 
approach to find the set of parameters that minimizes the difference between actual and 
simulated network states. 

Run Calibration 

 
 
Step 5: Visualization of Results 
Once the search process has determined the desired set of parameters, charts are generated to 
illustrate the quality of calibrated model relative to the actual data. Three sets of graphs are 
generated, including the GEH statistics, the ‘before’ and ‘after’ counts, and the speeds before and 
after the calibration. The calibrated .trf file replaces the original file. 
 

Visualization of Results
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GEH Statistics 

 
 

Counts Before and After Calibration 

 
 

Speeds Before and After Calibration 
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Conclusions 
This study proposes a Memetic Algorithm (MA) for the calibration of traffic flow models. The 
proposed MA is composed mainly by a genetic and a simulated annealing algorithm. The genetic 
algorithm performs the exploration of the search space and identifies a zone were a possible 
global solution can be located. After this zone has been found the simulated annealing algorithm 
refines the search and locates an optimal set of parameters into that zone, this process is called 
exploitation. The design and implementation of this methodology seeks to enable the generalized 
calibration of microscopic traffic flow models. Two different CORSIM vehicular traffic systems 
were calibrated and all parameters after the calibration were within reasonable boundaries.  The 
first model is a network from the Pyramid highway in Reno, Nevada. Vehicle counts and speeds 
were available for 45 from the 216 links on it.  The second network was a model from the 
McTrans data files. However, the calibration methodology has been developed independently of 
the characteristics of the traffic flow model and can be implemented for any other models. The 
proposed methodology has the capability to calibrate all the model parameters considering 
multiple performance measures and time periods simultaneously.  

A comparison between the proposed MA and the SPSA algorithm is presented. The 
results are similar however the effort required to fine-tune the Memetic algorithm (MA) is 
considerably small compared to the SPSA algorithm. The running time of the MA-based 
calibration process is larger than the one sing the SPSA algorithm. However, user intervention 
has been minimized. The experiments for the MA were set from an arbitrary set of initial 
calibration parameters. This decreases the effort and time for the calibration process due the 
minimization of the user intervention. Moreover, the models do not need pre-calibration or 
sensitivity analysis of the model parameters.   
 A limitation of the propose methodology is the need of knowledge of the model in order to 
assign MA parameters. The perturbation of the parameters during the mutation process must be 
low enough to create a measurable change in the objective function and not large enough to 
create noisy measurements of the objective function. This perturbation values affect directly the 
convergence of the algorithm. However, this fine-tune process is simpler than for other 
methodologies.  
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